
DESIGN OF A VIRTUAL COMPUTER SECURITY LAB

Jörg Keller and Ralf Naues
LG Paralleliẗat und VLSI
FernUniversiẗat in Hagen
58084 Hagen, Germany

{joerg.keller,ralf.naues}@fernuni-hagen.de

ABSTRACT
We present the design and a prototype of a lab course on
computer security, the necessity of which arises from the
students’ need to complement course work by hands-on ex-
perience. In order to guarantee maintainability of a number
of Linux systems on which students change configurations,
we decided to employ a virtual machine approach. This al-
lows to reset configurations quickly without another costly
operating system installation. We sketch the types of tasks
the students are to perform, and our approach to check im-
mediately whether students have completed a task. As stu-
dents operate in larger groups, and the server hosting the
virtual machines can only run a finite number of them si-
multaneously, a reservation scheme is employed to guaran-
tee fair access for all participants.

KEY WORDS
Education, remote laboratory, resource sharing, IT-security,
virtualization, semi-automatic assessment

1 Introduction

Computer security gains a growing importance in computer
science and engineering curricula. Yet, courses on this sub-
ject have to be complemented by practical lab work in order
to achieve full understanding of the subject matter. While
this holds true for many branches of computer science, the
value of training in computer security should not be under-
estimated: a subtle flaw in a firewall or a proxy server con-
figuration can render useless all remaining efforts to secure
a computer network!

For this reason we set out to define a set of tasks to
be trained by computer science students in our computer
science programme. As our institution is a distance teach-
ing university, we specifically defined this lab course to be
workable from a distance. Yet, as we focussed on network
security, this was not really an issue, as most administrative
tasks nowadays are not performed at a computer’s console
anyway, but via a remote shell or web-based via a browser.

The main issues to be considered were the following.
First, a student and his supervisor need feedback on when
a task is correctly performed. As many tasks consist of
installing and/or configuring tools to protect a part of a net-
work, this has to be done via a test. A hint whether the
task is completed should be generated automatically, in or-

der to relieve students from the unproductive waiting time
until a human supervisor has checked their work. The lat-
ter happens still, but when the hint already indicates that
there is still a hole in the firewall configuration, there is
no need for the student to wait, and for the supervisor to
be bothered. We therefore took care to implement a script
for every task. Starting the script tests whether the main
goals are achieved. This method also has the positive side
effect that, in spite of a quite restricted manpower for guid-
ance and supervision, a larger number of students can be
admitted to this course. Self-study is further supported by
providing students with task-specific links and hints.

Second, as a consequence of the large number of stu-
dents in the lab course, many machines have to be pro-
vided. As network security often deals with regulating the
communication between two machines, each student is pro-
vided two machines, one being the one to be protected, one
being the “external” one that implements an attacker. As
most of the tools in the lab course, such as IP filters, intru-
sion detection systems and the like, change machine con-
figurations, machines cannot be shared between students
although the machines run the multi-user operating system
Linux.

Third, the large number of machines not only has
to be provided but also actively maintained. If a student,
working with administrator rights, misconfigures some
tool, he may well have destroyed the whole machine con-
figuration, so that it is necessary to get the system back in a
stable state. This is difficult from a distance, and some-
times impossible, as the only solution may be to install
the operating system anew. Besides the effort to do this,
this would prevent the last task in a sequence of tasks be-
ing dependent on the completion of the earlier tasks, which
is unrealistic in a normal network setting. Hence, what is
needed is the possibility to save the machine state after the
completion of each task, and the possibility to reset a ma-
chine to a saved state. This also simplifies maintenance of
a large number of machines, as only one has to be con-
figured as desired, and the others can be cloned by copy-
ing the state. We implement this by providing the students
with virtual machines that all run on one physical server.
The use of virtual machines has been reported recently for
a lab course on operating system administration [1], yet
the goals there were different. We are aware of two labs
on IT-security employing virtualization [2, 3], yet the first



employs user mode Linux to realize virtual machines and
VNC to avoid programs like ssh on the client side, and the
second, while ZEN-based, focusses on modeling a separate
network entity (like a router) with each virtual machine,
and focusses on being able to configure different (virtual)
network topologies. Also it does not support automatic test
of task completion by scripts.

Fourth, although we employ a powerful server to host
the virtual machines, the large number of participants pre-
vents the students from all being active simultaneously, as
the server can only run a restricted number of virtual ma-
chines simultaneously without being annoyingly slow. This
is not really a problem, because the students, that normally
work part-time and study part-time, have quite differing
preferences with respect to their study hours. Yet, there
is the need to coordinate their working hours by a reserva-
tion system, so that, when a student spends his scarce time
on the lab course, the server is in fact available to host his
virtual machine.

