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Abstract— Chaotic functions have been announced in the 

literature as promising for implementing low complexity pseudo-

random number generators (PRNGs) required e.g. for RFID 

security applications. They combine good theoretical statistical 

properties with a computationally simple algorithm. 

Unfortunately, actual implementations with finite number 

precision show a disappointing behavior compared to the 

mathematical theory. This results for example in comparably 

short cycles in the state space graph, which lead to a repetition of 

the generated pseudo random values after a small number of 

iterations. This paper presents a simple way to improve the state 

space structure of chaotic PRNGs by using a different 

parametrization of the chaotic function at certain iterations and 

hereby breaking out of these cycles. This approach reduces this 

aspect of the weakness of such implementations, which we 

demonstrate with several examples. 

Keywords-pseudo-random number generator; chaotic system; 

RFID; cryptographic protocol; state space 

I.  INTRODUCTION 

The growth of electronic communication over the last 
decades and the development of technologies like Radio 
Frequency Identification (RFID) (or more general the Internet 
of Things) has led to a large interest in data security in all kinds 
of devices. Sending sensitive information over communication 
channels that are accessible by attackers, e.g. the Internet, or 
the air in case of radio transmission, requires measures to 
secure the confidentiality as well as the integrity of the 
transmitted data. In order to achieve this, cryptographic 
protocols have been developed and standardized that make use 
of cryptographic base functions like symmetric or asymmetric 
encryption, hashing and pseudo random number generators 
(PRNGs). Because of the limitations in cost, energy 
consumption and computational performance for devices like 
RFID transponders, low complexity cryptographic functions 
are of high interest for applications running on these devices 
(cf. categories by Manifavas et al [14]). 

Chaotic functions have shown promise for providing low 
complexity PRNGs because they combine good theoretical 
statistical properties with a computationally simple algorithm 
[20]. Unfortunately, actual behavior of chaotic PRNGs is often 
disappointing in terms of period length due to limited precision 
number representations [11]. While increasing the precision 

helps to overcome this, it puts a burden on the hardware or the 
computational load and thus is not always an option. Another 
proposal by Mennink and Preneel [17] cures the problem by 
combining the outputs of two independent PRNGs. Yet, this 
also doubles hardware resource or computational load. 

We present a novel solution that breaks out of short cycles 
by applying a second transition function from time to time. As 
the other function can be a variant (only differing in some 
parameter settings) of the normal transition function, hardware 
and/or computational load is only marginally increased. We 
analyze our approach theoretically and show that it increases 
expected cycle lengths towards results expected for truly 
random functions. We evaluate our proposal in several settings 
and demonstrate encouraging results. 

The remainder of this paper is organized as follows. Section  
II provides basic information about Pseudo Random 
Generators as well as the analysis and desired properties of the 
related state space graph. Section III introduces chaotic 
functions and presents analysis results of the state space. 
Section IV describes the approach of breaking out of the cycles 
in detail and compares the analysis results. Section V 
concludes the paper and provides an outlook to potential future 
investigations. 

II. BASICS 

A couple of methods have been standardized for the 
assessment of the suitability of cryptographic functions. 
Examples for such methods targeted to PRNGs are the 
Marsaglia suite of Tests of Randomness [15], the Entacher 
collection of selected pseudorandom number generators [6] and 
the NIST test suite [18]. While these test batteries provide 
valuable information about the statistical properties of the 
output from a given PRNG, they do not examine the complete 
state space of the algorithms. Instead, their analysis is based on 
the statistical properties of a limited number of output values. 
Algorithms that do not meet the pass criteria of the test 
batteries are usually not suited for security applications, 
because the statistical properties might be exploited by an 
attacker to predict future generated output values. But 
algorithms that do pass the criteria do not necessarily provide 
high security. This fact is typically included as advice in the 
documentation of the test batteries, e.g. in the abstract of the 
NIST publication. Further examples for non-statistical 
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properties of PRNGs that are suitable for cryptographic 
purposes include Forward Secrecy and Backward Secrecy 
(high difficulty to calculate past or future generated outputs or 
states from a compromised current random number) [16]. Still, 
if the cycle length of a PRNG is short, patterns of output bits 
can be stored and repetition detected. A practical example for 
this is the attack on A5/1 (cf. [3], [8]). Thus, a long cycle 
length is a prerequisite for to enable forward secrecy and 
further security models for PRNGs e.g. [4] and [5]. 

