
Structural Improvements of Chaotic PRNG

Implementations

Gabriele Spenger, Jörg Keller

Faculty of Mathematics and Computer Science

FernUniversität in Hagen

58084 Hagen, Germany

gabriele@spenger.org, joerg.keller@fernuni-hagen.de

Abstract— Chaotic functions have been announced in the

literature as promising for implementing low complexity pseudo-

random number generators (PRNGs) required e.g. for RFID

security applications. They combine good theoretical statistical

properties with a computationally simple algorithm.

Unfortunately, actual implementations with finite number

precision show a disappointing behavior compared to the

mathematical theory. This results for example in comparably

short cycles in the state space graph, which lead to a repetition of

the generated pseudo random values after a small number of

iterations. This paper presents a simple way to improve the state

space structure of chaotic PRNGs by using a different

parametrization of the chaotic function at certain iterations and

hereby breaking out of these cycles. This approach reduces this

aspect of the weakness of such implementations, which we

demonstrate with several examples.

Keywords-pseudo-random number generator; chaotic system;

RFID; cryptographic protocol; state space

I. INTRODUCTION

The growth of electronic communication over the last
decades and the development of technologies like Radio
Frequency Identification (RFID) (or more general the Internet
of Things) has led to a large interest in data security in all kinds
of devices. Sending sensitive information over communication
channels that are accessible by attackers, e.g. the Internet, or
the air in case of radio transmission, requires measures to
secure the confidentiality as well as the integrity of the
transmitted data. In order to achieve this, cryptographic
protocols have been developed and standardized that make use
of cryptographic base functions like symmetric or asymmetric
encryption, hashing and pseudo random number generators
(PRNGs). Because of the limitations in cost, energy
consumption and computational performance for devices like
RFID transponders, low complexity cryptographic functions
are of high interest for applications running on these devices
(cf. categories by Manifavas et al [14]).

Chaotic functions have shown promise for providing low
complexity PRNGs because they combine good theoretical
statistical properties with a computationally simple algorithm
[20]. Unfortunately, actual behavior of chaotic PRNGs is often
disappointing in terms of period length due to limited precision
number representations [11]. While increasing the precision

helps to overcome this, it puts a burden on the hardware or the
computational load and thus is not always an option. Another
proposal by Mennink and Preneel [17] cures the problem by
combining the outputs of two independent PRNGs. Yet, this
also doubles hardware resource or computational load.

We present a novel solution that breaks out of short cycles
by applying a second transition function from time to time. As
the other function can be a variant (only differing in some
parameter settings) of the normal transition function, hardware
and/or computational load is only marginally increased. We
analyze our approach theoretically and show that it increases
expected cycle lengths towards results expected for truly
random functions. We evaluate our proposal in several settings
and demonstrate encouraging results.

The remainder of this paper is organized as follows. Section
II provides basic information about Pseudo Random
Generators as well as the analysis and desired properties of the
related state space graph. Section III introduces chaotic
functions and presents analysis results of the state space.
Section IV describes the approach of breaking out of the cycles
in detail and compares the analysis results. Section V
concludes the paper and provides an outlook to potential future
investigations.

II. BASICS

A couple of methods have been standardized for the
assessment of the suitability of cryptographic functions.
Examples for such methods targeted to PRNGs are the
Marsaglia suite of Tests of Randomness [15], the Entacher
collection of selected pseudorandom number generators [6] and
the NIST test suite [18]. While these test batteries provide
valuable information about the statistical properties of the
output from a given PRNG, they do not examine the complete
state space of the algorithms. Instead, their analysis is based on
the statistical properties of a limited number of output values.
Algorithms that do not meet the pass criteria of the test
batteries are usually not suited for security applications,
because the statistical properties might be exploited by an
attacker to predict future generated output values. But
algorithms that do pass the criteria do not necessarily provide
high security. This fact is typically included as advice in the
documentation of the test batteries, e.g. in the abstract of the
NIST publication. Further examples for non-statistical

mailto:gabriele@spenger.org

properties of PRNGs that are suitable for cryptographic
purposes include Forward Secrecy and Backward Secrecy
(high difficulty to calculate past or future generated outputs or
states from a compromised current random number) [16]. Still,
if the cycle length of a PRNG is short, patterns of output bits
can be stored and repetition detected. A practical example for
this is the attack on A5/1 (cf. [3], [8]). Thus, a long cycle
length is a prerequisite for to enable forward secrecy and
further security models for PRNGs e.g. [4] and [5].

