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Abstract. The influence of several hash functions on the distribution of
a shared address space onto p distributed memory modules is compared
by simulations. Both synthetic workloads and address traces of appli-
cations are investigated. It turns out that on all workloads linear hash
functions, although proven to be asymptotically worse, perform better
than theoretically optimal polynomials of degree O(log p). The latter are
also worse than hash functions that use boolean matrices. The perfor-
mance measurements are done by an expected worst case analysis. Thus
linear hash functions provide an efficient and easy to implement way to
emulate shared memory.

1 Introduction

Users of parallel machines more and more tend to program with the view of
a global shared memory. Commercial machines (with more than 16 processors)
however usually have distributed memory modules. Therefore the address space
has to be mapped onto memory modules, memory access is simulated by packet
routing on a network connecting processors and memory modules. This has to be
done in a way that for (almost) all access patterns the requests are distributed
almost evenly among the memory modules. The reason to demand this is obvious:
if cases happen where the number of requests per module (the so called module
congestion) is too high, then performance gets very poor.

Several kinds of hash functions have been proposed. But their theoretically
provable properties are asymptotical results. As currently available machines
are quite small (the number p of processors and memory modules usually is less
than 1000) the actual behaviour of the chosen hash function can differ quite a
lot from these theoretical properties. The lack of experimental data makes the
selection of a particular hashing scheme difficult in practice. We are not aware
of comparisons of hash functions based on simulated behaviour.
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The goal of this investigation is to provide these data by comparing four
kinds of hash functions by simulations. In Sect. 2 the most common kinds of
hash functions are introduced. Section 3 describes the types of synthetic and real
access patterns that were used as workloads. Section 4 sketches the experiments
made and Sect. b presents and discusses the results.

2 Hash Functions

As already mentioned, a hash function serves to map a global address space
onto distributed memory modules. More formally, for an address space M of
size m = 2¥ and a set N of p = 2" memory modules, the mapping is a function
h : M — M that maps addresses to memory cells. The function mod : M —
N,mod(x) = x div m/p specifies the module of a memory cell z, the function
loc : M — M’ loc(x) = # mod m/p specifies the local address of cell .

An optimal mapping function A should guarantee low module congestion for
almost all possible access patterns (if all addresses of one pattern are distinct).
This is achieved by using classes of functions in which each function has low
module congestion for almost all patterns. A particular function is randomly
chosen. This guarantees with very high probability that the current application
does not exhibit the patterns on which the chosen function produces hot spots.

An additional problem consists in patterns with several processors concur-
rently accessing one cell. This problem cannot be solved by hashing. However
there exist routing algorithms that perform combining. Requests that access the
same cell are merged during routing, answers are duplicated. Ranade’s emulation
algorithm [10] is a good example. Therefore, concurrent access does not increase
module congestion.

A class that restricts module congestion to O(log p) is

3
H:{p(m): (Zale) modeodmzogai<P}

i=0

P is a prime larger than m, £ = O(logp). A function of H is obtained by
randomly choosing the values for a;. This class was used in several theoretical
investigations [6, 8, 10] to emulate shared memory on a processor network. The
module congestion of O(logp) is sufficient because access from processors to
memory modules across a constant—degree interconnection network needs time
2(log p) anyway.

However the functions in H are not bijective. This means that several ad-
dresses of the shared memory could be mapped onto the same cell. This requires
secondary hashing on each memory module. Ranade [10] describes a method
that performs secondary hashing in constant time and increases the size of the
memory module only by a constant factor.

In practice however one should avoid secondary hashing and waste of memory
because a constant factor of performance loss can destroy an asymptotically good
result. Furthermore, the time to evaluate the hash function should be short. The



functions in H require ¢ = O(log p) multiplications and additions and a modulo
division by a prime which needs a lengthy computation.
Therefore some alternatives were proposed:

1. For & = 1 one obtains a linear function. This reduces evaluation time to one
multiplication, one addition and one modulo division. The function is still
not bijective.

2. Furthermore if the modulo division by a prime 1s skipped and the coefficient
ag 1s set to zero, the evaluation time is reduced to one multiplication. The
operation modulo m is not counted because m is a power of two. If only odd
values are chosen for a; the function also is bijective.