Pseudo Random Number Generators are generally 
deterministic state transition functions  mapping a 
finite state space of size  to itself if they do not receive 
new seed or entropy bits. Every output of the PRNG results in 
a state transition. This means that the generated sequences of 
pseudo random numbers are periodic. The output is 
deterministic and dependent on the state. Therefore, only the 
state is considered in the following. If a single state is 
interpreted as a node and the transition between a state and its 
unique successor state is interpreted as an edge, the result is a 
directed graph  with  and 

. The structure of the generated graph 
provides information about the behavior of the pseudo random 
generator. For non-bijective transition functions the graph 
typically consists of several weakly connected components. 
Each of these components consists of one cycle and generally 
several trees with roots located on the cycle. Figure 1.  depicts 
the structure of a component. 

Properties of the graph include the number and sizes of the 
connected components, length of the cycles and maximum 
depth of the trees. In order to identify all connected 
components of a graph, the complete state space would have to 
be analyzed, e.g. by a depth first search. The cycles can be 
detected by starting from the unique back edge in each 
component. Alternatively, only a part of the state space can be 
analyzed, accepting the fact that one or several components 
might be missed. Still, this approach can provide valuable 
information about the expected state space structure. 

A. Sampling the state space 

Obviously, the approach of sampling the state space has the 
risk of missing a weakness of the state graph, as the sampling  

Figure 1.  A typical connected component of a state transition graph [2] 

 

Figure 2.  A cycle is detected  

results in only a very small part of the state space being 
analyzed. For this reason, this approach is not suitable for 
positively approving the security of an algorithm. Instead it can 
be used to randomly find weaknesses such as short cycles, 
which might be sufficient to make an algorithm unsuited for a 
given use case. If random sampling of the state space shows a 
weakness, chances might be good that more instances of the 
same weakness exist in the state space.  

The impact of such a weakness is even higher than obvious 
on first sight: if the number of components is small (as 
expected, cf. Sect. B), then some component must be large, and 
already a small number of sample paths through the state graph 
will provide the cycle lengths of the larger components. This 
weakness accordingly affects a majority of starting points in 
the state graph. 

In [10] an analysis method of the state space is presented 
that avoids storing a component number for every node (as 
DFS does). The idea is to only store certain nodes while 
traversing the tree. If only the nodes are stored that are reached 
after   steps taken since the start value, the required 
memory usage is logarithmically in the number of steps, i.e. 

. This results in a low memory requirement even for 
extremely long runs. Still, the cycle at the end of a path can be 
detected as ultimately one of the stored nodes is reached again, 
and the cycle length can be computed. Figure 2.  illustrates the 
process of cycle detection. 

This method allows performing an analysis of a large state 
space. The memory required for the analysis is only 
logarithmically growing with the size of the state space. Still, 
the required time for the analysis prevents to examine the 
complete graph for , which also seems the border for 
DFS (even with external memory algorithms). But it allows 
taking a number of randomly chosen start values and walking 
through the graph starting from these, as long as the length of a 
path is smaller than about  (which restricts  to , see 
next subsection). This way, the state space is sampled and the 
resulting tree and cycle structure for these samples might 
provide valuable insights with respect to the security of the 
algorithm. Also, the sizes of the connected components can be 
guessed from the sampling within a confidence interval. 

Please note that there are comparable approaches for 
bijective functions, notably Knuth's algorithm [12] with an 
expected runtime of , which can be made linear in 
time by using 1 bit per node. 



