costs Ny = 1296 + 1024 + 256 = 2576.

The nodes for the sorting network only need buffers
of length 1 and only 1 multiplexer. They have basic
costs Sy, = 1928 and Ss = 4104.

The network nodes for the Fluent Machine have
width 76 for the forward and the backward network.
Thus they have basic costs NA = 3104 and NS = 8808.

If we reduce the network nodes of design D1 to
design an EREW PRAM, we spare the costs for the
comparator and reduce the width of the instruction
queue by one bit. We then have basic costs N/, = 2320
and N =6192.

A.3 Network Speed

In one network cycle the maximum delay path is
the following: a packet has to be read out of the input
buffer, its address has to be compared with another,
it has to be selected by a multiplexer and it has to be
stored in the input buffer of the following node. Read-
ing the input buffer takes 3 gate delays, comparing
addresses with an ¢ bit carry lookahead adder takes
about 2logi + 2 gate delays, selecting with a multi-
plexer takes 2 gate delays, storing in a buffer takes
about 3 gate delays. With 32 bit addresses we have
3+ 2log32+ 24 2+ 3 =20 gate delays. Because we
did not count driver delays and setup and hold times
we take a network cycle time o = 25 gate delays.

B Analysis of Benchmark B1

Let G = (V, E) be an undirected graph with v =
VI,V ={0,...,v—1}and E CV x V with e = |E|.
Represent £ by the adjacency matrix A given by a;; =
1if (4,k) € F, 0 otherwise. A is symmetric because G
is undirected. The connected components algorithm
from [5] first computes the connectivity matrix C' from
the given adjacency matrix. C'is given by ¢;j; = 1 if
there exists a path in G from j to k, 0 otherwise.
Then it constructs a matrix D given by d;; = k if
¢;r = 1, 0 otherwise. Finally each vertex k is assigned
to component { with { = min{i|dy; # 0}.

We assume that sending one word across a link of
the hypercube takes only one step and that source and
destination of this word are registers. The connectiv-
ity matrix is computed by logv times multiplying A
with itself thus computing C' = AY. It turns out that
multiplying 2 v X v matrices on a hypercube with n
processors can be done in (381;—3 +20) logv—|—5% steps.
The computation of the connectivity matrix then
needs approximately (log 0)2(38% + 20) + 52—3 log v
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steps. The computation of matrix D takes approxi-
2 . .« e

mately 7%~ steps, finding of minimums takes approx-

imately 10--logv steps. The total time tp¢ then is

approximately 40 1;1—3 (logv)?.
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Appendices

A Parameter Values

A.1 Processor Costs

The ALU mainly consists of a 32 bit wallace tree
multiplier, a barrel shifter and a carry lookahead adder
(see [35]). The multiplication is performed by adding
32 terms of length 1 to 32 bits. Each bit of each term
is computed by an AND gate. The AND gates have basic
costs 32 x 16 x 2 = 1024.
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4 terms of length ¢ can be reduced to 2 terms of
length ¢ + 1 with an ¢ bit 4-2-Adder consisting of 2¢
full adders. Thus we get a first stage consisting of a 32
bit 4-2-adder for the longest terms, up to a 4 bit 4-
2—-adder for the shortest terms. In total the first stage
contains 32 + 28 4+ ...+ 4 = 144 bit 4-2-adders. The
second stage contains 28 4+ 20+ 124+ 4 = 64, the third
stage 24+8 = 32 and the last stage 16 bit 4—2-adders.
The wallace tree then consists of 1444644+ 32+ 16 =
256 bit 4-2-adders containing 512 full adders. As we
saw 1n section 1.1 a full adder has basic costs 18. The
basic costs for the wallace tree then are 9216.

The carry lookahead adder finishing the multiplica-
tion consists of 2 x 32 components to compute generate
and propagate signals. Each component consists of 4
AND and OR gates. Additionaly we need for each bit
2 EXOR gates to compute the sum bits and 1 AND and
1 OR gate to produce the generate and propagate sig-
nal for that bit. The carry lookahead adder has basic
costs 64 x 4 x2+32x (2x242x6)=1024.

The barrel shifter consists of 5 stages of multi-
plexers. Because we allow rotations and buffering
in carry each stage needs 33 multiplexers with 3 in-
puts. These are built of 2 multiplexers with 2 in-
puts. A multiplexer with two inputs consists of 2
AND gates, 1 OR gate and 1 inverter, having costs 7.
The total basic costs of the barrel shifter now are
b x 33 x 2x7 = 2310. The basic costs of the ALU
then are A = 1024 + 9216 + 1024 4 2310 = 13392.

A register file with 16 registers 32 bit wide has basic
costs F' =16 x 32 x 12 = 6144.

A.2 Costs of the network

Own simulations [3] show that network nodes only
need buffers of length 2. Packets on the way from
processors to memory modules are 76 bits wide (32
bit address, 32 bit data, 12 bit control). In the back-
ward network 32 bits for transported data are suffi-
cient. Each network node needs the following hard-
ware: 4 registers with 76 bits each, 4 registers with 32
bits each, 2¢logn 3 bit registers with routing informa-
tions for the backward network, 2 multiplexers with
76 bits and 2 multiplexers with 32 bits. Additionaly
we need a comparator and an adder to test identical
addresses and to select the smaller one.