Pseudo Random Number Generators are generally
deterministic state transition functions mapping a
finite state space of size to itself if they do not receive
new seed or entropy bits. Every output of the PRNG results in
a state transition. This means that the generated sequences of
pseudo random numbers are periodic. The output is
deterministic and dependent on the state. Therefore, only the
state is considered in the following. If a single state is
interpreted as a node and the transition between a state and its
unique successor state is interpreted as an edge, the result is a
directed graph with and

. The structure of the generated graph
provides information about the behavior of the pseudo random
generator. For non-bijective transition functions the graph
typically consists of several weakly connected components.
Each of these components consists of one cycle and generally
several trees with roots located on the cycle. Figure 1. depicts
the structure of a component.

Properties of the graph include the number and sizes of the
connected components, length of the cycles and maximum
depth of the trees. In order to identify all connected
components of a graph, the complete state space would have to
be analyzed, e.g. by a depth first search. The cycles can be
detected by starting from the unique back edge in each
component. Alternatively, only a part of the state space can be
analyzed, accepting the fact that one or several components
might be missed. Still, this approach can provide valuable
information about the expected state space structure.

A. Sampling the state space

Obviously, the approach of sampling the state space has the
risk of missing a weakness of the state graph, as the sampling

Figure 1. A typical connected component of a state transition graph [2]

Figure 2. A cycle is detected

results in only a very small part of the state space being
analyzed. For this reason, this approach is not suitable for
positively approving the security of an algorithm. Instead it can
be used to randomly find weaknesses such as short cycles,
which might be sufficient to make an algorithm unsuited for a
given use case. If random sampling of the state space shows a
weakness, chances might be good that more instances of the
same weakness exist in the state space.

The impact of such a weakness is even higher than obvious
on first sight: if the number of components is small (as
expected, cf. Sect. B), then some component must be large, and
already a small number of sample paths through the state graph
will provide the cycle lengths of the larger components. This
weakness accordingly affects a majority of starting points in
the state graph.

In [10] an analysis method of the state space is presented
that avoids storing a component number for every node (as
DFS does). The idea is to only store certain nodes while
traversing the tree. If only the nodes are stored that are reached
after steps taken since the start value, the required
memory usage is logarithmically in the number of steps, i.e.

. This results in a low memory requirement even for
extremely long runs. Still, the cycle at the end of a path can be
detected as ultimately one of the stored nodes is reached again,
and the cycle length can be computed. Figure 2. illustrates the
process of cycle detection.

This method allows performing an analysis of a large state
space. The memory required for the analysis is only
logarithmically growing with the size of the state space. Still,
the required time for the analysis prevents to examine the
complete graph for , which also seems the border for
DFS (even with external memory algorithms). But it allows
taking a number of randomly chosen start values and walking
through the graph starting from these, as long as the length of a
path is smaller than about (which restricts to , see
next subsection). This way, the state space is sampled and the
resulting tree and cycle structure for these samples might
provide valuable insights with respect to the security of the
algorithm. Also, the sizes of the connected components can be
guessed from the sampling within a confidence interval.

Please note that there are comparable approaches for
bijective functions, notably Knuth's algorithm [12] with an
expected runtime of , which can be made linear in
time by using 1 bit per node.