B. Metrics for a “good” PRNG 

While information about the structure of a state transition 
tree provides valuable insight about the properties of a PRNG, 
this information needs to be compared to the structure of a 
“good” PRNG. Obviously, the meaning of “good” and “bad” 
(and a clear separation between the two classes) depends 
heavily on the application and thus on the security model. 
Therefore, the definition of such criteria is out of the scope of 
this document (cf. e.g. [4] and [5]), but some reasonable 
guidance is provided in the following. The properties that can 
easily be deducted from the structure analysis are: 

 Number of components (at least of larger 
components) 

 Cycle lengths of the components 

 (Relative) Sizes of the components 

 Tree heights of the components 

It is desirable that a PRNG has a small number of 
components. The fewer components are present in the state 
structure, the larger can the components and their cycle lengths 
be. According to [7] the expected number of components for a 
randomly chosen non-bijective state transition function on a set 

 with  elements is . For an invertible state 

transition function, the expected value is [19]. For a 
“good” PRNG this value should not be less than the expected 
value. 

Furthermore, it is desirable that the number of nodes on 
cycles (which is equivalent to the sum of cycle lengths) is as 
large as possible. This results in a high number of steps until 
the states are repeated. According to [7] the sum of cycle 

lengths for non-bijective state transition functions is . 

The largest cycle length is expected to be . A “good” 
PRNG should have one cycle with at least a comparable size. 
For bijective state transition functions the expected length of 

the largest cycle is . 

The number of nodes in any component (equivalent to the 
size of the component) should be as large as possible. Ideally 
the state structure consists of a single component containing all 
nodes of the graph. According to [7] the expected number of 
nodes of the largest component for a non-bijective state 
transition function is about . PRNGs with bijective state 
transition functions consist of cycles only and therefore the 
component sizes equal the cycle lengths. 

Finally, the largest tree consists of about  nodes with a 

depth of about  [7], i.e. it comprises about  of the nodes 
in the largest component. As the trees in the considered graphs 
are quite ragged and the nodes are distributed quite 
symmetrically over the depths of the tree, the average tree path1 
length observed should be at least half of the tree height, i.e. 

 (cf. [7]). 

                                                           
1 The tree path is the path from the start node until the entry 

into the cycle. 

III. CHAOTIC FUNCTIONS 

The definitions of a chaotic function , where  is 
an interval in the reals, vary widely. Most definitions agree on 
the following properties of a sequence of points 

 ([11]): 

  reacts sensibly to changes in , i.e. even small 
changes to the value of  result in large changes of 
the sequence. 

  is topologically transitive, i.e. almost every 
element of  can be connected to almost every 
other element of  by a finite sequence. 

  is topologically dense, i.e. even small intervals 
of  contain periodic points of . 

In the scope of this work, chaotic functions are assumed to 
be functions  that exhibit chaotic behavior. 
Practical implementations of PRNGs based on such chaotic 
functions (e.g. [1], [9]) have therefore a state , which 
comprises a real in the interval . The PRNG output is 
computed as a function of the state. Due to the chaotic behavior 
it is assumed that chaotic PRNGs have desirable statistical 
properties. Unfortunately, the restriction to a finite state 
because of finite number representation can cause problems 
because the Lyapunov exponent is not greater than zero 
anymore.  

To achieve a reasonably good behavior of the chaotic 
function, IEEE754 double precision was chosen as numeric 
representation for the following investigations. A 64-bit state is 
far too large to allow a complete analysis of the state space, so 
the state space was sampled in order to be able to run an 
analysis in a reasonable amount of time. 

A common and simple chaotic function is the logistic map 
function (cf. [11] and the references therein) 

 with     (1) 

TABLE I.  shows that a single component was identified with a 
comparably low cycle length. According to Sect. B, the 
expected cycle length for a “good” PRNG is , 
which would in this case be around . The actually 
determined cycle length of  is much smaller than the 
expected value and is therefore not a very good result. The 
maximum tree height is most probably not really 
representative, as only a small part of the state space was 
sampled by the analysis. The percentage of start values that 
belong to the same component is obviously 100%, as only a 
single component has been detected. The maximum tree height 
for the 10 start values is about . According to B the 
average tree height of a “good” PRNG is expected to be 

, so the actual result is a factor of 22 
below this. 

TABLE I.  ANALYSIS RESULTS OF LOGISTIC MAP ALGORITHM FOR 10 

START VALUES. 