The registers have basic costs Ng = (4 x 76 +4 x
3242 x3x7x3)x12=6696. The multiplexers have
basic costs (2x 7642 x 32) x 6 = 1296. The adder has
basic costs 1024 as computed above. The comparator
consists of 1 EXOR gate and 1 OR gate for each of the
32 bits and thus has basic costs 32 x (6 4+ 2) = 256.
The arithmetic of a network node then has total basic



cost—effectiveness of PRAM’s and DMM’s. The re-
sults are surprisingly favourable for PRAM’s. In re-
ality things are somewhat worse, e.g. because of con-
nectors and wires. Nevertheless we are applying for
funds to build a prototype of design D1 with n = 128
physical processors. Some details about the planned
prototype can be found in [3].
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6.2 Simulation of PRAMs by DMMs

The worst case for a DMM is a benchmark where
any known algorithm for a DMM is less cost—effective
than the step—by—step simulation of a PRAM.

Theorem 4 Let B be a benchmark that fulfils the
above assumptions and that is parallelizable with ef-
fictency €. Then

1

R>L>
— T 438

Proof: Let the sequential runtime of B be T. B
needs T/ecnlogn steps on a PRAM D1 with enlogn
processors. Because each step takes clogn processor
cycles, tpy = 50T /en.

Let D5 be a DMM with nlogn processors inter-
connected as a hypercube. Db has costs cps =
cpnlogn = 12944nlogn because we ignore network
costs. In order to simulate one step of D1 on D5 we
adapt RANADE’s routing scheme in software. Because
successing phases can overlap we use a link in forward
manner for phases 1,3,5 and in backward manner for
phases 2,4,6. Processors alternately execute one step
of phase i and one of phase i + 1. Because of this tog-
gling the routing scheme needs at most twice as many
routing steps as RANADE’s scheme. The number of
machine instructions to perform one routing step is

24:

| 7t steps | comment |
6 read address, data, mode of both inputs
1 compare the addresses
1 jump if equal (combining)
1 jump if less (left packet is to send)
1 compare address with routing mask
1 jump if equal (routing to left output)
1 test whether successing queue is full
1 jump if full
3 write address, data and mode
2 append direction queue if mode==read
1 mark input queue not full
1 test whether other successing queue full
1 jump if full
3 write address,data,ghost

o

If we assume that RANADE’s scheme needs 11logn
steps the new scheme needs 11lognx24x2 = 528 logn
instructions. If we further assume that one instruction
only takes one processor cycle, the total time to simu-
late one PRAM step is at most S log n processor cycles

Total |
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for S = 528. D5 simulates a PRAM with nlogn pro-
cessors. Therefore B needs T'/enlogn steps on D5 and
tps = 50ST/en. We now can compute R:

¢p1 tp1

15598nlogn +10179n 1 1
12944n logn S 438

¢ps tps —
[ ]

If we add floating point arithmetic L changes to
1
2640

6.3 Examples

In order to show that the bounds on R are tight we
present two examples matching the bounds. The first
example B0 is multiplication of two s X s—matrices.
We use design D1 with n physical processors and a
distributed memory machine D5 with n processors in-
terconnected as a y/n x y/n torus. Each processor of
the torus then holds a ﬁ X \/Lﬁfsubmatrix of both
matrices. This example comes very close to the worst
case described in section 6.1 and therefore R approxi-
mately matches the upper bound.

The second example B1 is computing the connected
components of an undirected graph with v nodes and e
edges. For the PRAM we use an algorithm of [29] in a
form presented in [14]. Tts runtime is O(logv) steps on
a PRAM with 2e (virtual) processors. The formal ex-
planation and the proofs for correctness and runtime
can be found in [29]. On a PRAM with n < v physical
processors we have tp; = (300 + 108%)logv as an-
alyzed in [3] and ¢p; as computed in equation 1. For
the distributed memory machine we could use an algo-
rithm from [5] that runs on a hypercube. Tts runtime is
O(log2 v) on v processors. For a hypercube D6 with
n < v processors we would have cpg = 12944n as com-
puted in section 6.1, tps = 40”71—3(log v)? as sketched in
appendix B. Using the fact that e < %vz leads to

R~ 5%% This would imply R < L and therefore
a simulation of the PRAM algorithm is more cost—

effective.

7 Conclusions

We have used the framework from [23] which allows
to treat computer architecture as a formal optimiza-
tion problem and to deal quantitatively with hard-
ware/software tradeoffs. In this framework we have
improved the price/performance ratio of RANADE’s
Fluent Machine by a factor of 6. We have determined
when combining should be done in hardware (namely
always for practical purpose). We have compared the



ep2tps < cpilps
o1 _q
(4) CD2
= o < ==
- tsim -1

If we assume in favour of D2 that n’ = ¢'nlogn
then with equations 1, 2, 3 we get o < 0.117(logn)~2.
m

For moderate n however, the exact value is even
smaller.

5.4 Consequences

We mentioned in section 1 that PRAMSs are classi-
fied in theory as EREW, CREW and CRCW PRAMs.
Relations among these classes are given in [13, 18].
A further class of ERCW PRAMSs is not considered
there.

