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ABSTRACT

We investigate the problem of permuting n data items on an EREW PRAM with
p processors using little additional storage� We present a simple algorithm with run
timeO��n�p� logn� and an improved algorithmwith run time O�n�p�logn loglog�n�p���
Both algorithms require n additional global bits and O�	� local storage per processor�
If pre�x summation is supported at the instruction level
 the run time of the improved
algorithm is O�n�p�� The algorithms can be used to rehash the address space of a PRAM
emulation�
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�� Introduction

Consider the task of permuting n data items on an EREW PRAM with p � n

processors according to a permutation � given in the form of a constant�time �black�

box� program� The task is trivial if n additional �global or local� memory cells are

available� The items are 	rst moved to the additional storage
 with each processor

handling O�n�p� items
 and then written back in permuted order� We restrict

attention to the case in which only O��� additional memory cells per processor are

available
 but the positions holding the items can be marked as visited�
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An application of this problem is rehashing a hashed address space in a PRAM

emulation� If both old and new hash functions are bijective maps of addresses

to cells
 then rehashing can be described as a permutation of the PRAM address

space ��
� Examples are hash functions of the form ��x� � ax mod m
 where m

is the size of the shared address space
 and a is chosen relatively prime to m�

While the complete address space gets rehashed
 there is no additional global space

available� Moreover
 processors usually only have small local memories to store

additional information� These considerations motivate our decision to allow only

O��� additional memory cells per processor�

The problem of permuting arrays has been investigated before
 both in the

setting of sequential computers and in the setting of PRAMs�

Knuth ��
 describes a simple sequential algorithm that runs in time O�n�� and

needs only one bu�er and a few counters� He also analyzes the average run time and

shows it to be O�n logn�� Melville ��
 presents a time�space tradeo�� If t additional

bits are available
 his algorithm runs in time O�n��t�� Fich
 Munro and Poblete ��


give an algorithm with run time O�n logn� that needs only O��logn��� additional

bits�

Aggarwal
 Chandra and Snir describe an algorithm for the Block PRAM ��
�

This is a PRAM where access to a block of b consecutive cells in the shared memory

takes time l�b �i�e�
 there is a start�up delay of l
 followed by a unit delay for each cell

read�� Their algorithm runs in time O�n�p� if n � ��lp����
 for some 	xed � � ��

However
 they assume the permutation to be known in advancea� Chin ��
 improves

their result for rational permutations
 i�e�
 permutations that can be expressed as

permutations on the bit positions if numbers are given in binary representation�

Keller ��
 gives an algorithm for linear permutations
 i�e�
 permutations of the form

��x� � ax mod �u
 where a is odd� This algorithm runs in time O�n�p� logp� and

requires O�logn� local memory cells per processor� All these parallel algorithms

take advantage of some a priori knowledge of the permutation�

We consider the more general case in which the permutation is not 	xed and

we have no knowledge of its structure� Our work can be summarized as follows�

We follow an idea from the simple O�n��time sequential algorithm ��
 and mark

as visited the original positions of items that have been moved� This idea leads

to a simple algorithm that runs in time O��n�p� logn� and needs only constant

space per processor� By breaking the algorithm into O�log log�n�p�� phases and re�

distributing work to processors after each phase
 we obtain an improved algorithm

with run time O�n�p � logn log log�n�p��� The overhead comes from executing a

pre	x summationafter each phase� If pre	x instructions can be executed in constant

time
 the run time improves to O�n�p�� By using a CRCW PRAM and faster load

balancing strategies that do not rely on pre	x summation
 we obtain run times

of O�n�p� log�n log log�n�p�� �randomized� and O�n�p� �log logn�� log log�n�p��

�deterministic�� These algorithms
 however
 will be less practical�

aThey do not state this
 but otherwise they would need a preprocessing phase that includes
the computation of switch positions in a Clos�Network �
�
 not to mention the space required to
store this information�



The paper is organized as follows� We describe the simple algorithm in section

� and analyze its complexity in section �� In section � we show how to improve the

simple algorithm� Possible further improvements are discussed in section ��

�� The Basic Algorithm

The standard sequential algorithm to permute n data items according to a per�

mutation � of the n positions holding the items works as follows ��
� Search for

a position that has not yet been visited� Permute along the cycle starting in this

position until you reach it again� Mark all positions that you visit� Continue until

all positions have been visited� This algorithm requires time O�n� to move all items

and time O�n� to search for unvisited positions� The time bound for searching is

obtained by maintaining a pointer that keeps track of how far the array holding

the items has been searched so far� As marked positions are never again unmarked


this 	nds all unvisited positions in time O�n�� The space requirements are a bu�er


a pointer
 and n bits to mark the positions�

We adapt the idea of marking visited positions and obtain a simple parallel

algorithm for an EREW PRAM with p processors�

Without loss of generality assume that p divides n� We partition the n positions

in p blocks of size B � n�p� Each processor P takes care of one block of B positions�

P starts with an unvisited position x in its block and follows the cycle of � that

starts in x
 moving the items encountered as it goes along
 until it meets a position

x� that is already marked as visited� P now searches for another unvisited position

in its block and continues� It terminates when all items in its block have been

visited�

A processor can be in one of three states� either it is searching for an unvisited

position in its block
 or it is working on a cycle
 or it is terminated�

If a processor is �searching�
 it examines the positions in its block to test whether

they have been visited� It continues until it 	nds an unvisited position x or until it

reaches the end of its block� In the 	rst case
 it marks the position as visited
 picks

up the item stored there
 changes its own state to �on cycle�
 and moves to ��x��

In the latter case
 it changes its state to �terminated�� Each processor maintains

a pointer into its block to keep track of how far it has searched so far� Hence
 if

it changes its state from �on cycle� to �searching� again
 it does not have to start

from the beginning of the block�

If a processor is �on cycle� and has reached position x
 then its action depends

on the state of x� If the position has not yet been visited
 then the processor will

pick up the item stored in x
 mark x as visited
 store in x the item it picked up

in the previous iteration �or in the same iteration
 if the processor just switched

from �searching� to �on cycle��
 and move to ��x�� If the position has already been

visited
 then the processor will store the previous item in x and change its state to

�searching��

A processor may meet a visited position either because it reaches the end of the

cycle �the position where it started in its own block� or because another processor

started to work on the same cycle in this position� A position x therefore is in�



spected at most twice� Once by the processor assigned to its block
 and once by

a processor following the cycle containing x� In order to avoid an access con�ict

between these two cases
 we split each iteration of the algorithm into two parts such

that �searching� processors and processors �on cycle� proceed alternately�

The program for the basic algorithm is shown in 	gure �� There
 T denotes

an upper bound on the maximum number of iterations� we will compute such an

upper bound in section �� Each processor has local variables state
 index
 iptr

and buffer� The variable state de	nes the current state of the processor
 index

counts how far it has searched its block
 iptr points to the currently visited position


and buffer is used to store data items temporarily� Global arrays are visited and

item� The array visited contains the �ags of all positions
 and item stores the

actual items�

An improvement in practical terms
 omitted in the interest of clarity
 would be

to let even processors �on cycle� use the 	rst part of each iteration to continue the

search in their blocks for unvisited positions�

�� Analysis

We will now analyze the run time and the memory requirements of the basic

algorithm� The results are described in Theorem ��

Theorem � The basic algorithm runs in time O��n�p� logn� and requires n global

bits and O��� local memory cells per processor�

Proof� In order to analyze the run time
 we de	ne a potential � as the sum of the

lengths of the block parts that have not yet been searched plus the number of items

that have not yet been moved to their 	nal positions� It is easy to see that � never

increases and that the algorithm may 	nish when � � �� Also � � �n initially


since the sum of the block lengths is n and there are n items� For i � �� �� �� � � � �

denote by �i the value of � at the end of iteration i �for i � �� before the 	rst

iteration� and by pi the number of processors that have not terminated at that time�

Clearly
 p� � p�

For i � �� �� � � � � each of the pi processors that have not terminated after itera�

tion i decreases � by at least one in iteration i� hence �i � �i�� � pi� To see this


note that a �searching� processor decreases � by increasing its pointer index in

line ��� of 	gure �
 while a processor �on cycle� moves one item to its 	nal position

in line ���� �A processor may decrease � by two in a particular iteration
 namely if

it switches from �searching� to �on cycle� in that iteration��

Also �i � �Bpi
 for i � �� �� � � � � since there are only Bpi positions in the blocks

of the active processors that could be unsearched
 and also at most Bpi items that

are not yet in their 	nal positions� Then

�i����i � ��i � pi���i � � � pi��i � � � pi���Bpi� � � � ����B� �

It follows that �i � �� � �� � ����B���i
 for i � �� �� � � �� so that the number

of iterations can be bounded by the smallest i with �� � �� � ����B���i � �� This

relation can be transformed into i � log��n�� log�� � ����B��� Since each iteration



for i �� � to p� � pardo �� initialization ��
Pi�state �� SEARCHING � Pi�index �� � �
for j �� � to B � � do visited�iB � j
 �� � od

od �
for t �� � to T do �� iteration t ��
for i �� � to p� � pardo
if Pi�state � SEARCHING then �� 	rst part ��
if Pi�index � B then Pi�state �� TERMINATED
else