Component Cycle Length Maximum Tree Height Percent of Start Values 

1 6623920 65951844 100 



 

TABLE II.  ANALYSIS RESULTS OF TRIGONOMETRIC FUNCTION FOR 10 

START VALUES. 

Component Cycle Length Maximum Tree Height Percent of Start Values 

1 9734369 16374445 30 

2 8255730 36021594 70 

  

Another chaotic function is the trigonometric chaotic 
function, which was presented in [13].  

 with     (2) 

TABLE II. shows the analysis of the state space for 10 
randomly chosen start values. The analysis shows that two 
components were found. While both components show a better 
result than the Logistic Map function, the maximum cycle 
length of  is still significantly lower than the 
theoretical value from Sect. B. The maximum tree height for 
the 10 start values is about , which is a factor of 40 
below the expected value. 

Thus, similar to the former function, the trigonometric 
function is also not well suited for a security relevant PRNG. 
These observations are in line with earlier investigations, e.g. 
in [11]. 

IV.  BREAKING OUT OF THE CYCLE 

A simple way to avoid short cycles is to modify the PRNG 
algorithm for certain iterations, so that the follow up state is 
altered compared to the original state transition. If this happens 
when a cycle has already been entered, and if the follow-up 
state is chosen randomly, there is a high probability that the 
new state is located in a tree and not a cycle. The cycle has 
successfully been broken out of in this case. The high 
probability of a successful break-out comes from the fact, that 
the number of cycle nodes is small compared to the number of 
tree nodes. Figure 3. illustrates what is happening in the break-
out case. 

In order to keep the overhead small in terms of 
computational complexity and chip area, the modification to 
the algorithm that is utilized for breaking out of a cycle should 
be as small as possible. Also, the decision when to use a 
different iteration should be simple. 

Figure 3.  Breaking out of a cycle 

Note that in general, the possible gain in quality is large. If 
both transition functions were possible and equally likely in 
each state, then each node in the graph would have two 
outgoing edges. For randomly chosen edges, our experiments 
indicate that the graph then is weakly connected, with a 
strongly connected component that comprises about 84% of the 
nodes, and a rich inner structure. Let be the average distance 
between two break-out states. In this case,  should be chosen 
small enough that at least one break-out state is on each of the 
larger cycles.  

Instead of approximating a random function with expected 
values as given by [7], which would need a lot of chip area and 
computational complexity, we use the chaotic function with 
different parametrization. The properties of chaotic functions 
should ensure that the changed parametrization leads to a 
behavior that is different enough from the original function. As 
a special case of breaking-out every  steps on average, we are 
using a counter and break out exactly after  steps, starting 
with . 

A. Analysis for Logistic Map 

Looking at the logistic map function 
, there is not much potential for 

parametrization: the only candidate to modify is parameter .  

The analyzed approach was to switch between a value of 
3.99 and 3.98 every  steps with  ranging from 2 to 1024. 
TABLE III.  shows the result of the state space analysis. It can 
be seen that breaking out of the cycles increases the maximum 
cycle length significantly by a minimum factor of 2 for  
up to a factor of 227 for . It can also clearly be seen 
that the maximum cycle length increases with . Figure 4. 
shows this relationship. The graph is not completely consistent 
with -values of 32 and 256 showing a decline compared to the 

TABLE III.  ANALYSIS RESULTS OF LOGISTIC MAP SWITCHING TO 

ALTERNATIVE A-PARAMETER EVERY K STEPS. 

k Cycle Lengths Maximum Tree Heights % of Start Values 

2 14258373 169347594 100 

4 81839355 219447222 100 

8 92330073 
158592654 
23977917 
5583933 

116649348 
153814118 
39516082 
29542408 

50 
20 
20 
10 

16 166687958 
18456033 

347193629 
66490210 

90 
10 

32 16463304 
106561026 

509498228 
184708805 

50 
50 

64 285351755 
27448135 

186333745 

247720291 
163920805 
138538519 

70 
20 
10 

128 365089092 
490073193 

459489459 
568127512 

90 
10 

256 122507017 
61896137 

1011052679 
766210246 

50 
50 

512 918541890 
505315773 

913649910 
506390293 

70 
30 

1024 1517222425 
997359850 

2056217674 
1168909136 

60 
40 



 

Figure 4.  Maximum cycle length over k for logistic map 

previous values. This can most probably be explained by the 
very low number of 10 start values for measuring the cycle 
lengths.   