Definition 8 A machine model A is said to be hier-
archically weaker than B (A < B) if each problem that
can be solved on model A in time T and P processors
can also be solved on model B in time O(T') and O(P)
PTOCESSOTS.

Obviously EREW < CREW < CRCW.

Theorem 2 If we change our CRCW design D1 to
an EFREW design D2, an ERCW design D3 and an
CREW design D4 we get the relation

cp2 < c¢cps3 < Cp4 = CD1-

Thus if a PRAM supports combining in the way we
described in section 3.1 it is not worthwhile to consider
CREW PRAMs but it might be useful to examine the
role of ERCW PRAMs in the hierarchy.

Proof: (of theorem 2)

We get D3 from D1 by reducing the width of the
direction queues with the same argument as in sub-
section 5.2. This shows c¢p3z < c¢pi. We cannot skip
the comparators because we still have to detect con-
current writes. This shows ¢ps < ¢p3. For D4 we
cannot skip the comparators because we have to de-
tect concurrent reads. We cannot reduce the width of
the direction queues because of the same argument.
This shows ¢cps4 = ¢p1. n

Theorem 2 shows that D4 is identical to D1 and
that for any PRAM program B tp; = tpa. Thus D4
has the same TDC as D1 but D1 £ D4.

6 PRAMs vs.
Machines

Distributed Memory

PRAMs have always been thought to be uncompeti-
tive to Distributed Memory Machines (DMM) because

some problems do not need the global memory. In or-
der to compare our PRAM D1 with a DMM D5 one
has to compute R = TDC(D1, B)/TDC(D5, B). We are
interested in how much more cost—effective DMMs can
be than PRAMs and vice versa. Therefore we search
for bounds U and L with L < R < U independently of
B and of the particular DMM. It will turn out that for
reasonable values of n a DMM cannot be much more
cost—effective than a PRAM but vice versa a PRAM
can be much more cost—effective than a DMM.

6.1 Simulation of DMMs by PRAMSs

Assume a benchmark that does not use the global
memory but can be run on a distributed memory ma-
chine with simple hardwired communication. This
is the worst case that can happen when comparing
PRAMs and DMMs. We formulate an upper bound
as theorem 3.

Theorem 3 Assume we have a benchmark B as has
Just been described that has enough parallelism to be
computed on a distributed memory machine with ef-
ficiency € close to 1. We consider a DMM Db with
n processors and communication given by a graph of
small degree with n nodes and our PRAM D1. Then
we get

R<U < 121logn + 0.79.

Proof: The distributed memory machine with n pro-
cessors has costs cps = nep = 12944n. We only count
processor costs ¢ and ignore network costs although
this is unfair towards the PRAM. Suppose that B
needs T steps on a sequential machine. The DMM
needs T'/en steps. We assume in favour of the DMM
that the benchmark B can be pipelined perfectly and
thus one step takes only one cycle. Thus one has
tps = 50T /en.

The PRAM has costs ¢p; as computed in equation

1 and needs Ecnfogn steps each taking clogn proces-

sor cycles. Thus D1 needs T'/en cycles and therefore
tp1 = 50T /en. We then get
15598nlogn + 10179n 1
12944n
= 121logn+0.79="U.

¢p1 tp1
p= 22t 221
¢ps lps

n

For reasonable values of n, eg. n < 26 the
quotient 1is less than 20. If we would add float-
ing point arithmetic to the ALU as usual in exist-
ing parallel machines, the parameter A increases to
A’ & 100000 [12] and the quotient decreases dramat-
ically to 0.2logn + 0.97. For n < 2'6 the quotient is
smaller than 4.2. If cost of memory is considered too,
things change further in favour of the PRAM.



Suppose processor F; wants to access variable V;.
Then it writes (¢,7) to location ¢ in global memory
(we assume that locations 0 to n — 1 are not accessed
by the PRAM program). The contents of locations
0 to n — 1 get sorted now by j. Duplicates which
represent concurrent accesses are replaced by dummy
accesses (i, —j). P; reads the content (7', j/) of location
i and accesses Vj/ if j/ > 0. Then P; writes the result
of a READ access to location 7. The processors with
eliminated duplicates duplicate now the results. At
last P; reads the result of its own access from location
¢ and assigns it to variable V;.

The most time consuming part of the simulation is
the sort of the tuples (¢, 7). The sort can be parallized
by using all n processors to sort the n tuples. Because
a sequential sort by comparison of n elements needs
time (n log n), an optimal parallel algorithm using all
n processors should need parallel time ©O(logn). Op-
timal sorting algorithms are described in [4, 10, 24], a
randomized one is given in [28]. The constant factor
in their runtime however is quite large. We will use
BATCHER’s bitonic sort [T], a parallel sorting algo-
rithm with small constant that needs time O(log® n)
to sort n elements using n processors. The bitonic
sorting network can be defined recursively as in defi-
nition 7.

Definition 7 By and Ss are identical circuils sorting
two numbers. B, is a circuit that merges two bitonic
sequences each of length 3 to one bitonic sequence of
length n. The bitonic sorting network for n numbers
15 a circuit S, . For one of these circuits S, S denotes
the circuit with reversed order of outputs.