B. Metrics for a “good” PRNG

While information about the structure of a state transition
tree provides valuable insight about the properties of a PRNG,
this information needs to be compared to the structure of a
“good” PRNG. Obviously, the meaning of “good” and “bad”
(and a clear separation between the two classes) depends
heavily on the application and thus on the security model.
Therefore, the definition of such criteria is out of the scope of
this document (cf. e.g. [4] and [5]), but some reasonable
guidance is provided in the following. The properties that can
easily be deducted from the structure analysis are:

 Number of components (at least of larger
components)

 Cycle lengths of the components

 (Relative) Sizes of the components

 Tree heights of the components

It is desirable that a PRNG has a small number of
components. The fewer components are present in the state
structure, the larger can the components and their cycle lengths
be. According to [7] the expected number of components for a
randomly chosen non-bijective state transition function on a set

 with elements is . For an invertible state

transition function, the expected value is [19]. For a
“good” PRNG this value should not be less than the expected
value.

Furthermore, it is desirable that the number of nodes on
cycles (which is equivalent to the sum of cycle lengths) is as
large as possible. This results in a high number of steps until
the states are repeated. According to [7] the sum of cycle

lengths for non-bijective state transition functions is .

The largest cycle length is expected to be . A “good”
PRNG should have one cycle with at least a comparable size.
For bijective state transition functions the expected length of

the largest cycle is .

The number of nodes in any component (equivalent to the
size of the component) should be as large as possible. Ideally
the state structure consists of a single component containing all
nodes of the graph. According to [7] the expected number of
nodes of the largest component for a non-bijective state
transition function is about . PRNGs with bijective state
transition functions consist of cycles only and therefore the
component sizes equal the cycle lengths.

Finally, the largest tree consists of about nodes with a

depth of about [7], i.e. it comprises about of the nodes
in the largest component. As the trees in the considered graphs
are quite ragged and the nodes are distributed quite
symmetrically over the depths of the tree, the average tree path1
length observed should be at least half of the tree height, i.e.

 (cf. [7]).

1 The tree path is the path from the start node until the entry

into the cycle.

III. CHAOTIC FUNCTIONS

The definitions of a chaotic function , where is
an interval in the reals, vary widely. Most definitions agree on
the following properties of a sequence of points

 ([11]):

 reacts sensibly to changes in , i.e. even small
changes to the value of result in large changes of
the sequence.

 is topologically transitive, i.e. almost every
element of can be connected to almost every
other element of by a finite sequence.

 is topologically dense, i.e. even small intervals
of contain periodic points of .

In the scope of this work, chaotic functions are assumed to
be functions that exhibit chaotic behavior.
Practical implementations of PRNGs based on such chaotic
functions (e.g. [1], [9]) have therefore a state , which
comprises a real in the interval . The PRNG output is
computed as a function of the state. Due to the chaotic behavior
it is assumed that chaotic PRNGs have desirable statistical
properties. Unfortunately, the restriction to a finite state
because of finite number representation can cause problems
because the Lyapunov exponent is not greater than zero
anymore.

To achieve a reasonably good behavior of the chaotic
function, IEEE754 double precision was chosen as numeric
representation for the following investigations. A 64-bit state is
far too large to allow a complete analysis of the state space, so
the state space was sampled in order to be able to run an
analysis in a reasonable amount of time.

A common and simple chaotic function is the logistic map
function (cf. [11] and the references therein)

 with (1)

TABLE I. shows that a single component was identified with a
comparably low cycle length. According to Sect. B, the
expected cycle length for a “good” PRNG is ,
which would in this case be around . The actually
determined cycle length of is much smaller than the
expected value and is therefore not a very good result. The
maximum tree height is most probably not really
representative, as only a small part of the state space was
sampled by the analysis. The percentage of start values that
belong to the same component is obviously 100%, as only a
single component has been detected. The maximum tree height
for the 10 start values is about . According to B the
average tree height of a “good” PRNG is expected to be

, so the actual result is a factor of 22
below this.

TABLE I. ANALYSIS RESULTS OF LOGISTIC MAP ALGORITHM FOR 10

START VALUES.

Component Cycle Length Maximum Tree Height Percent of Start Values

1 6623920 65951844 100

TABLE II. ANALYSIS RESULTS OF TRIGONOMETRIC FUNCTION FOR 10

START VALUES.