Pi�iptr �� iB � Pi�index �
��� Pi�index �� Pi�index� � �

if visited�Pi�iptr
 � � then
visited�Pi�iptr
 �� � �
Pi�state �� ON CYCLE �
Pi�buffer �� item�Pi�iptr
 �
Pi�iptr �� ��Pi�iptr�

�

�

� �

if Pi�state � ON CYCLE then �� second part ��
��� Pi�buffer ��� item�Pi�iptr
 � �� exchange contents ��

if visited�Pi�iptr
 � � then
visited�Pi�iptr
 �� � �
Pi�iptr �� ��Pi�iptr�

else

Pi�state �� SEARCHING
�

�

od

od �
Fig� 	� The basic algorithm



takes constant time
 log��� ����B�� � ����B� and B � n�p
 we obtain a run time

of O��n�p� logn�� From the description of the algorithm
 it is clear that it needs n

global bits
 and that O��� local memory cells per processor are su�cient� �

�� An Improved Algorithm

The basic algorithm does not run in optimal time mainly because many proces�

sors could terminate early
 causing the work load to be severely unbalanced� We

improve the basic algorithm by breaking it into several phases and re�allocating

processors to unvisited positions after each phase� The array of items is dynam�

ically partitioned into active and passive blocks� In a passive block all positions

have already been visited� Active blocks are split into smaller ones as the algorithm

proceeds� In the beginning
 the whole array forms one active block�

In phase i
 for i � �� �� � � � � we form p active blocks out of the remaining active

blocks from the last phase� Then we execute qi � d���������in�pe iterations of the

original algorithm� We proceed until fewer than �p unvisited positions remain� It

is easy to see that at this point the remaining items can be collected and moved in

time O�n�p� logn��

The improvements of the new algorithm are summarized in the following Theo�

rem ��

Theorem � The improved algorithm works in O�log log�n�p�� phases and runs in

time O�n�p�logn log log�n�p��� Its storage requirements are n global bits and O���

local memory cells per processor�

Corollary � The algorithm is optimal for p � O �n��logn log log logn���

We 	rst show how to partition r remaining blocks into p blocks of roughly equal

sizes if p is not a multiple of r� Then we prove Theorem ��

���� Partitioning blocks

At the beginning of each phase
 we want to partition the r blocks that were

still active by the end of the previous phase into p new blocks� We do this by

decomposing each remaining block into approximately p�r new blocks of roughly

equal sizes� Suppose that each of the r blocks is of size at most s� We assume that

r � p�� and that rs � p� If we ignore any rounding problems
 we obtain rs�p as the

new block size� However
 when we implement the permutation algorithm
 we have

to cope with the fact that p may not be a multiple of the number r of remaining

blocks
 and that s may not be a multiple of the number of new blocks to be formed

out of an old block� Then the new block size will be larger than rs�p� Lemma �

guarantees that the new block size will not be too large�

Lemma � The partitioning described above can be done in such a way that the

maximum size of the new blocks is at most ds�bp�rce� which is less than ����� �rs�p�

We prove Lemma � using the following simple fact�

Lemma � For any two integers u and v with � � v � u� u can be written as a sum

of v integers� each of which is du�ve or bu�vc� More precisely� u � c � du�ve� �v �

c� � bu�vc� where c � u mod v�



Proof of Lemma �� We apply Lemma � with u � p and v � r and see that we

can split each remaining block into either dp�re or bp�rc new blocks� To 	nd the

maximum size of the new blocks
 we consider a block that is split into bp�rc new

blocks� We apply Lemma � with u � s and v � bp�rc and see that the maximum

size of a new block is at most s� � du�ve � ds�bp�rce�

Using that p�r�� � bp�rc and ds�ve � s�v��
 we get s� � rs��p�r���� By the

assumptions r � p�� and rs � p
 we have s� � ������rs�p�� � ������rs�p�rs�p �

����� � rs�p� �

The computation to partition the remaining r active blocks into p blocks can be

done as follows� First the r active blocks are numbered consecutively by means of

a parallel pre	x summation
 and the value of r is broadcast to all processors� Then

the processor with the ith active block writes the start address and the length of its

block to position i of a global array A
 for i � �� � � � � r� Each processor can compute

locally from which remaining block j it will receive its new block �cf� Lemma ���

Using the information in A�j

 the processor then determines the start address and

the length of its new block� Concurrent access to A can be avoided by implementing

the reading from A as a generalized parallel pre	x summation known as segmented

broadcasting�

Each pre	x summation requires O�p� global memory cells� However
 these cells

can be �made local� by copying O�p� global cells to local memories in O��� time

and restoring them after the pre	x summation�

���� Analysis of the improved algorithm

As in section �
 we denote by � the sum of the lengths of the block parts that

have not yet been searched plus the number of items that have not yet been moved

to their 	nal positions� Let T be the number of stages necessary to reduce � to at

most �p
 and denote by �i the value of � at the end of phase i
 for i � �� �� � � � � T �

by de	nition
 �i � �p for all i � T � Let Bi be the maximum block size in phase i


for i � �� �� � � � � T � Arguing as in section �
 one can see that for i � �� �� � � �� T 
 we

have �i�� � �Bip � p� the extra term of p accounts for the fact that a processor

may hold an item picked up in the previous phase� In order to prove Theorem �


we show that the block size shrinks very fast as the algorithm proceeds� This is

formalized in Lemma ��

Lemma � For i � �� �� � � � � T � the maximum block size Bi in phase i is less than

eBi �
�

�
�

n

��i���i��p
�

Proof� �by induction on i�

i � �� In phase � we can choose a block size of n�p
 which is less than eB��

i � i � �� Since this case is relevant only for i � T 
 we can assume that �i � �p�

Moreover
 by the induction hypothesis
 �i�� � �Bip�p � �����n���
i��

�i���

p� Denote by pi the number of processors active at the end of phase i�



Since �i�� � �i � pi � qi �recall that qi � d���������in�pe is the num�

ber of iterations executed in phase i�
 we obtain pi � ��i�� ��i��qi �

������n���
i��

�i��������������in�p� � �����p���
i��

��� An argument used

above shows that �i � �piBi � pi
 i�e�
 piBi � p� Since also pi � p��
 we can

apply Lemma �
 which shows that the maximumblock size Bi�� in phase i��

is less than �����piBi�p� By the induction hypothesis and the upper bound

on pi established above
 �����piBi�p � �����n����
i
�i��p� � eBi���

�

Proof of Theorem �� By Lemma �
 �i�� � �pBi� p � �����n���
i��

�i��� p
 for

i � �� � � � � T � It follows that O�log log�n�p�� phases su�ce to reduce � and hence the

number of unvisited positions below �p� The remaining items can be moved in time

O�n�p�logn�� The phases consist of
P

��i�T
d���������in�pe � O�n�p� iterations


each of which takes constant time� The pre	x summation takes time O�log p� �

O�logn� per phase� Hence
 the total run time is O�n�p� logn log log�n�p���

The n global bits are required by the original algorithm� Local cells are needed

to back up one item during the permutation and to back up a constant number of

global memory cells during the parallel pre	x summation� Hence O��� local cells

are su�cient� �

	� Discussion

Some further improvements are possible� First
 from the proof of Theorem �


we can immediately derive the following Corollary ��

Corollary � If pre�x summation can be realized in constant time� then the im�

proved algorithm runs in time O�n�p� and hence is optimal for p � n�

This is important for architectures that emulate the PRAM model and support

pre	x computation at the instruction level� Examples are the Fluent Machine ��



the NYU Ultracomputer ��
 and the SB�PRAM ���
�

Improvements are also possible if a CRCW PRAM is used and the pre	x sum�

mation is replaced by faster load balancing subroutines� Using the techniques from

���
 for a randomized PRAM and from ���
 for a deterministic PRAM
 the run

time of the algorithm can be reduced to O�n�p� log�n log log�n�p�� and O�n�p�

�log logn�� log log�n�p��
 respectively� However
 these improvements seem to be

less practical because of larger constant factors in the advanced load balancing

algorithms�

In our analysis
 we have distinguished between bits and memory cells� Bits are

considered di�erent
 because implementing them often will not increase the storage

used� In the representation of the items
 there will often be an unused bit that

can be used to encode the �visited� �ags� Also
 many memory subsystems today

provide each cell with additional bits that are used for parity
 access control
 etc�

One of these probably could be used for implementing the �ags�

The behaviour of our simple algorithm depends on the permutation �� For many

permutations the behaviour should be much better than indicated by our �worst�

case� bound of O��n�p� logn�� We support this belief by simulation results� For
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Fig� �� Number of iterations �average and standard deviation� of the simple algorithm

n � �i
 where � � i � �!
 and p � bn� lognc
 we simulated the algorithm on ���

randomly chosen permutations� The average and standard deviation of the number

of iterations needed are shown in 	gure �� The standard deviation is small
 and

the number of iterations is always smaller than � logn� This hints at the average

behaviour of the simple algorithm being much better than its worst behaviour�

However
 the average run time still needs to be analyzed�
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