3. If the binary representation of an address is seen as a boolean vector, the
hash function consists of multiplying this vector with an invertible boolean
matrix. The time to evaluate this function is shorter than one multiplication.

Dietzfelbinger et. al. prove that the first alternative is asymptotically equiv-
alent to the second [5]. Furthermore he proves that linear functions can result
in a module congestion of @(,/p) for patterns with addresses of the form b+ s -
where i = 0,...,n— 1 [4]. The constants b and s are called base and stride. This
means that linear functions modulo a power of two are asymptotically worse
than polynomials.

The third alternative was used in the design of the IBM RP3. Norton and
Melton [9] introduce a class of boolean matrices where all matrices are invertible
(which means bijectivity). Optimal distribution can be guaranteed for patterns
with strides where s is a power of two and where in the binary representation of
base b bits s to s4+1logn—1 are zero. For other bases the module congestion is at
most 2. No theoretical results are given for other patterns, but their simulations
hint that distribution is acceptable for other patterns, too. One particular matrix
is obtained by randomly choosing several bits of the matrix and then computing
all the other bits with respect to the above properties.

3 Workloads

The workloads are chosen to compare the hash functions with respect to known
differences, especially behaviour on access patterns with strides, and with respect
to patterns taken from applications. Therefore both synthetically generated pat-
terns and application traces were taken.

The synthetic traces consist of randomly chosen patterns as a reference and
strides with s = 1,13,32. The strides were chosen to compare matrix hashing
and the other hash functions and to check whether linear functions get worse on
these patterns. For s = 32 and s = 1 matrix hashing is optimal [9]. Theoretical
results about the performance on the others are not known.

The traces were taken from three application programs: list ranking, matrix
multiplication and connected components. The reasons for taking traces from
applications are the variety of produced patterns and the structure of single
patterns that often is more complex and less regular than in synthetical traces.



The three applications are chosen to represent a large variety of algorithms.
Matrix multiplication is an example of a class of algorithms where the access
patterns are regular and do not depend on the particular input values. Many
other numerical algorithms behave that way, especially as many of them are
originally designed to work on a processor network with a fixed interconnection
structure (see e.g. [3]).

List ranking represents combinatorial algorithms where access patterns de-
pend on the actual data. An example technique is pointer doubling. Processor ¢
loads or stores F[F[i]], where F is an array in the shared memory. Part of the
accesses to shared memory still are regular. If processor 7 loads or stores F[i],
the access pattern is a stride with s = 1. Many PRAM algorithms working on
lists and graphs are of this type (see e.g. [7]).

The connected components algorithm represents algorithms where access pat-
terns depend on the actual data, but not all processors may participate in the
access. This together with concurrent accesses to some cells, which get combined,
makes module congestion smaller. Thus, connected components and similar al-
gorithms are remarkable exceptions compared to list ranking type algorithms.

The list ranking algorithm is taken from a survey [7]. For a given linked
list of n elements, the distance (or rank) to the end of the list is computed for
each element. The algorithm needs n processors and O(logn) time. The list is
represented as an array F', where F'[i{] means successor of 7 in the list. For the
last element of the list, F'[i] = i. The rank is contained in array R. The PARDO
code is shown in Fig. 1(a).The access patterns of this algorithm partly depend
on the structure of the list and partly are strides with s = 1.

In the matrix multiplication algorithm C' = A - B, each processor computes
one element of the destination matrix C. In order to avoid concurrent accesses,
all processors start at different rows and columns of the matrices A and B.
The PARDO code is shown in Fig. 1(b).Matrices A and C' consist of n = w2?*
elements and have dimension 2% x w2?, matrix B has dimension w2® x w2?. The
algorithm needs n processors and takes time O(nl/z). The access patterns of this
algorithm only depend on the dimensions of the matrices.

The connected components algorithm was adapted from Shiloach and Vishkin
[11]. For a given undirected graph G = (V, E), the connected components are
computed. The algorithm needs n = max(|V|, 2|F|) processors and takes time
O(logn). The graph is represented by two arrays HEAD and TAIL. For a given
edge e, HEAD[e] and TAIL[e] contain the nodes to which e is adjacent. The
components are represented by an array F. Two nodes u,v are in the same
component if and only if F[u] = F[v] after running the program. The PARDO
code is shown in Fig. 1(c).The access patterns partly depend on the structure of
the input graph and partly are strides with s = 1. Not all processors participate
in every access.



(* Init rank R *) for v € V pardo Flu] := u od;

for i :=1 to n pardo for ¢t := 1 to 2log |V] do
if F[i] = ¢ then R[:] := 0 else R[i] :=1 for v € V pardo change[u] := 0 od;
od ; starcheck;
(* Compute rank R *) for all (u,w) with {u,w} € E pardo
for t := 1 to [logn] do if star[u] and Flw] < F[u] then
for i := 1 to n pardo F[F[u]] := Flw];
R[] := R[{) + R[F[1]] ; change[F[u]] :=1;
F[i] := F[F[1]] (* Pointer doubling *) change[Flw]] :=1
od fi
od ; od;
starcheck;
(a) list ranking for all (u,w) with {u,w} € E pardo
if star[u] and not change[ F'[u]]
(*n = w2®* *) and F[w] # F[u] then
k:=2% m:=w2% | .= w2 F[F[u]] := Flw]
for (i,5) :=(1,1) to (k, m) pardo fi;
Cli, j]:= 0 (* Init C'¥) Flu] := F[F[u]]
od ; od
for r:=1toldo od.
for (¢,5) :=(1,1) to (k,m) pardo
t:=(i+j+r)modl; proc starcheck ;
C[Za]] = C[Za]] +A[l’t] : B[ta]] begin
od for : € V pardo
od ; star[i] := true;
it F[F[i]] # FJi] then
(b) matrix multiplication star[F[F[i]]] := false
fi;
star[i] := star[F[F[]]]
od
end;

(c) connected components

Fig. 1. Code of applications

4 Experiments

To obtain the input data for the experiments, all applications are simulated by
sequential programs, only the address traces are extracted. This frees us from
considering a particular microprocessor instruction set and compiler. The address
traces of the synthetic workloads are generated by a program, that simulates 4
steps of the machine. In the workloads with strides, the base b is increased each
step by ns.

We are only interested in the resulting module congestion and not in the time
to route the requesting packets from processors to memory modules. Therefore
we can neglect the structure of the interconnection network. We only model it
by a latency term because the processors perform latency hiding (see below).



All experiments are carried out for m = 222, the prime P is chosen closest
to m. We simulate machines with p = 2% u = 5,...,10 processors. We run
multiple processes per processor to hide the network latency from processors.
The processes are executed in a round-robin manner, one instruction per turn.
The exact number ¢ of necessary processes per processor is depending on p, e.g.
O(log p) in a butterfly network. We choose a fixed ¢ to obtain comparable results
and take ¢ = b as an average from a machine size of p = 128 [2]. Therefore in each
step bp requests are made. Step in this context means synchronous execution of
one instruction on each of the bp processes.

As polynomials we used functions of degree £ = 2,10, 20. Each of the experi-
ments was done 5 times with randomly chosen hash functions. More exactly, for
each class five functions were randomly chosen and then used for all workloads
and machine sizes.

As input for list ranking a list of length n = 10p was randomly chosen. As
input for connected components, a graph with n = 10p nodes and 5p edges
was randomly chosen. The problem size n is twice as large as the number of
processes in these applications. Each process simulates two program processors
step by step. A problem size larger than 5p is needed to obtain access patterns
depending on the list or graph.

In matrix multiplication, the dimensions of the matrices are as follows: if
p = 2% then w = ¢ =5, if p = 2%+ then w = 2¢ = 10.

In each experiment we measured for each step of the trace the maximum
module congestion ¢4, and then computed the expected value of all ¢4, av-
eraged over all steps. The analysis is a kind of (expected) worst case analysis.
Each expected value was checked for significance by looking at the variance. The
five values obtained by using five functions of one class for each experiment were
checked against significant differences. In case there were none, the average was
taken. In case there were some, ten additional hash functions were chosen and
the average was taken from these 15 values. Significant differences appeared only
for stride s = 13, p = 27,...,2° in both linear functions and for stride s = 32,
p = 27,219 in the linear function modulo power of two.

Because of mapping 5p requests per step onto p memory modules, F(cpaz) >
5. The only exception is connected components, because not necessarily all
processors make accesses in IF statements (see Sect. 3).

5 Results

The results of the experiments are presented in two ways. First we show the per-
formance of the hash functions sorted by benchmarks. In Fig. 2 the performance
on random patterns is given as a reference. The legend of the hash functions is
shown in Fig. 3, which shows all other benchmarks. Second we show the perfor-
mance sorted by hash functions in Fig. 4.

All figures are built as follows: the z—axis shows logp in range 5...10, the
y—axis shows the expected value of the maximum module congestions in range

4...14.
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Fig. 2. Performance on random patterns

The performance on random patterns (see Fig. 2) is similar for all hash func-
tions. Thus none of the hash functions is bad in an obvious way. The maximum
module congestion rises from 10 for p = 32 to 12 for p = 1024. This will serve
as a reference to analyse the performance on the other benchmarks.

5.1 Analysis of Benchmarks

The curves of Fig. 3 show similar shapes for all benchmarks: the polynomials of
different degrees behave in a similar way and so do the three other hash functions.
The behaviour of the polynomials furthermore i1s on all workloads worse than
the behaviour of the simpler hash functions. Among the linear functions, the
one modulo a prime always behaves a little bit worse than the linear function
modulo a power of two. Thus the most interesting part is the comparison of our
simple linear function with the boolean matrix hashing.

For strides that are a power of two, the boolean matrix hashes values op-
timally (see (a) and (c)) and reaches a module congestion of 6. The module
congestion reached by the linear function lies between 6.5 and 7.5, so it is not
far away.

A similar behaviour of linear function and boolean matrix can be seen in (d)
and (f). This results from the fact that part of the accesses in these workloads
are strides 1, when processors load or store values in arrays in the manner that
processor ¢ reads or writes F'[i].

However, as soon as we obtain other patterns, the boolean matrix hashing
gets worse than the linear function (see (b) and (e)). Even for the matrix mul-
tiplication workload, where accesses always consist of 5 - p'/2 strides with s = 1

and p'/? processors involved in each stride, the linear function is better.

5.2 Analysis of Hash Functions

Figure 4 shows the performance of the different hash functions. Because the
connected components benchmark is not comparable to the others as explained



in Sect. 3, it is not shown here. The first observation is, that all hash functions
behave on all workloads not worse than on random patterns. The second obser-
vation is that the polynomials show roughly the same behaviour on all workloads
as they do on random patterns (see (d) to (f)). We conclude that their perfor-
mance is independent of the application. That is what we expected. But this
performance is bad in comparison to what is reached by the other functions that
behave better than on random patterns on all workloads.

The linear function (see (a)) shows almost uniform behaviour on all work-
loads, too, but it varies between 6.5 and 8, which is significantly better than the
behaviour on random patterns.

The behaviour of the linear function modulo a prime is not uniform and
varies between 6.3 and 10.

The behaviour of the boolean matrix hashing function can be divided in an
expected optimal behaviour for strides with s a power of two and a significantly
higher module congestion for other patterns, which is however still below the
one produced by random patterns.

6 Conclusions

The above experiments show surprisingly that linear functions modulo a power
of two and boolean matrix functions show best performance for practical use.
Both have the additional properties of bijectivity and short evaluation time. The
choice between these two depends on the expected user profile (if such exists)
and the surrounding machine architecture. For machines that already contain
a hardware multiplier this could be used to perform hashing in the case of the
linear functions. Moreover, the use of matrix hashing is restricted by the fact
that an implementation needs (logm)? bit register hardware to store the boolean
matrix. Therefore, if no user profile is known and chip area is restricted (or a
multiplier already available), the use of the linear function is preferable.

The observations presented here lead to the use of linear hash functions
in the prototype design of the SB-PRAM [1, 2] which emulates a synchronous
shared memory machine with p = 128 physical processors and provides hardware
support for hashing and packet routing including combining.

Unfortunately, some open questions remain. First, there is no theoretical
framework to explain why simple hash functions work better than complex ones.
Also, the exact relationship between linear functions with and without “modulo
prime” is still unknown.
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