Component Cycle Length Maximum Tree Height Percent of Start Values

1 9734369 16374445 30

2 8255730 36021594 70

Another chaotic function is the trigonometric chaotic
function, which was presented in [13].

 with (2)

TABLE II. shows the analysis of the state space for 10
randomly chosen start values. The analysis shows that two
components were found. While both components show a better
result than the Logistic Map function, the maximum cycle
length of is still significantly lower than the
theoretical value from Sect. B. The maximum tree height for
the 10 start values is about , which is a factor of 40
below the expected value.

Thus, similar to the former function, the trigonometric
function is also not well suited for a security relevant PRNG.
These observations are in line with earlier investigations, e.g.
in [11].

IV. BREAKING OUT OF THE CYCLE

A simple way to avoid short cycles is to modify the PRNG
algorithm for certain iterations, so that the follow up state is
altered compared to the original state transition. If this happens
when a cycle has already been entered, and if the follow-up
state is chosen randomly, there is a high probability that the
new state is located in a tree and not a cycle. The cycle has
successfully been broken out of in this case. The high
probability of a successful break-out comes from the fact, that
the number of cycle nodes is small compared to the number of
tree nodes. Figure 3. illustrates what is happening in the break-
out case.

In order to keep the overhead small in terms of
computational complexity and chip area, the modification to
the algorithm that is utilized for breaking out of a cycle should
be as small as possible. Also, the decision when to use a
different iteration should be simple.

Figure 3. Breaking out of a cycle

Note that in general, the possible gain in quality is large. If
both transition functions were possible and equally likely in
each state, then each node in the graph would have two
outgoing edges. For randomly chosen edges, our experiments
indicate that the graph then is weakly connected, with a
strongly connected component that comprises about 84% of the
nodes, and a rich inner structure. Let be the average distance
between two break-out states. In this case, should be chosen
small enough that at least one break-out state is on each of the
larger cycles.

Instead of approximating a random function with expected
values as given by [7], which would need a lot of chip area and
computational complexity, we use the chaotic function with
different parametrization. The properties of chaotic functions
should ensure that the changed parametrization leads to a
behavior that is different enough from the original function. As
a special case of breaking-out every steps on average, we are
using a counter and break out exactly after steps, starting
with .

A. Analysis for Logistic Map

Looking at the logistic map function
, there is not much potential for

parametrization: the only candidate to modify is parameter .

The analyzed approach was to switch between a value of
3.99 and 3.98 every steps with ranging from 2 to 1024.
TABLE III. shows the result of the state space analysis. It can
be seen that breaking out of the cycles increases the maximum
cycle length significantly by a minimum factor of 2 for
up to a factor of 227 for . It can also clearly be seen
that the maximum cycle length increases with . Figure 4.
shows this relationship. The graph is not completely consistent
with -values of 32 and 256 showing a decline compared to the

TABLE III. ANALYSIS RESULTS OF LOGISTIC MAP SWITCHING TO

ALTERNATIVE A-PARAMETER EVERY K STEPS.

k Cycle Lengths Maximum Tree Heights % of Start Values

2 14258373 169347594 100

4 81839355 219447222 100

8 92330073
158592654
23977917
5583933

116649348
153814118
39516082
29542408

50
20
20
10

16 166687958
18456033

347193629
66490210

90
10

32 16463304
106561026

509498228
184708805

50
50

64 285351755
27448135

186333745

247720291
163920805
138538519

70
20
10

128 365089092
490073193

459489459
568127512

90
10

256 122507017
61896137

1011052679
766210246

50
50

512 918541890
505315773

913649910
506390293

70
30

1024 1517222425
997359850

2056217674
1168909136

60
40

Figure 4. Maximum cycle length over k for logistic map

previous values. This can most probably be explained by the
very low number of 10 start values for measuring the cycle
lengths.

B. Analysis for Trigonometric Function

Similar investigations have been performed for the
trigonometric function. Again, the function

 has not many options to be
parametrized. The most obvious one is a modification of the
parameter. The analyzed modification is a switch between the
two -values 2 and 3 after iterations with ranging from 2 to
1024. TABLE IV. shows the analysis results. Again, the
maximum cycle length was increased for all -values except
for by factors between 7.4 and 75. Figure 5. shows the
relationship between k and the maximum cycle length and
shows a similar dependency as for the logistic map function.