Sn B,
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S
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min(a,b) max(a,b)

The bitonic sorter can be formulated as a program.

for pnum := 0 to n — 1 pardo
for i := 1 to logn do
for k:=¢—1to 0do
if bit k£ of pnum = 0 then
if bit ¢ of ppum = 0 then
Alpnum] := min(A[pnum], A[pnum + 2*])
else
Alpnum] := max(A[pnum], A[pnum + 2*])
fi
else
if bit ¢ of pnum = 1 then
Alpnum] := min(A[pnum — 2*], A[pnum])
else
Alpnum] := max(A[pnum — 2*], A[pnum])
fi
fi
od
od
od;

bl

Figure 6: Bitonic Sort Algorithm

The program needs n processors that simulate in step
¢ the n comparators Bs in depth i of the circuit. The
algorithm looks as shown in figure 6.

We assume that the compiler for our benchmark
can recognize all instructions in which concurrent ac-
cess can occur and that only these instructions are
simulated in the way described above. We further as-
sume that the compiler knows the number of proces-
sors that are working at this time. Now the com-
piler can generate code for the bitonic sort with-
out using loops or subroutine calls. This makes
it much faster. An assembler program would need
9.5 (log n’)2 + 10.5logn’ instructions for the bitonic
sort as described above. n’ is the smallest power of
two larger than the number of processors. In our de-
sign D2 n’ > ¢nlogn. The complete simulation of
one step then takes

1 4
tsim = 79 (log 77,/)2 + 77 log n' + 46. (3)

instructions. The complete assembler program can
be found in [2]. Now we will prove theorem 1 using
the results of the previous subsections.

Proof: (indirect) Let B be a benchmark that needs
time tp1 on D1. On D2 it will need time

tpo =1ipy (oztsim—l—(l—oz) 1) (4)

TDC(D2, B) < TDC(D1, B)



(A _[F [Na [Ns [Sa [S5 |
[13572 | 6144 | 2576 | 6696 | 1928 | 4104 |

Table3: Actual Parameters

for its arithmetic part and Ng for its SRAM, the basic
costs of a sorting node S, and Sg.
Then we have costs ¢y = paNa + psNg for a net-
work node and cg = paSa + psSs for a sorting node.
The improved machine consists of n physical pro-
cessors, of 2¢nlogn sorting nodes and of nlogn net-
work nodes. It has total costs

2¢
¢p1 = ncp + cg anogn + eynlogn.

The exact numbers for A F, N4, Ng,Sa,Sg are
shown in table 3, the computation can be found in
appendix A. The result 1s

ep1 = 10179n + 15598n log n. (1)

The Fluent Machine’s network nodes have slightly
larger basic costs NA = 3104,N5 = 8808 because
RANADE’s routing algorithm needs full routing infor-
mation in forward and backward network. ¢z is com-
puted in analogy to ¢y . The costs of the Fluent Ma-
chine then are

cpo = cpnlogn 4+ cynlogn = 19235.4nlogn.

For n = 128 the Fluent Machine is 1.128 times more
expensive than our improved machine.

4.2 Speed of the Machine

In section A.3 we compute the maximal delay path
in network nodes. We get a minimal cycle time of
on = 25 gate delays for the network and sorting
nodes. For a particular processor design in [2] we com-
puted a minimal cycle time op = 50 gate delays, which
comes from access times to the register file. In current
VLSI technology with gate delays of 2ns we get cycle
times of 100ns and 50ns.

One step of the improved machine takes ¢logn pro-
cessor cycles which is v = clogn x 100ns. RANADE
reports in [27] simulation results such that one step
of the Fluent machine takes 11logn network cycles
which is v/ = 11logn x 50ns.

The improved machine then has a power of @gﬂ
Instructions per second. For n = 128 we get 1280
MIPS. The corresponding value for the Fluent Ma-
chine is 232 MIPS. Thus the improved machine 5.5
times faster and 6.2 times more cost—effective than
the Fluent Machine.

5 CRCW vs. EREW
5.1 Main Result

We investigate the question whether combining
should be done by hardware (hardwired combining) or
whether concurrent accesses should be simulated by
software. We will prove the following theorem 1.

Theorem 1 Let D1 be a CRCW PRAM as described
wmn section 3.3 which supports combining by hardware.
Let D2 be an EREW PRAM as described in section
5.2 on which each concurrent access is simulated by
software as described in section 5.3. If a benchmark
B that needs tpy steps consists of atpy concurrent
accesses with 0 < o < 1 then

1
TDC(D1, B) < TDC(D2, B >0.117—.
(DLB) <TOUD2E) for o> 01Ty
This means: if a benchmark that needs tp; steps
consists of more than 0.117(log n)_ztpl concurrent ac-
cesses 1t is better to run it on a CRCW PRAM instead
of simulating it on an EREW PRAM.