The working interface to the student is a remote shell,
as is usual for system administration tasks in Linux sys-
tems. Yet, the students also need an interface to see their
performance chart, the tasks alongside with links to further
documentation, and hints towards the solution, and so on.
Here we provide a web-based interface, that is coupled to a
database that contains the participant data and their perfor-
mance data.

After setting out the challenges in designing a net-
work security lab for students in a distance, and pointing
out the directions that our solutions take, the remainder of
this article is organized as follows. In Section 2 we describe
the architecture of the virtual network connecting the vir-
tual machines of the students. In Section 3 we describe
how we designed the tasks so that their completion can be
efficiently checked. We also report on interface issues. In
Section 4 we conclude and give an outlook on future work.

2 Lab Network Design

Figure 1 depicts the design of the network for the virtual
lab course. The students connect via the internet to the
lab server. The server’s physical IP address *.*.*.100 is
only used for maintenance purposes, and accordingly pro-
tected. The virtual network’s connection to the internet is
via *.*.*.101. This virtual server serves as a firewall and as
a router to the network itself via a private IP 192.168.100.1.
The network address translation (NAT) also performed in
the virtual server. The virtual machines for the students are
also in this network, they are depicted on the right. The
server has a third virtual network interface (172.16.69.*)
which only serves as a connection between physical server
and virtual server, and hence will not play a role here.
All virtual student machines have a second network inter-
face towards a network 192.168.101.*, to connect them to
the test server 192.168.101.1. This test server realizes a
shared “external” machine, needed to test completion of
some tasks, see next section.

The rationale behind this architecture is the follow-
ing. The physical server itself shall only be accessible for
administrative purposes such as configuring the VMware
server that provides the virtual machines and the virtual
network. Hence, this server can only be connected from
a particular external computer in possession of the admin-
istrator. From this fact arises the need that the connection
between the virtual server and the internet, which is used
by the students to log in, has to be realized by a virtual
network interface. As the virtual server also shields the
virtual network against outside attacks, a fact that is sadly
to be acknowledged these days, the connection to the vir-
tual network requires another virtual network interface. A
third virtual network interface is needed to communicate
between virtual server and physical server. As three vir-
tual network interfaces is the maximum number provided
by VMware, there is only one network interface connect-
ing to the virtual network of student machines. Those ma-
chines are the ones to be protected. However, there must
also be an “external” machine that is used in the course of
the tests at the end of the tasks. This machine has to be
put in a different subnet. As it cannot be connected to the
virtual server, there arises the need to connect this machine
with the student machines by a second virtual subnetwork.

3 Task Design and Interface

3.1 Task and Test Design

The lab course start with the simple task that the students
must acquire a certificate of our university, install a VPN
client and a secure shell tool at their home computer, and
connect to the lab server. Further tasks then detail instal-
lation and configuration of a simple firewall (iptables), of
intrusion detection systems (tripwire and snort), and of net-
work address translation.

With the example of the firewall we explain our phi-
losophy for checking completion of tasks. A typical re-
quirement for a firewall is that some services (identified via
ports) are not accessible from the outside, or are only ac-
cessible from particular external computers. After the stu-
dent has configured the firewall, he starts a port scan from
an external virtual machine. This port scan will generate
log entries in the firewall log for all accesses that were de-
nied. If the firewall is correctly configured, then this port
scan will also generate log entries for the service just re-
stricted. The student completes his task by starting a script.
This script will search the firewall log for the appropriate
entry. If it finds the entry, then the task is considered com-
pleted, otherwise not. The script sends its results to the
server where the results are entered into a database. When
the student now look at his personal task performance web
page, he sees whether the task is indeed completed.

This method also works for the other tasks, as all
security measures typically either restrict access in some
ways, or at least monitor whether an attempt is made to
do something that is forbidden. As security tools typically



Figure 1. Design of virtual lab network

provide a log file in which they record all those violations,
one can use this mechanism to generate tests. The test con-
sists in some external actions that specifically do things that
had to be forbidden in the task, and do some things that still
should work. The task is completed if the log file records
violations exactly for those actions that should be forbid-
den, i.e. it is also checked that there was not more restricted
than demanded. While this seems a minor point, it is not
to be underestimated in practice, because users are quite
annoyed if after a firewall change, they are not able any-
more to do their daily work. Also, a student may otherwise
be able to complete tasks by simply forbidding everything.
As the different tools use different log file formats, the test
creation needs some skill and experience, but we believe
that the fast feedback for the students is worth the effort.
Obviously, the design of the tests also influences the design
of the tasks themselves. While the domains of the tasks are
fixed beforehand, the particular task has to be put in a way
that allows to be tested efficiently. Fortunately enough, the
security field seems to pose no difficulties in this respect,
and have not encountered the situation so far, to be forced
to change a task because it cannot be tested.