TABLE IV. ANALYSIS RESULTS OF TRIGONOMETRIC FUNCTION

SWITCHING TO ALTERNATIVE Z-PARAMETER EVERY K STEPS.

k Cycle Lengths Maximum Tree Heights % of Start Values

2 7759233
7483845
6666741

79946065
8203387

51758320

90
10
10

4 72851705
25009350

101640527
36265720

90
10

8 149450121
18636894

137849328
13201151

90
10

16 132378065 135672835 100

32 380555241 491267040 100

64 60296210
120161535
63678680

191870250

35947884
89028321
25751263
288875294

10
10
10
70

128 182362011
8997879

418726507
244129755

80
20

256 561225035
305935113

231801614
373691537

50
50

512 633619125
218623158
218623158

672871645
662621246
508761773

40
20
40

1024 728877500
251601625
155949650

986558422
529695505
66719039

30
30
40

Figure 5. Maximum cycle length over k for trigonometric function

C. Further approaches

The approach presented in A and B makes use of the
statistical properties of the state space by transitioning to a
more or less random node via the modified transition function.
While this will increase the cycle length with a certain
probability, it might in some cases also have a negative impact.
Another possibility to improve the cycle length is to find the
last cycle node before the entry node of the largest tree, and
modify the function by hardcoding a transition from to the
tree node with the greatest height. Thus, the new cycle length
will be the sum of previous cycle length and max. tree height.
For example, the cycle length for switching between 32
alternative z-values would increase to about . This
approach would reliably increase the cycle length at the cost of
storing node and the target node.

V. CONCLUSION

A simple method to avoid short cycle length in
implementation of PRNGs based on chaotic functions was
presented. It could be demonstrated that the cycle length for the
logistic mapping function can be extended significantly by
modifying the parameterization of the chaotic function for
certain iterations. This might make chaotic PRNGs usable for
an extended range of security applications where increasing the
size of the state is not an option because of hardware or
computational restrictions. One might even think about this
method as a possibility to “repair” an already built-in weak
PRNG (even in hardware), as the second transition might be
realized in the form of a re-seeding. This approach leads to
significant improvements for both investigated chaotic
functions (logistic mapping and trigonometric function).

Further improvements can potentially be achieved by
hardcoding an extra transition. In the case of several
components, the method of extra transitions could even be
extended to link all components together, so that for all seed
values, a larger cycle length is guaranteed.

Due to the low computational complexity, chaotic
algorithms should be investigated further, e.g. in the context of
RFID with its limitations on chip area and energy consumption.

As future work it seems important to gather more
statistically relevant data by analyzing a higher number of start
values, e.g. on a high performance computer. Additionally, it
appears worthwhile to investigate, how the statistical behavior

of the output of the modified algorithms is affected by the
modifications. Furthermore, extending the investigations
towards fix point implementations of chaotic functions, that
according to our preliminary experiments seem to exhibit a
better behavior than floating point implementations, seems a
reasonable way forward.

Finally, the structure of graphs where each node has two
outgoing edges might be investigated.

REFERENCES

[1] M. Abutaha et al., “Design of a peudo-chaotic number generator as a

random number generator”, in International Conference on
Communications (COMM), 2016

[2] A. Beckmann, J. Fedorowicz, J. Keller, and U. Meyer, “A structural
analysis of the a5/1 state transition graph,” in First Workshop on
GRAPH Inspection and Traversal Engineering, ser. Electronic
Proceedings in Theoretical Computer Science, vol. 99. Open Publishing
Association, 2012, pp. 5–19.

[3] A. Biryujkov, A. Shamir, and D. Wagner, “Real Time Cryptanalysis of
A5/1 on a PC”, in Proceedings of Fast Software Encryption 7th
International Workshop, New York, 2000.

[4] A. Desai, A. Hevia, and Y. L. Yin. "A practice-oriented treatment of
pseudorandom number generators." International Conference on the
Theory and Applications of Cryptographic Techniques. Springer Berlin
Heidelberg, 2002.