B. Analysis for Trigonometric Function 

Similar investigations have been performed for the 
trigonometric function. Again, the function 

 has not many options to be 
parametrized. The most obvious one is a modification of the  
parameter. The analyzed modification is a switch between the 
two -values 2 and 3 after  iterations with  ranging from 2 to 
1024. TABLE IV. shows the analysis results. Again, the 
maximum cycle length was increased for all -values except 
for  by factors between 7.4 and 75.  Figure 5. shows the 
relationship between k and the maximum cycle length and 
shows a similar dependency as for the logistic map function. 

TABLE IV.  ANALYSIS RESULTS OF TRIGONOMETRIC FUNCTION 

SWITCHING TO ALTERNATIVE Z-PARAMETER EVERY K STEPS. 

k Cycle Lengths Maximum Tree Heights % of Start Values 

2 7759233 
7483845 
6666741 

79946065 
8203387 

51758320 

90 
10 
10 

4 72851705 
25009350 

101640527 
36265720 

90 
10 

8 149450121 
18636894 

137849328 
13201151 

90 
10 

16 132378065 135672835 100 

32 380555241 491267040 100 

64 60296210 
120161535 
63678680 

191870250 

35947884 
89028321 
25751263 
288875294 

10 
10 
10 
70 

128 182362011 
8997879 

418726507 
244129755 

80 
20 

256 561225035 
305935113 

231801614 
373691537 

50 
50 

512 633619125 
218623158 
218623158 

672871645 
662621246 
508761773 

40 
20 
40 

1024 728877500 
251601625 
155949650 

986558422 
529695505 
66719039 

30 
30 
40 

 

Figure 5.  Maximum cycle length over k for trigonometric function 

C. Further approaches 

The approach presented in A and B makes use of the 
statistical properties of the state space by transitioning to a 
more or less random node via the modified transition function. 
While this will increase the cycle length with a certain 
probability, it might in some cases also have a negative impact. 
Another possibility to improve the cycle length is to find the 
last cycle node  before the entry node of the largest tree, and 
modify the function by hardcoding a transition from  to the 
tree node with the greatest height. Thus, the new cycle length 
will be the sum of previous cycle length and max. tree height. 
For example, the cycle length for switching between 32 
alternative z-values would increase to about . This 
approach would reliably increase the cycle length at the cost of 
storing node  and the target node. 

V. CONCLUSION 

A simple method to avoid short cycle length in 
implementation of PRNGs based on chaotic functions was 
presented. It could be demonstrated that the cycle length for the 
logistic mapping function can be extended significantly by 
modifying the parameterization of the chaotic function for 
certain iterations. This might make chaotic PRNGs usable for 
an extended range of security applications where increasing the 
size of the state is not an option because of hardware or 
computational restrictions. One might even think about this 
method as a possibility to “repair” an already built-in weak 
PRNG (even in hardware), as the second transition might be 
realized in the form of a re-seeding. This approach leads to 
significant improvements for both investigated chaotic 
functions (logistic mapping and trigonometric function).  

Further improvements can potentially be achieved by 
hardcoding an extra transition. In the case of several 
components, the method of extra transitions could even be 
extended to link all components together, so that for all seed 
values, a larger cycle length is guaranteed. 

Due to the low computational complexity, chaotic 
algorithms should be investigated further, e.g. in the context of 
RFID with its limitations on chip area and energy consumption.   

As future work it seems important to gather more 
statistically relevant data by analyzing a higher number of start 
values, e.g. on a high performance computer. Additionally, it 
appears worthwhile to investigate, how the statistical behavior 



of the output of the modified algorithms is affected by the 
modifications. Furthermore, extending the investigations 
towards fix point implementations of chaotic functions, that 
according to our preliminary experiments seem to exhibit a 
better behavior than floating point implementations, seems a 
reasonable way forward. 

Finally, the structure of graphs where each node has two 
outgoing edges might be investigated. 
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