5.2 Design of an EREW PRAM

To determine TDC(D2, B) it is necessary to sketch
the design of an EREW PRAM D2. We get D2 from
D1 by skipping all hardware that supports combining.
These are the sorting networks in phases 1 and 6 of the
routing and the comparators in the network switches
which detect that combining is necessary. Addition-
ally one can reduce the width of the direction queues
in the switches to two bits because only four cases re-
main: ‘in; to out;” where ¢, j € {0,1}. Removing the
sorting networks reduces routing time and ¢ can be
decreased to ¢’ = 1.5. The costs for the new proces-
sors ar cpr — pa A+ prc’lognF = 10179 + 2857 log n.
The costs for network and sorting nodes decrease from
N4 to Ny = 2320 and Ng to N = 6192 as shown in
appendix A. The total costs for D2 are

¢p2 = cpntennlogn = 10179n+7389.4n logn. (2)

The cycle time of D2 is exactly the same as of D1,
one step of D2 takes ¢’'logn processor cycles.

5.3 Simulation of CRCW on EREW

KarP and RAMACHANDRAN show in [18] how to
simulate a CRCW PRAM on an EREW PRAM. They
use the following method to simulate one step in which
concurrent accesses can happen:



ing arrays is discussed in section 3.4. VALIANT calls
this parallel slackness [33].

Definition 6 A round in machine D1 s the time in-
terval from the moment when the first vP injects its
packet into the network to the moment when the last
vP injects its packet into the network.

At the end of a round there are on the one hand
still packets of this round in the network, on the other
hand the processors have to proceed (and thus must
start the next round) to return these packets. CHANG
and SIMON prove in [9] that this works and that the la-
tency still is O(logn). The remaining problem how to
separate the different rounds can easily be solved. Af-
ter the last vP has injected its packet into the network,
an End of Round Packet (FOR) is inserted. This is
a packet with a destination larger than memory size
m. Because the packets leave each node sorted by
destinations, it has to wait in a network switch until
another EOR enters this switch across its other in-
put. It can be proved easily that this is sufficient to
separate rounds.

3.4 Delayed LOAD and Sorting

One problem to be solved is that virtual proces-
sors that execute a LOAD instruction have to wait until
the network returns the answer to their READ packets.
Simulations indicate, that for ¢ = 6 this works most of
the time (see [3]). But this is quite large in comparison
to logn. We partially overcome this by using delayed
LOAD instructions as in [25]. We require an answer to
a READ packet being available not in the next instruc-
tion but in the next but one. Investigations show that
insertion of additional ‘dummy’ instructions happens
very rarely [25]. But if a program needs any dummy
instructions, they can be easily inserted by the com-
piler. This reduces ¢ to 3 without significantly slowing
down the machine.

The sorting arrays should have length clogn too.
But breaking a round in z parts is an alternative. This
reduces the lengths to = logn but could slow down the
machine’s speed. Simulations show [3] that z = 4 is
the maximum value that does not slow down speed if
we double the sorting networks. Therefore we choose
this value.

In order to examine the exact constants for runtime
and costs in machine D1 by the method sketched in
section 1.1 we have to model the processor for this
machine. In [27] nothing special about it is mentioned
except that the use of RISC processors is proposed.

3.5 A Processor

We use a processor similar to the Berkeley RISC
processor [25]. Instead of register windows we have
the register sets of the virtual processors. The proces-
sor has a LOAD-STORE architecture, i.e. that COMPUTE
instructions only work on registers and immediate con-
stants and that memory access only happens on LOAD
and STORE instructions. The COMPUTE instructions in-
volve adding, multiplying, shifts and bit oriented op-
erations. All instructions need the same amount of
time. In order to get a pipeline of depth clogn, the
ALU depth is increased artificially.

Because of the LOAD-STORE architecture the same
multiplier can be used for multiplications in COMPUTE
instructions and for hashing global addresses with a
linear hash function in LOAD and STORE instructions.
This means that hashing does not require much special
hardware.

A more detailed description of the processor can be

found in [3].

4 Cost and Speed
4.1 Cost of the machine

We compute the costs of the improved Fluent Ma-
chine with the method introduced in section 1.1. We
will ignore control logic because it occupies only a frac-
tion of at most 10 percent of the total costs. This
would change if we would use CISC processors.

The RISC processor of section 3 mainly consists of
an ALU and a register file. The ALU consists of a
32 bit WALLACE tree multiplier, a barrel shifter and a
carry lookahead adder [35]. The register file of the Flu-
ent Machine consists of 16 registers each 32 bits wide,
the one in the improved machine consists of clogn x 16
registers each 32 bits wide. Let the basic costs of the
ALU be A and the basic costs of the Fluent Machine’s
register file be F.

If we use the packing factors of table 2 we have costs
cp = paA+prclognF for the processor of our design
D1 and cp = paA + psF for the Fluent Machine’s
processor.

Simulations [3] indicate that network nodes need
buffers of length 2. A node consists of 2 buffers and 2
multiplexers on the way from processors to memory,
2 buffers and 2 multiplexers on the way back, a direc-
tion queue of length 2clogn and a comparator and a
subtractor to compare addresses. Sorting nodes only
need buffers of length 1 and 1 multiplexer for each di-
rection. Let the basic costs of a network node be Ny
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ets. This cannot be avoided. But we can reduce the
cost of the idle hardware by replacing the logn pro-
cessors of a row by only one physical processor (pP)
which simulates the original logn processors as virtual
processors (vP). Another advantage of this concept is
that we can increase the total number of PRAM pro-
cessors by simulating X = clogn (with ¢ > 1) vP’s
in a single pP. The simulation of the virtual proces-
sors by the physical processor is done by the principle
of pipelining. This principle is well known from vec-
tor computers and was also used in the first MIMD
computer marketed commercially, the Denelcor HEP
[16, 30]. A closely related concept is Bulk Synchronous
Parallism in [34].

