
costs NA � ����� ���	 � �
� � �
���

The nodes for the sorting network only need bu
ers
of length � and only � multiplexer� They have basic
costs SA � ���� and SS � 	��	�

The network nodes for the Fluent Machine have
width �� for the forward and the backward network�
Thus they have basic costs �NA � ���	 and �NS � �����

If we reduce the network nodes of design D� to
design an EREW PRAM� we spare the costs for the
comparator and reduce the width of the instruction
queue by one bit� We then have basic costs N �

A � ����
and N �

S � �����

A�� Network Speed

In one network cycle the maximum delay path is
the following� a packet has to be read out of the input
bu
er� its address has to be compared with another�
it has to be selected by a multiplexer and it has to be
stored in the input bu
er of the following node� Read�
ing the input bu
er takes � gate delays� comparing
addresses with an i bit carry lookahead adder takes
about � log i � � gate delays� selecting with a multi�
plexer takes � gate delays� storing in a bu
er takes
about � gate delays� With �� bit addresses we have
� � � log�� � � � � � � � �� gate delays� Because we
did not count driver delays and setup and hold times
we take a network cycle time �N � �
 gate delays�

B Analysis of Benchmark B�

Let G � �V�E� be an undirected graph with v �
jV j� V � f�� � � � � v � �g and E � V � V with e � jEj�
Represent E by the adjacency matrixA given by ajk �
� if �j� k� � E� � otherwise� A is symmetric because G
is undirected� The connected components algorithm
from �
� �rst computes the connectivity matrixC from
the given adjacency matrix� C is given by cjk � � if
there exists a path in G from j to k� � otherwise�
Then it constructs a matrix D given by djk � k if
cjk � �� � otherwise� Finally each vertex k is assigned
to component l with l � minfijdki �� �g�

We assume that sending one word across a link of
the hypercube takes only one step and that source and
destination of this word are registers� The connectiv�
ity matrix is computed by log v times multiplying A
with itself thus computing C � Av� It turns out that
multiplying � v � v matrices on a hypercube with n

processors can be done in ���v
�

n
���� logv�
v

�

n
steps�

The computation of the connectivity matrix then

needs approximately �log v�����v
�

n
� ��� � 
v

�

n
log v

steps� The computation of matrix D takes approxi�

mately �v
�

n
steps� �nding of minimums takes approx�

imately �� v
n
log v steps� The total time tD� then is

approximately 	�v
�

n
�logv���

��
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A Parameter Values

A�� Processor Costs

The ALU mainly consists of a �� bit wallace tree
multiplier� a barrel shifter and a carry lookahead adder
�see ��
��� The multiplication is performed by adding
�� terms of length � to �� bits� Each bit of each term
is computed by an AND gate� The AND gates have basic
costs ��� ��� � � ���	�

	 terms of length i can be reduced to � terms of
length i � � with an i bit 	���Adder consisting of �i
full adders� Thus we get a �rst stage consisting of a ��
bit 	���adder for the longest terms� up to a 	 bit 	�
��adder for the shortest terms� In total the �rst stage
contains �� � �� � � � �� 	 � �		 bit 	���adders� The
second stage contains ��� ��� ��� 	 � �	� the third
stage �	�� � �� and the last stage �� bit 	���adders�
The wallace tree then consists of �		��	���� �� �
�
� bit 	���adders containing 
�� full adders� As we
saw in section ��� a full adder has basic costs ��� The
basic costs for the wallace tree then are �����

The carry lookahead adder �nishing the multiplica�
tion consists of ���� components to compute generate
and propagate signals� Each component consists of 	
AND and OR gates� Additionaly we need for each bit
� EXOR gates to compute the sum bits and � AND and
� OR gate to produce the generate and propagate sig�
nal for that bit� The carry lookahead adder has basic
costs �	� 	� � � ��� ��� � � �� �� � ���	�

The barrel shifter consists of 
 stages of multi�
plexers� Because we allow rotations and bu
ering
in carry each stage needs �� multiplexers with � in�
puts� These are built of � multiplexers with � in�
puts� A multiplexer with two inputs consists of �
AND gates� � OR gate and � inverter� having costs ��
The total basic costs of the barrel shifter now are

 � �� � � � � � ����� The basic costs of the ALU
then are A � ���	� ����� ���	� ���� � ������

A register �le with �� registers �� bit wide has basic
costs F � ��� ��� �� � ��		�

A�� Costs of the network

Own simulations ��� show that network nodes only
need bu
ers of length �� Packets on the way from
processors to memory modules are �� bits wide ���
bit address� �� bit data� �� bit control�� In the back�
ward network �� bits for transported data are su��
cient� Each network node needs the following hard�
ware� 	 registers with �� bits each� 	 registers with ��
bits each� �c logn � bit registers with routing informa�
tions for the backward network� � multiplexers with
�� bits and � multiplexers with �� bits� Additionaly
we need a comparator and an adder to test identical
addresses and to select the smaller one�

The registers have basic costs NS � �	 � �� � 	 �
�������������� � ����� The multiplexers have
basic costs ������������� � ����� The adder has
basic costs ���	 as computed above� The comparator
consists of � EXOR gate and � OR gate for each of the
�� bits and thus has basic costs �� � �� � �� � �
��
The arithmetic of a network node then has total basic

��



cost�e
ectiveness of PRAM�s and DMM�s� The re�
sults are surprisingly favourable for PRAM�s� In re�
ality things are somewhat worse� e�g� because of con�
nectors and wires� Nevertheless we are applying for
funds to build a prototype of design D� with n � ���
physical processors� Some details about the planned
prototype can be found in ����
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��� Simulation of PRAMs by DMMs

The worst case for a DMM is a benchmark where
any known algorithm for a DMM is less cost�e
ective
than the step�by�step simulation of a PRAM�

Theorem � Let B be a benchmark that ful�ls the
above assumptions and that is parallelizable with ef

�ciency �� Then

R � L � �

	��
�

Proof� Let the sequential runtime of B be T � B
needs T��cn logn steps on a PRAM D� with cn logn
processors� Because each step takes c logn processor
cycles� tD� � 
�T��n�

Let D
 be a DMM with n logn processors inter�
connected as a hypercube� D
 has costs cD� �
c �Pn logn � ���		n logn because we ignore network
costs� In order to simulate one step of D� on D
 we
adapt Ranade�s routing scheme in software� Because
successing phases can overlap we use a link in forward
manner for phases ����
 and in backward manner for
phases ��	��� Processors alternately execute one step
of phase i and one of phase i��� Because of this tog�
gling the routing scheme needs at most twice as many
routing steps as Ranade�s scheme� The number of
machine instructions to perform one routing step is
�	�

� steps comment

� read address� data� mode of both inputs
� compare the addresses
� jump if equal �combining�
� jump if less �left packet is to send�
� compare address with routing mask
� jump if equal �routing to left output�
� test whether successing queue is full
� jump if full
� write address� data and mode
� append direction queue if mode��read
� mark input queue not full
� test whether other successing queue full
� jump if full
� write address�data�ghost
P

�	 Total

If we assume that Ranade�s scheme needs �� logn
steps the new scheme needs �� logn��	�� � 
�� logn
instructions� If we further assume that one instruction
only takes one processor cycle� the total time to simu�
late one PRAM step is at most S logn processor cycles

for S � 
��� D
 simulates a PRAM with n logn pro�
cessors� Therefore B needs T��n logn steps onD
 and
tD� � 
�ST��n� We now can compute R�

R �
cD�

cD�
� tD�

tD�
� �

��n logn� �����n

���		n logn
� �
S
�

�

	��
� L

If we add  oating point arithmetic L changes to
�

�����

��� Examples

In order to show that the bounds on R are tight we
present two examples matching the bounds� The �rst
example B� is multiplication of two s � s�matrices�
We use design D� with n physical processors and a
distributed memory machine D
 with n processors in�
terconnected as a

p
n � p

n torus� Each processor of
the torus then holds a sp

n
� sp

n
�submatrix of both

matrices� This example comes very close to the worst
case described in section ��� and therefore R approxi�
mately matches the upper bound�

The second exampleB� is computing the connected
components of an undirected graph with v nodes and e
edges� For the PRAM we use an algorithm of ���� in a
form presented in ��	�� Its runtime is O�logv� steps on
a PRAM with �e �virtual� processors� The formal ex�
planation and the proofs for correctness and runtime
can be found in ����� On a PRAM with n � v physical
processors we have tD� � ���� e

n
� ��� v

n
� logv as an�

alyzed in ��� and cD� as computed in equation �� For
the distributed memory machine we could use an algo�
rithm from �
� that runs on a hypercube� Its runtime is
O�log� v� on v� processors� For a hypercube D� with
n � v processors we would have cD� � ���		n as com�

puted in section ���� tD� � 	�v
�

n
�logv�� as sketched in

appendix B� Using the fact that e 	 �
�v

� leads to

R 
 
 logn
v logv � This would imply R � L and therefore

a simulation of the PRAM algorithm is more cost�
e
ective�

� Conclusions

We have used the framework from ���� which allows
to treat computer architecture as a formal optimiza�
tion problem and to deal quantitatively with hard�
ware�software tradeo
s� In this framework we have
improved the price�performance ratio of Ranade�s
Fluent Machine by a factor of �� We have determined
when combining should be done in hardware �namely
always for practical purpose�� We have compared the

��



cD�tD� 	 cD�tD�

	�
� � 	
cD�

cD�

� �

tsim � �

If we assume in favour of D� that n� � c�n logn
then with equations �� �� � we get � 	 ������logn����

For moderate n however� the exact value is even
smaller�

��� Consequences

We mentioned in section � that PRAMs are classi�
�ed in theory as EREW� CREW and CRCW PRAMs�
Relations among these classes are given in ���� ����
A further class of ERCW PRAMs is not considered
there�

De�nition � A machine model A is said to be hier

archically weaker than B �A � B� if each problem that
can be solved on model A in time T and P processors
can also be solved on model B in time O�T � and O�P �
processors�

Obviously EREW � CREW � CRCW�

Theorem � If we change our CRCW design D� to
an EREW design D�	 an ERCW design D� and an
CREW design D	 we get the relation

cD� � cD� � cD� � cD��

Thus if a PRAM supports combining in the way we
described in section ��� it is not worthwhile to consider
CREW PRAMs but it might be useful to examine the
role of ERCW PRAMs in the hierarchy�

Proof� �of theorem ��
We get D� from D� by reducing the width of the

direction queues with the same argument as in sub�
section 
��� This shows cD� � cD�� We cannot skip
the comparators because we still have to detect con�
current writes� This shows cD� � cD�� For D	 we
cannot skip the comparators because we have to de�
tect concurrent reads� We cannot reduce the width of
the direction queues because of the same argument�
This shows cD� � cD��

Theorem � shows that D	 is identical to D� and
that for any PRAM program B tD� � tD�� Thus D	
has the same TDC as D� but D� �� D	�

� PRAMs vs� Distributed Memory
Machines

PRAMs have always been thought to be uncompeti�
tive to Distributed Memory Machines �DMM� because

some problems do not need the global memory� In or�
der to compare our PRAM D� with a DMM D
 one
has to compute R � TDC�D�� B��TDC�D
� B�� We are
interested in how much more cost�e
ective DMMs can
be than PRAMs and vice versa� Therefore we search
for bounds U and L with L 	 R 	 U independently of
B and of the particular DMM� It will turn out that for
reasonable values of n a DMM cannot be much more
cost�e
ective than a PRAM but vice versa a PRAM
can be much more cost�e
ective than a DMM�

��� Simulation of DMMs by PRAMs

Assume a benchmark that does not use the global
memory but can be run on a distributed memory ma�
chine with simple hardwired communication� This
is the worst case that can happen when comparing
PRAMs and DMMs� We formulate an upper bound
as theorem ��

Theorem � Assume we have a benchmark B as has
just been described that has enough parallelism to be
computed on a distributed memory machine with ef

�ciency � close to �� We consider a DMM D
 with
n processors and communication given by a graph of
small degree with n nodes and our PRAM D�� Then
we get

R 	 U 	 ���� logn� �����

Proof�The distributed memorymachine with n pro�
cessors has costs cD� � nc �P � ���		n� We only count
processor costs c �P and ignore network costs although
this is unfair towards the PRAM� Suppose that B
needs T steps on a sequential machine� The DMM
needs T��n steps� We assume in favour of the DMM
that the benchmark B can be pipelined perfectly and
thus one step takes only one cycle� Thus one has
tD� � 
�T��n�

The PRAM has costs cD� as computed in equation
� and needs T

�cn logn steps each taking c logn proces�

sor cycles� Thus D� needs T��n cycles and therefore
tD� � 
�T��n� We then get

R �
cD�

cD�
� tD�

tD�
�

�

��n logn� �����n

���		n
� �

� ���� logn� ���� � U�

For reasonable values of n� e�g� n 	 ���� the
quotient is less than ��� If we would add  oat�
ing point arithmetic to the ALU as usual in exist�
ing parallel machines� the parameter A increases to
A� 
 ������ ���� and the quotient decreases dramat�
ically to ��� logn � ����� For n 	 ��� the quotient is
smaller than 	��� If cost of memory is considered too�
things change further in favour of the PRAM�

�



Suppose processor Pi wants to access variable Vj �
Then it writes �i� j� to location i in global memory
�we assume that locations � to n� � are not accessed
by the PRAM program�� The contents of locations
� to n � � get sorted now by j� Duplicates which
represent concurrent accesses are replaced by dummy
accesses �i��j�� Pi reads the content �i�� j�� of location
i and accesses Vj� if j� � �� Then Pi writes the result
of a READ access to location i�� The processors with
eliminated duplicates duplicate now the results� At
last Pi reads the result of its own access from location
i and assigns it to variable Vj �

The most time consuming part of the simulation is
the sort of the tuples �i� j�� The sort can be parallized
by using all n processors to sort the n tuples� Because
a sequential sort by comparison of n elements needs
time !�n logn�� an optimal parallel algorithmusing all
n processors should need parallel time "�logn�� Op�
timal sorting algorithms are described in �	� ��� �	�� a
randomized one is given in ����� The constant factor
in their runtime however is quite large� We will use
Batcher�s bitonic sort ���� a parallel sorting algo�
rithm with small constant that needs time O�log� n�
to sort n elements using n processors� The bitonic
sorting network can be de�ned recursively as in de��
nition ��

De�nition � B� and S� are identical circuits sorting
two numbers� Bn is a circuit that merges two bitonic
sequences each of length n

� to one bitonic sequence of
length n� The bitonic sorting network for n numbers
is a circuit Sn� For one of these circuits S	 �S denotes
the circuit with reversed order of outputs�

Sn

Bn

Sn
�

�Sn
�

n

n
�

n
�

Bn

Bn

�

���

���

Bn

�

���

���t t

t t

�

�

n

�
� �

n

�
� �

n
�

n
�

n� �

n� �

B�� S�

t t

a b

min�a� b� max�a� b�

The bitonic sorter can be formulated as a program�

for pnum �� � to n� � pardo
for i �� � to logn do
for k �� i� � to � do
if bit k of pnum � � then
if bit i of pnum � � then
A�pnum� �� min�A�pnum�� A�pnum� �k��

else
A�pnum� �� max�A�pnum�� A�pnum� �k��

�
else
if bit i of pnum � � then
A�pnum� �� min�A�pnum� �k�� A�pnum��

else
A�pnum� �� max�A�pnum� �k�� A�pnum��

�
�

od
od

od#

Figure �� Bitonic Sort Algorithm

The program needs n processors that simulate in step
i the n comparators B� in depth i of the circuit� The
algorithm looks as shown in �gure ��

We assume that the compiler for our benchmark
can recognize all instructions in which concurrent ac�
cess can occur and that only these instructions are
simulated in the way described above� We further as�
sume that the compiler knows the number of proces�
sors that are working at this time� Now the com�
piler can generate code for the bitonic sort with�
out using loops or subroutine calls� This makes
it much faster� An assembler program would need
��
 �logn��� � ���
 logn� instructions for the bitonic
sort as described above� n� is the smallest power of
two larger than the number of processors� In our de�
sign D� n� � c�n logn� The complete simulation of
one step then takes

tsim �
��

�
�logn��

�
�
	�

�
logn� � 	�� ���

instructions� The complete assembler program can
be found in ���� Now we will prove theorem � using
the results of the previous subsections�

Proof� �indirect� Let B be a benchmark that needs
time tD� on D�� On D� it will need time

tD� � tD� ��tsim � ��� �� �� � �	�

TDC�D�� B� 	 TDC�D�� B�

�



A F NA NS SA SS

��
�� ��		 �
�� ���� ���� 	��	

Table�� Actual Parameters

for its arithmetic part and NS for its SRAM� the basic
costs of a sorting node SA and SS �

Then we have costs cN � 	ANA � 	SNS for a net�
work node and cS � 	ASA � 	SSS for a sorting node�

The improved machine consists of n physical pro�
cessors� of � c�n logn sorting nodes and of n logn net�
work nodes� It has total costs

cD� � ncP � cS
�c

	
n logn� cNn logn�

The exact numbers for A�F�NA� NS � SA� SS are
shown in table �� the computation can be found in
appendix A� The result is

cD� � �����n� �

��n logn� ���

The Fluent Machine�s network nodes have slightly
larger basic costs �NA � ���	� �NS � ���� because
Ranade�s routing algorithm needs full routing infor�
mation in forward and backward network� c �N is com�
puted in analogy to cN � The costs of the Fluent Ma�
chine then are

cD� � c �Pn logn� c �Nn logn � ����
�	n logn�

For n � ��� the Fluent Machine is ����� times more
expensive than our improved machine�

��� Speed of the Machine

In section A�� we compute the maximal delay path
in network nodes� We get a minimal cycle time of
�N � �
 gate delays for the network and sorting
nodes� For a particular processor design in ��� we com�
puted a minimal cycle time �P � 
� gate delays� which
comes from access times to the register �le� In current
VLSI technology with gate delays of �ns we get cycle
times of ���ns and 
�ns�

One step of the improved machine takes c logn pro�
cessor cycles which is 
 � c logn � ���ns� Ranade
reports in ���� simulation results such that one step
of the Fluent machine takes �� logn network cycles
which is 
� � �� logn� 
�ns�

The improved machine then has a power of cn logn
�

Instructions per second� For n � ��� we get ����
MIPS� The corresponding value for the Fluent Ma�
chine is ��� MIPS� Thus the improved machine 
�

times faster and ��� times more cost�e
ective than
the Fluent Machine�

� CRCW vs� EREW

��� Main Result

We investigate the question whether combining
should be done by hardware �hardwired combining� or
whether concurrent accesses should be simulated by
software� We will prove the following theorem ��

Theorem � Let D� be a CRCW PRAM as described
in section ��� which supports combining by hardware�
Let D� be an EREW PRAM as described in section
��� on which each concurrent access is simulated by
software as described in section ���� If a benchmark
B that needs tD� steps consists of �tD� concurrent
accesses with � 	 � 	 � then

TDC�D�� B� � TDC�D�� B� for � � �����
�

�logn��
�

This means� if a benchmark that needs tD� steps
consists of more than ������logn���tD� concurrent ac�
cesses it is better to run it on a CRCW PRAM instead
of simulating it on an EREW PRAM�

��� Design of an EREW PRAM

To determine TDC�D�� B� it is necessary to sketch
the design of an EREW PRAM D�� We get D� from
D� by skipping all hardware that supports combining�
These are the sorting networks in phases � and � of the
routing and the comparators in the network switches
which detect that combining is necessary� Addition�
ally one can reduce the width of the direction queues
in the switches to two bits because only four cases re�
main� $ini to outj� where i� j � f�� �g� Removing the
sorting networks reduces routing time and c can be
decreased to c� � ��
� The costs for the new proces�
sors ar cP � � 	AA� 	Lc

� lognF � ������ ��
� logn�
The costs for network and sorting nodes decrease from
NA to N �

A � ���� and NS to N �
S � ���� as shown in

appendix A� The total costs for D� are

cD� � cP �n�cN �n logn � �����n������	n logn� ���

The cycle time of D� is exactly the same as of D��
one step of D� takes c�logn processor cycles�

��� Simulation of CRCW on EREW

Karp and Ramachandran show in ���� how to
simulate a CRCW PRAM on an EREW PRAM� They
use the followingmethod to simulate one step in which
concurrent accesses can happen�

�



ing arrays is discussed in section ��	� Valiant calls
this parallel slackness �����

De�nition 	 A round in machine D� is the time in

terval from the moment when the �rst vP injects its
packet into the network to the moment when the last
vP injects its packet into the network�

At the end of a round there are on the one hand
still packets of this round in the network� on the other
hand the processors have to proceed �and thus must
start the next round� to return these packets� Chang
and Simon prove in ��� that this works and that the la�
tency still is O�logn�� The remaining problem how to
separate the di
erent rounds can easily be solved� Af�
ter the last vP has injected its packet into the network�
an End of Round Packet �EOR� is inserted� This is
a packet with a destination larger than memory size
m� Because the packets leave each node sorted by
destinations� it has to wait in a network switch until
another EOR enters this switch across its other in�
put� It can be proved easily that this is su�cient to
separate rounds�

��� Delayed LOAD and Sorting

One problem to be solved is that virtual proces�
sors that execute a LOAD instruction have to wait until
the network returns the answer to their READ packets�
Simulations indicate� that for c � � this works most of
the time �see ����� But this is quite large in comparison
to logn� We partially overcome this by using delayed
LOAD instructions as in ��
�� We require an answer to
a READ packet being available not in the next instruc�
tion but in the next but one� Investigations show that
insertion of additional $dummy� instructions happens
very rarely ��
�� But if a program needs any dummy
instructions� they can be easily inserted by the com�
piler� This reduces c to � without signi�cantly slowing
down the machine�

The sorting arrays should have length c logn too�
But breaking a round in z parts is an alternative� This
reduces the lengths to c

z
logn but could slow down the

machine�s speed� Simulations show ��� that z � 	 is
the maximum value that does not slow down speed if
we double the sorting networks� Therefore we choose
this value�

In order to examine the exact constants for runtime
and costs in machine D� by the method sketched in
section ��� we have to model the processor for this
machine� In ���� nothing special about it is mentioned
except that the use of RISC processors is proposed�

��� A Processor

We use a processor similar to the Berkeley RISC
processor ��
�� Instead of register windows we have
the register sets of the virtual processors� The proces�
sor has a LOAD�STORE architecture� i�e� that COMPUTE
instructions only work on registers and immediate con�
stants and that memory access only happens on LOAD

and STORE instructions� The COMPUTE instructions in�
volve adding� multiplying� shifts and bit oriented op�
erations� All instructions need the same amount of
time� In order to get a pipeline of depth c logn� the
ALU depth is increased arti�cially�

Because of the LOAD�STORE architecture the same
multiplier can be used for multiplications in COMPUTE

instructions and for hashing global addresses with a
linear hash function in LOAD and STORE instructions�
This means that hashing does not require much special
hardware�

A more detailed description of the processor can be
found in ����

� Cost and Speed

��� Cost of the machine

We compute the costs of the improved Fluent Ma�
chine with the method introduced in section ���� We
will ignore control logic because it occupies only a frac�
tion of at most �� percent of the total costs� This
would change if we would use CISC processors�

The RISC processor of section � mainly consists of
an ALU and a register �le� The ALU consists of a
�� bitWallace tree multiplier� a barrel shifter and a
carry lookahead adder ��
�� The register �le of the Flu�
ent Machine consists of �� registers each �� bits wide�
the one in the improvedmachine consists of c logn���
registers each �� bits wide� Let the basic costs of the
ALU be A and the basic costs of the Fluent Machine�s
register �le be F �

If we use the packing factors of table � we have costs
cP � 	AA�	Lc lognF for the processor of our design
D� and c �P � 	AA � 	SF for the Fluent Machine�s
processor�

Simulations ��� indicate that network nodes need
bu
ers of length �� A node consists of � bu
ers and �
multiplexers on the way from processors to memory�
� bu
ers and � multiplexers on the way back� a direc�
tion queue of length �c logn and a comparator and a
subtractor to compare addresses� Sorting nodes only
need bu
ers of length � and � multiplexer for each di�
rection� Let the basic costs of a network node be NA

�
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Figure 	� � phase Routing in the New Machine

ets� This cannot be avoided� But we can reduce the
cost of the idle hardware by replacing the logn pro�
cessors of a row by only one physical processor �pP�
which simulates the original logn processors as virtual
processors �vP�� Another advantage of this concept is
that we can increase the total number of PRAM pro�
cessors by simulating X � c logn �with c � �� vP�s
in a single pP� The simulation of the virtual proces�
sors by the physical processor is done by the principle
of pipelining� This principle is well known from vec�
tor computers and was also used in the �rst MIMD
computer marketed commercially� the Denelcor HEP
���� ���� A closely related concept is Bulk Synchronous
Parallism in ��	��

In vector processors the execution of several in�
structions is overlapped by sharing the ALU� Figure 

shows how pipelining is used in our design� Here the
ALU needs x cycles� A single instruction in this ex�
ample needs x� 	 cycles� Execution of t instructions
needs t � x � � cycles� Without pipelining they need
t�x� 	� cycles�

Instead of accelerating several instructions of a vec�
tor processor with a pipeline� we use pipelining for
overlapped execution of one instruction for all X vP�s
that are simulated in one physical processor� To sim�
ulate X vP�s we increase the depth of our ALU ar�

Time � � � 	 
 � x�� x�	
Stage
Fetch I� I� I�
Decode I� I� I�
Load arguments I� I� I�
Compute cycle � I� I� I�
���
Compute cycle x I� I�
Store results I�

Figure 
� Pipelining in the Processor

ti�cially to x � X � 	� The virtual processors are
represented in the physical processor simply by their
own register sets� We save the costs of X � � ALU�s�

The depth � of this pipeline serves to hide network
latency� This latency is proved to be c logn for some
c with high probability ����� Thus� if � � c logn� then
normally no vP has to wait for a returned packet�
This c increases the number of vP�s and the network
conguestion� But network latency only grows slowly
with increasing c� Thus there exists an optimal c� The
exact value and its in uence on the length of the sort�






row� Node hcol� rowi	 col � logn is connected to node
hcol � �� rowi and to node hcol � �� row
 �coli	 where

 denotates the bitwise exclusive or�

Each network node contains a processor� a memory
module of the shared memory and the routing switch�
If a processor hcol� rowiwants to access a variable Vx it
generates a packet of the form �destination�type�data�
where destination is the tuple �h�x�� l�x�� and type is
READ or WRITE� This packet is injected into the net�
work and sent to node h�x� � hrow�� col�i and back �if
its type is READ� with the following six phase deter�
ministic packet routing algorithm�

�� The packet is sent to node hlogn� rowi� On the
way to column logn all packets injected into a
row are sorted by their destinations�

�� The message is routed along the unique path from
hlogn� rowi to h�� row�i� The routing algorithm
used is given in �����

�� The packet is directed to node hcol�� row�i and
there the memory access takes place�

	� � �� The packet is sent the same way back to
hcol� rowi�

Figure � shows the phases performed on a network
consisting of � butter ies� Ranade realizes these six
phases with two butter y networks where column i of
the �rst network corresponds to column logn � i of
the second one� Phases ����
 use the �rst network�
phases ��	�� use the second network� Thus the Flu�
ent Machine consists of n logn nodes each contain�
ing one processor� one memory module and � network
switches�

The reason for sorting in phase � is given in section
����

��� Combining

In a CRCW PRAM several �possibly all� processors
could access the same variable Vj at the same time�
Let

Sj � fPijPi reads Vj in current stepg�
PACj � fpacijPi � Sj sends paci into networkg�

We talk only of READ accesses because WRITE ac�
cesses can be treated in a similar way with the sim�
pli�cation that they do not return an answer to the
processor�

If all packets in PACj reach memory module h�j��
the module congestion cm equals jPACjj� In the worst

case this could be n� Because the routing algorithms
require module congestion O�logn� �see ��� ���� the
number of packets in PACj that reach h�j� has to be
reduced in the followingway� The paths of the packets
in PACj form a tree� However there is no need to
send more than one packet along any branch of this
tree� If a packet paci � PACj simply waits at each
tree node until a packet pacl � PACj appears along
the other incoming edge �unless the node $knows� that
all future packets of the current step must originate
from processors P �� Sj�� then the two packets can
be merged and one forwarded along the tree� This
merging is called combining�

In order to decide whether two incoming packets
paci � Sx� pacl � Sy have to be combined� a network
node has to compare the destinations g�x� and g�y��

How can a network node know that no more packets
will arrive in the future% Ranade gives in ���� the
following solution� sort the packets during phase � by
their destinations and then maintain for each node the
packets that leave the node sorted�

��� Improvements

De�nition 
 A round is the time interval from the
moment when the �rst of all n logn packets is injected
into the network to the moment when the last packet
is returned to its processor again with the answer of a
READ access�

In Ranade�s algorithm the next round can only
be started when the actual round is �nshed com�
pletely� This means that overlapping of several rounds
�pipelining� is not possible in the Fluent Machine�
This is the �rst disadvantage that we want to elim�
inate� This could be reached by using � physical but�
ter y networks as shown in �gure �� But the networks
for phases � and � can be realized by n sorting arrays
of length logn as described in ��� ��� and networks for
phases � and 	 can be realized by driver trees respec�
tive OR trees� Both solutions have smaller costs than
butter y networks and are not slower� The sorting
arrays only have one input and require that all logn
processors of a row inject their packets sequentially
into this input�

This leads to the following construction as shown
in �gure 	� The logn processors of a row inject their
packets into the sorting array sequentially� the sorted
packets are routed like in Ranade�s phase �� the pack�
ets are directed to the right modules via driver trees�
Then the packets go all the way back to their proces�
sors�

The second disadvantage is that the processors
spend most of the time waiting for returning pack�

	



ally compares two families of machines� the members
of which are only di
erent in size� Their costs and
the runtime of the benchmark depend on the number
of processors� To compare the families we take corre�
sponding &representatives& of them� These could be
members of the two families that have identical costs
or that have equal processor numbers�

� The PRAM Model

De�nition � An n�PRAM �parallel random ac

cess machine� is a parallel register machine with n
processors P�� � � � � Pn��	 their local memories and a
shared memory of size m� In each step each processor
can work as a separate register machine or can ac

cess a cell of the shared memory� The processors work
synchronously�

We consider the following kinds of PRAMs�

� EREW� �exclusive read exclusive write� It is not
possible to read or write a memory cell simulta�
neously with several processors�

� CREW� �concurrent read exclusive write� It is
only possible to read a cell simultaneously�

� CRCW� �concurrent read concurrent write� Pro�
cessors can read and write a cell simultaneously�
Concurrent write forces to de�ne which one of
the concurrent processors will win� Usually three
possibilities are studied�

� arbitrary� One processor wins� but it is not
known in advance which one wins�

� common� All processors must write identi�
cal data� thus it does not matter which one
wins�

� priority� The processor with the largest or
lowest index wins�

The last model is the most powerful� Overviews
about algorithms for the di
erent models can be found
in �
� ��� ����

One simulates an n�PRAM on a multi�computer
machine �MIMD� by distributing the shared mem�
ory uniformly among memory modules M�� � � � �Mn��

each of size m
n
� The processors are connected by an

interconnection network� Processor Pi communicates
with moduleMj on this network if Pi wants to access
a variable that is stored in Mj �i �� j�� To commu�
nicate means that Pi sends a packet to Mj specifying
the required variable� In case of a LOAD instruction
Mj sends the answer back to Pi�

l�x� h�x� g�x�

�logm� � log n� �

Figure �� Binary representation of Hash function g�x�

In order to map the variables used V�� � � � � Vr��� r 	
m onto the memory modules one uses a hash function
g � f�� � � � �m � �g � f�� � � � �m � �g which is actu�
ally a tuple �h� l� of functions h � f�� � � � �m � �g �
f�� � � � � n��g and l � f�� � � � �m��g � f�� � � � � m

n
��g�

The function h speci�es the module� l speci�es the
location within the module� One gets h and l from
g in the following way� h�x� � g�x� mod n� l�x� �
g�x� div n� If one considers the binary represen�
tation of g�x� with length logm� the last logn bits
give the module h�x�� the upper �logm � logn� bits
give the location l�x� within the module� The binary
representation of g�x� looks as shown in �gure ��

Hash functions that distribute variables provably
well are examined in ���� An example are polynomi�
als� Simulations ��� ��� indicate that for practical use
particular linear hash functions g of the type g�x� �
ax modm with greatest commondivisor gcd�a�m����
� 	 a 	 m � � are good enough� The advantages of
the function g�x� are its bijectivity and the short eval�
uation time�

The communication between processors and mem�
ory modules can be handled in several ways� e�g� as
in ���� ���� We base our work on Ranade�s Fluent
Machine as described in section ����

	 The Machine D�

We �rst give a short summary of the Fluent Ma�
chine which is precicely described in ��� ��� ���� Then
we present some improvements that lead to our design
D��

��� The Fluent Machine

The Fluent Abstract Machine simulates a CRCW
priority PRAM with n logn processors� The proces�
sors are interconnected by an n logn butter y network
as given in De�nition 	�

De�nition � The butter y network of degree � con

sists of n�� � logn� network nodes� Each node is as

signed a unique number hcol� rowi where � 	 col 	
logn� � 	 row 	 n��� hcol� rowi can be viewed as the
concatenation of the binary representations of col and

�



INV AND� OR EXOR � bit Reg�

cost � � � ��
delay � � � 


Table�� Basic cost and delay functions

a formalism from ���� which permits to compare cost�
e
ectiveness of architectures� It will turn out that the
reengineered version of the Fluent Machine is more
than 
 times more cost�e
ective than the original ma�
chine and that it is surprisingly cost�e
ective when
compared to distributed memory machines�

In section ��� we de�ne the formalism to compare
machines� Chapter � describes the theoretical PRAM
model� Chapter � contains the description of the Flu�
ent machine and the reengineered version� In chapter
	 we analyze both machines and compare them in the
formalism given in section ���� In chapter 
 we show
that it is worthwhile to support concurrent accesses
by hardware� In chapter � we compare PRAMs and
distributed memory machines�

��� Comparison of Machines

De�nition � Let D be a design of a machine with
cost cD� Let B be a program with runtime tD on de

sign D� B is called benchmark� We call cDtD the
time depending cost function TDC of design D with
benchmark B�

A motivation for the TDC is the well�known
price�performance ratio� if we take performance as the
reciprocal value of runtime at constant work B�

We determine cD and tD of a machine by specifying
the whole machine by circuits and switching networks�
Each type of gates has basic cost and delay given by
functions cost and delay� Examples are shown in table
�� The cost of a circuit is the sum of the basic costs of
its gates multiplied with packing factors which are ex�
amples of technology parameters� They represent the
fact that structures such as logic� arithmetic and static
RAM can be packed more or less densely� Typical pa�
rameters for di
erent technologies can be derived from
chip producers� statements about placement results�
We will use particular parameters derived from ����
which are shown in table �� The cost of a machine is
the sum of the costs of all switching networks� main
memory is not counted�

We take a carry�chain adder for ��bit numbers as
an example� It consists of � fulladders� A fulladder
consists of two halfadders and an OR gate� A halfadder
consists of an AND gate and an EXOR gate� We have

Structure Parameter Value

Logic 	 �
Arithmetic 	A ���

small SRAM 	S ��	

large SRAM 	L ����

Table�� Packing Factors

� OR gates� �� AND gates and �� EXOR gates in total�
The adder is an arithmetic unit and thus has a packing
factor of ���
� The cost of the adder is ���
��cost�OR��
��cost�AND� � ��cost�EXOR�� � ����

We compute the execution times of the machine
instructions �ignoring delays on wires� by searching
for the maximumdelay of all paths in all circuits� The
delay of a path is the sum of the gate delays on this
path plus a short time to load a register at the end of
the path� This is a lower bound for the cycle time� The
execution time of a machine command is the cycle time
multiplied with the number of cycles the command
needs �if all cycles have equal length��

In our example the longest path is the following
one� in the �rst fulladder from input ain or bin to
carryout� in the �nd to the �th fulladder from carryin
to carryout� in the �th fulladder from carryin to
sumout� If the carryin of a fulladder goes to the �nd

halfadder� our path meets an EXOR� an AND and an
OR in the �st fulladder� an AND and an OR in the �nd

to the �th fulladder and an EXOR in the �th fulladder�
The total delay is Ttotal � �delay�AND���delay�OR��
�delay�EXOR� � ���

We formulate benchmarks in PASCAL with the
pardo construct ���� as parallel extention� This is
su�cient for an analysis� But implementation of this
language would be di�cult� A better solution is given
by the language FORK ��
��

We determine the runtime of a benchmark B by
compiling it by hand and analyzing the machine code�
Depending on the CPU architecture the result is some�
thing like the number of LOAD� STORE and COMPUTE

commands� For each group we multiply its number of
commands with its execution time� then we sum over
the groups� The result is the runtime tD in gate de�
lays� If pipelining is allowed� things become messier�
but can still be handled�

De�nition � If two designs D� and D� have costs
cD� and cD� and a benchmark B has runtime tD� on
D� and tD� on D� then D� is called better on B than
D� if and only if TDC�D�� B� � TDC�D�� B��

If one compares scalable parallel machines� one re�
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Abstract

We introduce a formalism which allows to treat
computer architecture as a formal optimization prob

lem� We apply this to the design of shared mem

ory parallel machines� Present computers of this type
support the programming model of a shared memory�
But simultaneous access to the shared memory by sev

eral processors is in many situations processed sequen

tially� Asymptotically good solutions for this prob

lem are o�ered by theoretical computer science� We
modify these constructions under engineering aspects
and improve the price�performance ratio by roughly a
factor of �� The resulting machine has surprisingly
good price�performance ratio even if compared with
distributed memory machines� For almost all access
patterns of all processors into the shared memory	 ac

cess is as fast as the access of only a single processor�

� Introduction

Commercially available parallel machines can be
classi�ed as distributed memory machines or shared
memory machines� Exchange of data between di
er�
ent processors is done in the �rst class of machines
by explicit message passing� In the second class pro�
grams on di
erent processors simply access variables
in a common address space� Thus one gets a more
comfortable programming model�

One is tempted to suspect big di
erences between
the hardware architectures of the two classes� but this
is actually not so� Processors of present shared mem�
ory machines tend to have local memories as well as
large caches� and the exchange of cache lines between
processors can be viewed as an automated way of mes�
sage passing� As a consequence of this implementation
one gets a large variation of the memory access time

�This research was partly supported by SFB ���� TP D�
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Figure �� Concurrent Write on ALLIANT FX�����

depending on the access patterns of the processors� In
fact a single concurrent write of all say p processors of
a parallel machine to the same memory location might
very well be slower than p accesses of a single proces�
sor to its local memory� As an example �gure � shows
the time of a concurrent write by p � �� � � � � � pro�
cessors to the same memory location in an ALLIANT
FX����� ���� Thus present shared memory machines
support only the programmingmodel but not the tim�
ing behaviour of a true shared memory�

Parallel machines which support both the program�
ming model and the timing behaviour of true shared
memory are called PRAMs in the theoretical litera�
ture� The problem of simulating PRAMs by more
technically feasible models has been extensively stud�
ied ��� �� ��� ��� ��� ��� ��� ��� ��� �	�� The construc�
tion from ����� called the Fluent Machine� is considered
as the most e�cient simulation�

In this paper we will describe the design of a reengi�
neered version of the Fluent Machine� We will review

�


