Reduction of Network Cost and Wiring
in Ranade’s Butterfly Routing”

David Cross
Department of Electrical Engineering and Computer Science, University of California, Berkeley, CA 94720

Reinhard Drefenstedt and Jorg Keller

Computer Science Department, Universitat des Saarlandes, 6600 Saarbricken, Germany

Abstract

We investigate implementations of butterfly networks. Obvious mappings of network nodes to chips

lead to implementations with expensive wiring. We consider Ranade’s butterfly routing algorithm.

For this algorithm, we present a new mapping of network nodes to chips. This mapping only needs

half the number of chips and links between chips. The chips’ interconnections still form a butterfly

network.

Keywords: computer architecture, packet routing algorithms, butterfly networks.

1 Introduction

Interconnection networks are important parts of
parallel architectures, and therefore should pro-
vide high throughput with small delay. All net-
They should

have constant degree, and the routing algorithm

work nodes should be identical.

should only require constant length buffers per
node. Then one kind of network node can be
used to build networks of arbitrary size. A net-
work that meets these requirements is the bui-

terfly network.

Definition 1 A butterfly network with n = 2%
inputs and outputs is a graph G, that consists of
u+1 stages with n nodes per stage. Gy consists of
a single node, G, can be constructed by taking
two copies of G, and 2n additional nodes that
form the last stage of Ga,. Node i, where 0 <

*This work was partly funded by the German Science
Foundation (DFG) in SFB 124, TP D4. D. Cross is cur-
rently with Mentor Graphics Corporation, 1001 Ritter
Park Drive, San Jose 95131.

1 < m, in the last stage of the smaller butterflies
is connected to nodes v and © + n in stage u + 1.

The construction is shown in fig. 1.

Ranade was the first to develop a randomized
packet routing algorithm for butterfly networks
that meets the requirement of constant length
buffers [6]. (Pippenger published a similar result
in [5], but his algorithm could end in a deadlock.)

Ranade used his algorithm for the design of a
very elegant emulation of a shared memory par-

The

A reengineered

allel machine on a processor network [7].
emulation overhead is clogn.
version of his emulation was shown to have an
emulation overhead where ¢ is very small [2],
making the emulation interesting for practical
use. Prior to [2], shared memory emulations were
thought to be impractical because of large con-
stant factors involved. Because shared memory
parallel machines are easier to program than dis-
tributed memory machines, they could become a
serious competitor to the latter, if there are prac-



T Gn T T Gn T
Gn/? Gn/? Gn/? Gn/?
0 -1 z n—1 n | s 2n — 1
O : O @) @) O O : O
O @) @) @) O @) @) O
[><]
o P o o P o

Figure 1: Construction of G5,

tical emulations.

Consider a butterfly network G,, run with
Ranade’s algorithm. We investigate implemen-
tations of G, i.e., a mapping M of network
nodes to chips with a fixed number p of pins.
We are interested in the number of chips and
the number of links between chips that are nec-
essary to implement G, with M, given links
with width w. We denote these numbers with
chip(M) and link(M ), respectively. If links get
wide to improve throughput by parallel trans-
mission (w > p/4), we run into the problem of
pin restriction. Then, the most obvious map-
ping M consists of mapping one network node
onto one chip. Our main result can be stated as
follows:

Theorem 1 There exists a mapping M’ of net-
work nodes to chips such that

chip(M'") < chip(M)/2 and

link(M') < link(M)/2.

The chips remain interconnected as a butterfly

network.

If we implement 7, with mapping M’ instead of
M, then it needs less space and links get shorter.
This reduces delays on wires and allows for an
increase in speed. Engineering aspects such as
cooling and power supply also simplify.

In section 2 we will sketch the design of a net-
work node that implements Ranade’s routing al-
gorithm and will discuss the problem of pin count
restriction that leads to mapping M. Section 3
shows how a slightly different mapping M’ dou-
bles gate utilization of the chips. This implies
that we need only half the number of chips and
We finish with the proof
that mapping M’ preserves the interconnection

links between chips.

structure of the chips.

2 Original network nodes

We assume that packets consist of an address
specifying the output, one word of data, and con-
trol information. At the beginning, log n packets
are fed into each input. These packets are sorted
by address, and the sorted order is kept during
routing.

A node behaves as follows: If two packets are
waiting in its input buffers, the packet with the
smaller address is transmitted. The address also
specifies the output along which the packet has
to be sent.

If one input buffer is empty, the packet in the
other buffer has to wait until it can be sure that
no packet with a smaller address will arrive at
the empty input in the future. Otherwise, the
order would be destroyed. To avoid unneces-



! !

FIFO
buffer

FIFO
buffer

Loglc+
o Arithm
Logic+ T ______ | ----A

Arithm

Figure 2: Datapaths of a Network Node

sary waiting in nodes, GHOST packets are in-
troduced. Each time a packet is transmitted
along one output, a GHOST packet is transmit-
ted along the other output. The GHOST packet
also carries the packet’s address, but has differ-
ent control information. A GHOST packet arriv-
ing in an input buffer guarantees that only pack-
ets with an address larger than the GHOST’s
address will arrive on that input in the future.

Some of the packets can contain requests for a
device on an output of the network to send back
an answer, e.g. requests to a memory module to
read the contents of a cell. The answers only
consist of data. Their return path through the
network is determined by keeping track of the
requests’ path. This is done by maintaining a di-
rection queue in each node. For each request that
passes the node, input and output are recorded.
As the sorted order guarantees that answers will
arrive in the same order as the requests passed,
this information can be used to send back the

answers [6].

A network node that implements these functions
is shown in figure 2. We will ignore the dash
line in this section. In practice, each address
and data word will consist of 32 bits, and the
control information will consist of 8 bits. In order
to have a high speed transmission, each node—
to—node link should be capable of transmitting

one packet and one answer per clock tick. To
achieve this, the link must have a width of 72 bit
in one direction to transmit a whole packet and
32 bit in the opposite direction to transmit an
answer. Fach link then has a total width of 104
bits. Such a setup causes severe problems due to
pin restrictions if one node is implemented on a
single chip. As one node has four outgoing links,
it needs 4 - 104 = 416 pins to obtain full speed.
Custom chips can be obtained with up to p = 240
pins at reasonable prices. This forces sending
packets in two pieces, yielding 416/2 = 208 pins.
Compared to pin count however, gate utilization
is very low. Thus, most of the silicon on the
network chips is wasted.

To increase the gate/pin ratio of the network
chips one can implement a subnetwork with n’ >
2 inputs and outputs instead of one node on one
chip. The number of gates grows proportionally
to (n'/2)logn’, the number of nodes in the sub-
network (see Def. 1). The number of pins only
grows linearly in n’. Therefore, this improves the
gate/pin ratio by a factor of ©(logn’). The sit-
uation for n’ = 4 and links of width w is shown
in table 1. Unfortunately this improvement can
only be achieved by either having more pins or
by making links smaller. The first proposal can-
not be realized because of the pin restriction.
The second proposal reduces throughput because
packets now have to be transmitted in twice as
many pieces as before.

type tl t2
outline

nodes per chip 1 4
number of pins 4w 8w
gates per chip g 4q
gate/pin ratio = o

Table 1: Mapping nodes on chips



Figure 3: Partitioning of Network Nodes

3 Different Mapping

Although the node has two inputs and two out-
puts, it can be cut into two halves such that only
one link crosses the cut. This is due to the fact
that only one packet is transmitted at a time.
The cut is shown as a dash line in figure 2. We
now implement a 2 x 2-butterfly in one chip but
take only the lower part of the nodes of the first
stage and the upper part of the nodes of the sec-
ond stage. Figure 3 shows this alternative map-
ping M’. The fact that network nodes can be
split into two halves was also observed by Cross

3].

Lemma 1 If we choose mapping M’ as defined
above, then

chip(M'") < chip(M)/2 and

link(M') < link(M)/2.

Proof: The resulting chip has as many pins as
the original one but uses twice the number of
gates. It follows that we need only half the num-
ber of chips per stage in comparison to mapping
M. Furthermore, note that the original algo-
rithm uses only one input per node in the first
network stage and only one output per node
in the last stage. The second input is always
filled with a ghost of lowest priority. There-
fore, the upper node parts in the first stage
and the lower node parts in the last stage are

not necessary. This means that we only need

Figure 4: Construction of Gy from G4

chip(M') = (n/2) -logn instead of chip(M
n - (logn 4+ 1) chips.
have two inputs and outputs just as the origi-

) =

Because the new chips

nal ones, link(M') = n(logn — 1) compared to
link(M) = 2n(logn). 0

We note that we now might have long links
within network nodes (between upper and lower
part). However, it can be shown that this does
not increase node cycle time and thus cannot de-
crease throughput (see [4]).

Lemma 1 proves the first part of theorem 1. To
complete the proof of theorem 1, we show that
the chips obtained by mapping M’ are intercon-
nected as a butterfly. The mapping M’ consists
of shrinking each subgraph G5 of G, to a node in
a graph G. We connect two nodes in G, by an
edge if the corresponding subgraphs of GG, share
a node.

Lemma 2 [f we choose G’ as defined above,

then G}, = G .

Proof: (by induction on n)
Base: It is obvious that G, = G5 and that G/; =
Gy (see also figure 4).

Step: Assume that the assumption holds for
some t = n/2. We show that (], = G,/5. To
do that we recall the inductive definition of a
butterfly network G,,. By the induction hypoth-
esis we know that we can shrink both subnet-
works (7, /5 to butterflies /4. Shrinking the
subnets G5 of the last stage of G, results in n/2
nodes in the last stage of G/,. We now know that



G! is constructed by taking two subnets Gya
and n/2 nodes as an additional stage. We only
have to prove that the ith and the (¢ + n/4)th
nodes in this last stage are connected to the ith
nodes in the last stages of the two subnets G, 4,
0 <i < n/4. Then G, = G, ;. But this is ob-
vious from the inductive definition of G,, if we
look at how G, is constructed from (7, /4 sub-
nets. The ith subnets Gy, 0 < i < n/4, in the
last stages of both graphs ¢, /, are connected to
subnets G5 with numbers ¢ and i + n/4 in the
last stage of G, O

Acknowledgements

We want to thank Wolfgang Paul for encouraging
us to publish this work. We also want to thank
Giinter Hotz to whose honour an early version
of this was published [1]. Last but not least we
thank Dany Breslauer and John Tromp for dis-

cussions about butterfly networks.

References

[1] F. Abolhassan, R. Drefenstedt, J. Keller, W. J. Paul,
D. Scheerer, On the physical design of PRAMs,
In J. Buchmann, H. Ganzinger, W. J. Paul, (Eds.),
Festschrift zum 60. Geburtstag von Gunter Hotlz
(Teubner, 1992) 1-19.

[2] F. Abolhassan, J. Keller, W. J. Paul, On the cost—
effectiveness of PRAMs, in: Proc. 8rd Symposium on
Parallel and Distributed Processing (IEEE, 1991) 2-9.

[3] D. Cross, VLSI Implementation of the Fluent Rout-
ing Chip, Master’s thesis, University of California,
Berkeley, 1992.

[4] R. Drefenstedt, D. Schmidt, On the physical design
of butterfly networks for PRAMs, in: Proc. FRON-
TIERS ’92, Symposium on the Frontiers of Massively
Parallel Computation (IEEE, 1992) 202-209.

[5] N. Pippenger, Parallel Communication with limited
Buffers, in: Proc. 25th Symposium on Foundations of
Computer Science (IEEE, 1984) 127-136.

[6] A. G. Ranade, How to emulate shared memory, in:
Proc. 28th Symposium on Foundations of Computer
Science (IEEE, 1987) 185-194.

[7] A. G. Ranade, S. N. Bhatt, and S. L. Johnson, The
Fluent Abstract Machine, in: Proc. 5th MIT Confer-
ence on Advanced Research in VLS (1988) 71-93.