[5] Y. Dodis, D. Pointcheval, S. Ruhault, D. Vergniaud, and D. Wichs,
“Security analysis of pseudo-random number generators with
input:/dev/random is not robust.” , Proceedings of the 2013 ACM
SIGSAC Conference on Computer & Communications Security, ACM
2013.

[6] K. Entacher, “A collection of selected pseudorandom number generators
with linear structures,” ACPC-Austrian Center for Parallel Computation,
Tech. Rep., 1997.

[7] P. Flajolet and A. M. Odlyzko, “Random mapping statistics,” in
Advances in Cryptology. Springer Verlag, 1990, pp. 329–354.

[8] J. Golic, “Cryptanalysis of Alleged A5 Stream Cypher”, in Proceedings
of Advances in Cryptology – Eurocrypt 97, Konstanz, 1997.

[9] M. Hamdi, R. Rhouma, and S. Belghith, "A very efficient pseudo-
random number generator based on chaotic maps and S-box tables." Int.
J. Comput. Control Quantum Inform. Eng 9 (2015), pp. 481-485.

[10] J. Keller, “Parallel exploration of the structure of random functions,” in
Proceedings of the 6th Workshop Parallele Systeme und Algorithmen
(PASA) in conjunction with the International Conference on
Architecture of Computing Systems, ARCS. VDE, 2002.

[11] J. Keller, H. Wiese, “Period lengths of chaotic pseudo-random number
generators.” in Proceedings of the Fourth IASTED International
Conference on Communication, Network and Information Security. pp.
7-11. CNIS '07, ACTA Press, Anaheim, CA, USA, 2007,
http://dl.acm.org/citation.cfm?id=1659141.1659144, Access Date: 1st
October, 2016

[12] D. E. Knuth, “Mathematical analysis of algorithms.” in Proc. of IFIP
Congress 1971, Information Processing 71. pp. 19-27. North-Holland
Publ. Co., 1972

[13] Z. Kotulski, J. Szczepanski, J., K. Górski, A. Górska, A. Paszkiewicz,
“On constructive approach to chaotic pseudorandom number
generators.” in Proc. Of RCMCIS 2000, Zegrze. pp. 191-203, 2000

[14] C. Manifavas, G. Hatzivasilis, K. Fysarakis, K. Rantos, “Lightweight
cryptography for embedded systems - a comparative analysis.” in Proc.
8th International Workshop on Data Privacy Management and
Autonomous Spontaneous Security, pp. 333-349, Springer, 2014,
http://dx.doi.org/10.1007/978-3-642-54568-9_21, Access Date: 1st
October, 2016

[15] G. Marsaglia, “The marsaglia random number cdrom including the
diehard battery of tests of randomness,” 1995. [Online]. Available:
http://www.stat.fsu.edu/pub/diehard/, Access Date: 1st October, 2016

[16] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook of
Applied Cryptography. CRC Press, 1996

[17] B. Mennink, B. Preneel, “On the XOR of multiple random
permutations.” in Proc. Applied Cryptography and Network Security.
pp. 619-634, 2015

[18] A. Rukhin, J. Soto, J. Nechvatal, M. Smid, and E. Barker, “Statistical
test suite for random and pseudorandom number generators for
cryptographic applications: Special publication 800-22, revision 1a,”
2010. [Online]. Available:
http://csrc.nist.gov/groups/ST/toolkit/rng/documents/SP80022rev1a.pdf,
Access Date: 1st October, 2016

[19] R. Sedgewick, P. Flajolet, “An Introduction to the Analysis of
Algorithms.”, Addison-Wesley, Reading Mass., 1996

[20] J. Szczepanski, Z. Kotulski, “Pseudorandom number generators based
on chaotic dynamical systems.”, Open Systems & Information
Dynamics 8(2), 137-146 (Jun 2001),
http://dx.doi.org/10.1023/A:1011950531970, Access Date: 1st October,
2016

http://www.stat.fsu.edu/pub/diehard/
http://csrc.nist.gov/groups/ST/toolkit/rng/documents/SP80022rev1a.pdf