3.2 Student Interface, Reservation

The interface towards the student is web-based, see Figure
2. The students log into a web server that resides on the vir-
tual lab server. There, they can access their personal perfor-

mance chart together with the log excerpt, so that they get
hints why they did not yet complete a task. Also, they can
see all task formulations, together with links to tools and
manuals, and with hints. In principle, a web-based secure
shell frontend could have been integrated with those pages,
so that students only would have to use a browser. How-
ever, as the secure shell tool is the standard tool for system
administrators to work with, we thought it more realistic
not to do this.

The students are supposed to use a second web-based
interface, the CSCW tool CURE [4]. CURE provides the
concept of rooms, where students can meet in groups, can
post documents, comment on them, and perform similar
tasks. CURE thus supports collaborative tasks. The rooms
are entered with personalized keys. CURE has been ex-
tended to provide time-dependent keys [5] to control ac-
cess to remote hardware lab. Hence, CURE can be used as
a reservation scheme for the virtual server, to prevent over-
load. The maximum number of simultaneous reservations
must be adapted to the server hardware in use.

4 Conclusions

Our virtual computer security lab has passed the first user
tests and will be used in the coming fall semester for a lab
course with about 50 students. Our current platform lim-
its the number of concurrently working virtual machines to
about 15 out of performance reasons. Therefore the reser-



Figure 2. Student interface

vation scheme is indeed necessary. Currently, the CURE
system is only used for reservation. In the future it shall
also be used to implement collaborative tasks, i.e. groups
of students commonly implementing and documenting a
task such as setting up a virtual private network where each
end of the VPN is managed under a different administrator.
Also, a tighter integration (e.g. only one login) between
the web-based interface for performance monitoring and
CURE is intended.

The performance of servers providing virtual ma-
chines will be greatly accelerated in the very near future,
as the leading processor manufacturers Intel and AMD both
have announced hardware support for virtualization in their
processors [6, 7]. This will allow to increase the num-
ber of concurrently running virtual machines on a given
platform, thus enabling deployment in even larger courses.
Some courses where lab excercises will be advantageous
have enrolments of several hundreds, so that currently stu-
dents have to use their own computers, which raises lots of
questions because of differing operating systems and simi-
lar things.

More future work centers around the extended use of
virtualization. For example, a compact disc containing a
CD-bootable Linux version like Knoppix [8] and a ready-
to-run virtual machine configuration could be provided to
the students, so that they can use their own computers for
part of the lab tasks, without the danger of changing their
normal configurations. The ability to save a virtual ma-
chine state and couple it with a player to run it on another

machine is now provided by VmWare [9]. The challenge
here is to create a virtual network of these distributed vir-
tual machines so that students still are provided with two
machines.

References

[1] D. Hardway, M. J. Hogan, and R. G. Mathieu, Out-
sourcing the university computer lab,IEEE Computer,
38(9), 2005.

[2] J. Hu and C. Meinel, Tele-Lab IT-Security: A Means
to Build Security Laboratories on the Web,Proc. 18th
International Conference on Advanced Information
Networking and Applications (AINA 2004), Fukuoka
(Japan), 2004, 285–288.

[3] M. Alexander and J.A. Lee, A Scalable Xen and Web-
based Networking Course Delivery Platform,Proc. In-
ternational Conference on Education and Technology
(ICET), Calgary, Canada, 2006.

[4] J. M. Haake, A. Haake, T. Schümmer, M. Bourimi, and
B. Landgraf, End-user controlled group formation and
access rights management in a shared workspace sys-
tem, Proceedings of ACM CSCW04, 2004.

[5] J. Haake and W. Schiffmann, GridLabs: Remote labo-
ratories made accessible by an integrated collaborative
web platform, submitted toe-Science 2006.



[6] R. Shiveley, Enhanced virtualization on Intel
architecture-based servers,Technology@Intel Maga-
zine, April 2005, 1–9.
http://www.intel.com/technology/magazine/computing/
intel-virtualization-0405.pdf

[7] Advanced Micro Devices, AMD Pacifica virtualization
technology, March 2005.
http://enterprise.amd.com/Downloads/Pacificaen.pdf

[8] K. Knopper,KNOPPIX Linux Live CD,
http://www.knoppix.org/

[9] VmWare, Free VMware player,
http://www.vmware.com/products/player/