In vector processors the execution of several in-
structions is overlapped by sharing the ALU. Figure 5
shows how pipelining is used in our design. Here the
ALU needs x cycles. A single instruction in this ex-
ample needs x + 4 cycles. Execution of ¢ instructions
needs ¢ + x + 3 cycles. Without pipelining they need
t(x +4) cycles.

Instead of accelerating several instructions of a vec-
tor processor with a pipeline, we use pipelining for
overlapped execution of one instruction for all X vP’s
that are simulated in one physical processor. To sim-
ulate X vP’s we increase the depth of our ALU ar-

Time 1 2 3 4 5 6 x+3 x+4
Stage

Fetch I1 12 13

Decode I1 12 13

Load arguments I1 12 13

Compute cycle 1 11 12 13

Compute cycle x I 12
Store results I1

Figure 5: Pipelining in the Processor

tificially to * = X — 4. The virtual processors are
represented in the physical processor simply by their
own register sets. We save the costs of X —1 ALU’s.

The depth 6 of this pipeline serves to hide network
latency. This latency 1s proved to be clogn for some
¢ with high probability [26]. Thus, if 6 = clogn, then
normally no vP has to wait for a returned packet.
This ¢ increases the number of vP’s and the network
conguestion. But network latency only grows slowly
with increasing ¢. Thus there exists an optimal ¢. The
exact value and its influence on the length of the sort-



row. Node {col, row), col <logn is connected to node
(col +1,row) and to node (col + 1,row @ 2°°'), where
@ denotates the bitwise exclusive or.

Each network node contains a processor, a memory
module of the shared memory and the routing switch.
If a processor {col, row) wants to access a variable V; it
generates a packet of the form (destination,type,data)
where destination is the tuple (h(z),l(z)) and type is
READ or WRITE. This packet is injected into the net-
work and sent to node h(z) = {(row’, col’) and back (if
its type is READ) with the following six phase deter-
ministic packet routing algorithm.

1. The packet is sent to node {logn,row). On the
way to column logn all packets injected into a
row are sorted by their destinations.

2. The message 1s routed along the unique path from
(logn, row) to (0,row’). The routing algorithm
used is given in [26].

3. The packet is directed to node {col’, row’) and
there the memory access takes place.

4. — 6. The packet is sent the same way back to
(col, row).

Figure 3 shows the phases performed on a network
consisting of 6 butterflies. RANADE realizes these six
phases with two butterfly networks where column ¢ of
the first network corresponds to column logn — i of
the second one. Phases 1,35 use the first network,
phases 2,4,6 use the second network. Thus the Flu-
ent Machine consists of nlogn nodes each contain-
ing one processor, one memory module and 2 network
switches.

The reason for sorting in phase 1 is given in section

3.2.
3.2 Combining

In a CRCW PRAM several (possibly all) processors
could access the same variable V; at the same time.
Let

S; = {F;|P; reads V; in current step},
PAC; = {pac;|P; € S; sends pac; into network}.

We talk only of READ accesses because WRITE ac-
cesses can be treated in a similar way with the sim-
plification that they do not return an answer to the
processor.

If all packets in PAC; reach memory module A(j),
the module congestion ¢,, equals |PAC;|. In the worst

case this could be n. Because the routing algorithms
require module congestion O(logn) (see [3, 20]) the
number of packets in PAC; that reach A(j) has to be
reduced in the following way: The paths of the packets
in PAC; form a tree. However there is no need to
send more than one packet along any branch of this
tree. If a packet pac; € PAC; simply waits at each
tree node until a packet pac; € PAC; appears along
the other incoming edge (unless the node ‘knows’ that
all future packets of the current step must originate
from processors P ¢ S;), then the two packets can
be merged and one forwarded along the tree. This
merging is called combining.

In order to decide whether two incoming packets
pac; € Sy, pac; € Sy have to be combined, a network
node has to compare the destinations g(z) and g(y).

How can a network node know that no more packets
will arrive in the future? RANADE gives in [26] the
following solution: sort the packets during phase 1 by
their destinations and then maintain for each node the
packets that leave the node sorted.

3.3 Improvements

Definition 5 A round is the time interval from the
moment when the first of all nlogn packets s injected
wnto the network to the moment when the last packet
1s returned to its processor again with the answer of a
READ access.

In RaNADE’s algorithm the next round can only
be started when the actual round is finshed com-
pletely. This means that overlapping of several rounds
(pipelining) is not possible in the Fluent Machine.
This is the first disadvantage that we want to elim-
inate. This could be reached by using 6 physical but-
terfly networks as shown in figure 3. But the networks
for phases 1 and 6 can be realized by n sorting arrays
of length logn as described in [3, 19] and networks for
phases 3 and 4 can be realized by driver trees respec-
tive OR trees. Both solutions have smaller costs than
butterfly networks and are not slower. The sorting
arrays only have one input and require that all logn
processors of a row inject their packets sequentially
into this input.

This leads to the following construction as shown
in figure 4. The logn processors of a row inject their
packets into the sorting array sequentially, the sorted
packets are routed like in RANADE’s phase 2, the pack-
ets are directed to the right modules via driver trees.
Then the packets go all the way back to their proces-
sors.

The second disadvantage is that the processors
spend most of the time waiting for returning pack-



ally compares two families of machines, the members
of which are only different in size. Their costs and
the runtime of the benchmark depend on the number
of processors. To compare the families we take corre-
sponding ”representatives” of them. These could be
members of the two families that have identical costs
or that have equal processor numbers.

2 The PRAM Model

Definition 3 An n—PRAM (parallel random ac-
cess machine) is a parallel register machine with n
processors Py, ..., Py_1, their local memories and a
shared memory of size m. In each step each processor
can work as a separate register machine or can ac-
cess a cell of the shared memory. The processors work
synchronously.

We consider the following kinds of PRAMs:

o EREW: (ezclusive read exclusive write) It is not
possible to read or write a memory cell simulta-
neously with several processors.

e CREW: (concurrent read exclusive write) Tt is
only possible to read a cell simultaneously.

o CRCW: (concurrent read concurrent write) Pro-
cessors can read and write a cell simultaneously.
Concurrent write forces to define which one of
the concurrent processors will win. Usually three
possibilities are studied:

— arbitrary: One processor wins, but it is not
known in advance which one wins.

— common: All processors must write identi-
cal data, thus it does not matter which one
wins.

— priority: The processor with the largest or
lowest index wins.

The last model is the most powerful. Overviews
about algorithms for the different models can be found
in [5, 13, 18].

One simulates an n-PRAM on a multi-computer
machine (MIMD) by distributing the shared mem-
ory uniformly among memory modules My, ..., M, _1
each of size 7'. The processors are connected by an
interconnection network. Processor P; communicates
with module M; on this network if P; wants to access
a variable that is stored in M; (i # j). To commu-
nicate means that P; sends a packet to M; specifying
the required variable. In case of a LOAD instruction
M; sends the answer back to F;.

[(x) hiz) | g(x)

logm —1

logn —1 0

Figure 2: Binary representation of Hash function g(#)

In order to map the variables used Vg, ..., V,_1,7 <
m onto the memory modules one uses a hash function
g:40,...,m—1} — {0,...,m — 1} which is actu-
ally a tuple (k,{) of functions h : {0,...,m — 1} —
{0,...,n=1}and {:{0,...,m—1} —{0,..., 7 —1}.
The function h specifies the module, [ specifies the
location within the module. One gets h and { from
¢ in the following way: A(z) = g(x) mod n, l(z) =
g(z) div n. If one considers the binary represen-
tation of g(x) with length logm, the last logn bits
give the module h(z), the upper (logm — logn) bits
give the location {(#) within the module. The binary
representation of g(z) looks as shown in figure 2.

Hash functions that distribute variables provably
well are examined in [3]. An example are polynomi-
als. Simulations [3, 27] indicate that for practical use
particular linear hash functions g of the type g(x) =
az mod m with greatest common divisor ged(a, m)=1,
0 < a <m—1 are good enough. The advantages of
the function g(x) are its bijectivity and the short eval-
uation time.

The communication between processors and mem-
ory modules can be handled in several ways, e.g. as
in [20, 26]. We base our work on RANADE’s Fluent
Machine as described in section 3.1.

3 The Machine D1

We first give a short summary of the Fluent Ma-
chine which is precicely described in [3, 26, 27]. Then
we present some improvements that lead to our design
D1.

3.1 The Fluent Machine

The Fluent Abstract Machine simulates a CRCW
priority PRAM with nlogn processors. The proces-
sors are interconnected by an nlogn butterfly network
as given in Definition 4.

Definition 4 The butterfly network of degree 2 con-
sists of n(1 4 logn) network nodes. Fach node is as-
signed a unique number {col,row) where 0 < col <
logn, 0 < row < n—1. {col, row) can be viewed as the
concatenation of the binary representations of col and



| | INV | AND, OR | EXOR [ 1 bit Reg. |
cost 1 2 6 12
delay | 1 1 3 5

Tablel: Basic cost and delay functions

a formalism from [23] which permits to compare cost—
effectiveness of architectures. It will turn out that the
reengineered version of the Fluent Machine is more
than b times more cost—effective than the original ma-
chine and that it is surprisingly cost—effective when
compared to distributed memory machines.

In section 1.1 we define the formalism to compare
machines. Chapter 2 describes the theoretical PRAM
model. Chapter 3 contains the description of the Flu-
ent machine and the reengineered version. In chapter
4 we analyze both machines and compare them in the
formalism given in section 1.1. In chapter 5 we show
that it is worthwhile to support concurrent accesses
by hardware. In chapter 6 we compare PRAMs and
distributed memory machines.

1.1 Comparison of Machines

Definition 1 Let D be a design of a machine with
cost cp. Let B be a program with runtime tp on de-
sign D. B is called benchmark. We call cptp the
time depending cost function TDC of design D with
benchmark B.

A motivation for the TDC is the well-known
price/performance ratio, if we take performance as the
reciprocal value of runtime at constant work B.

We determine cp and tp of a machine by specifying
the whole machine by circuits and switching networks.
Each type of gates has basic cost and delay given by
functions cost and delay. Examples are shown in table
1. The cost of a circuit 1s the sum of the basic costs of
its gates multiplied with packing factors which are ex-
amples of technology parameters. They represent the
fact that structures such as logic, arithmetic and static
RAM can be packed more or less densely. Typical pa-
rameters for different technologies can be derived from
chip producers’ statements about placement results.
We will use particular parameters derived from [22]
which are shown in table 2. The cost of a machine is
the sum of the costs of all switching networks, main
memory is not counted.

We take a carry—chain adder for 8-bit numbers as
an example. It consists of 8 fulladders. A fulladder
consists of two halfadders and an OR gate. A halfadder
consists of an AND gate and an EXOR gate. We have

| Structure | Parameter | Value |
Logic P 1
Arithmetic PA 0.75
small SRAM | pg 0.45
large SRAM | pr 0.31

Table2: Packing Factors

8 OR gates, 16 AND gates and 16 EXOR gates in total.
The adder is an arithmetic unit and thus has a packing
factor of 0.75. The cost of the adder is 0.75(8cost(0OR)+
16cost(AND) + 16cost(EXOR)) = 108.

We compute the execution times of the machine
instructions (ignoring delays on wires) by searching
for the maximum delay of all paths in all circuits. The
delay of a path is the sum of the gate delays on this
path plus a short time to load a register at the end of
the path. Thisis a lower bound for the cycle time. The
execution time of a machine command is the cycle time
multiplied with the number of cycles the command
needs (if all cycles have equal length).

In our example the longest path is the following
one: in the first fulladder from input a;, or b;, to
Carryous, in the 27¢ to the 7" fulladder from carry;n
to carryou;, in the 8% fulladder from carry;, to
SUMgyy. If the carry;, of a fulladder goes to the ond
halfadder, our path meets an EXOR, an AND and an
OR in the 1°* fulladder, an AND and an OR in the 27¢
to the 7'* fulladder and an EXOR in the 8" fulladder.
The total delay is Typ1q1 = Tdelay(AND) 4 7delay (OR) +
2delay(EXOR) = 20.

We formulate benchmarks in PASCAL with the
pardo construct [13] as parallel extention. This is
sufficient for an analysis. But implementation of this
language would be difficult. A better solution is given
by the language FORK [15].

We determine the runtime of a benchmark B by
compiling it by hand and analyzing the machine code.
Depending on the CPU architecture the result is some-
thing like the number of LOAD, STORE and COMPUTE
commands. For each group we multiply its number of
commands with its execution time, then we sum over
the groups. The result is the runtime ¢p in gate de-
lays. If pipelining is allowed, things become messier,
but can still be handled.

Definition 2 If two designs DO and D1 have costs
c¢po and cpy and a benchmark B has runtime tpg on
DO and tp1 on D1 then DO is called beiter on B than
D1 if and only if TDC(DO, B) < TDC(D1, B).

If one compares scalable parallel machines, one re-
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Abstract

We introduce a formalism which allows to treat
computer architecture as a formal optimization prob-
lem. We apply this to the design of shared mem-
ory parallel machines. Present computers of this type
support the programming model of a shared memory.
But simultaneous access to the shared memory by sev-
eral processors is in many situations processed sequen-
teally.  Asymptotically good solutions for this prob-
lem are offered by theoretical computer science. We
modify these constructions under engineering aspects
and improve the price/performance ratio by roughly a
factor of 6. The resulting machine has surprisingly
good price/performance ralio even if compared with
distributed memory machines. For almost all access
patterns of all processors into the shared memory, ac-
cess 1s as fast as the access of only a single processor.

1 Introduction

Commercially available parallel machines can be
classified as distributed memory machines or shared
memory machines. Exchange of data between differ-
ent processors is done in the first class of machines
by explicit message passing. In the second class pro-
grams on different processors simply access variables
in a common address space. Thus one gets a more
comfortable programming model.

One is tempted to suspect big differences between
the hardware architectures of the two classes, but this
1s actually not so. Processors of present shared mem-
ory machines tend to have local memories as well as
large caches, and the exchange of cache lines between
processors can be viewed as an automated way of mes-
sage passing. As a consequence of this implementation
one gets a large variation of the memory access time

*This research was partly supported by SFB 124, TP D4

Figure 1: Concurrent Write on ALLIANT FX/2816

depending on the access patterns of the processors. In
fact a single concurrent write of all say p processors of
a parallel machine to the same memory location might
very well be slower than p accesses of a single proces-
sor to its local memory. As an example figure 1 shows
the time of a concurrent write by p = 1,...,8 pro-
cessors to the same memory location in an ALLIANT
FX/2816 [1]. Thus present shared memory machines
support only the programming model but not the tim-
ing behaviour of a true shared memory.

Parallel machines which support both the program-
ming model and the timing behaviour of true shared
memory are called PRAMs in the theoretical litera-
ture. The problem of simulating PRAMs by more
technically feasible models has been extensively stud-
ied [6, 8, 11, 17, 20, 21, 27, 31, 32, 34]. The construc-
tion from [27], called the Fluent Machine, is considered
as the most efficient simulation.

In this paper we will describe the design of a reengi-
neered version of the Fluent Machine. We will review



