

A Result Propagation Scheme for Redundant
Multithreaded Systems

Bernhard Fechner
Department of Computer Science

FernUniversität in Hagen
58084 Hagen, Germany

Abstract - Traditional fault-tolerance techniques like
triple modular redundant (TMR)-systems can detect and
correct a single transient fault with majority voting
among the replicated units at about 200% space increase.
The performance of two processors is sacrificed for the
detection and localization of faults. Simultaneous multi-
threading (SMT) offers the detection of transient faults at
only 20-40% performance degradation. Most of these
techniques rely on the duplicated execution of the same
process on different hardware threads. Due to SMT, the
execution can be parallel or time-shifted. The fact that
e.g. the direction of a branch or the value of a load en-
countered by the thread which is executing ahead is ex-
ploited by using structures like the branch outcome queue
(BOQ) or the value outcome queue (VOQ). In this work
we will first extend the idea of the BOQ/ VOQ to a more
sophisticated structure, so that results being produced by
the leading thread can be consumed faster by the trailing
thread. Additionally, we propose how the scheme can
help to detect transient and permanent bus faults. We
validated the scheme by using a FPGA implementation,
including a branch target address and instruction cache.
The results show a space increase of less than 4% and a
speedup of 20%.

Keywords: Design and Test for Reliability, Redundant
Multithreading.

1 Introduction
The development of commercial microprocessors is a
quest for high performance. Processing speed can be
gained by increasing the clock frequency and integration
density. Examples are dual-core systems on a die or Si-
multaneous Multithreading (SMT) [3]. The Semiconduc-
tor Industry Association (SIA) roadmap shows an
increase of integration density to 22nm until 20161.
Shrinking the thickness of gate and interlayer dielectrics
leads to increased leakage current in CMOS devices.
More current is collected at interconnects which raises the
processors temperature. Thus, the lifetime of the con-

1 http://public.itrs.net/Files/ITRS_Overview.pdf

cerned transistors is shortened. At 90nm and below [4] a
problem occurs at sea-level, which is known from aero-
space applications: The collision of high-energetic neu-
trons from deep-space with silicon, causing a partial or
total failure of the concerned circuit. At large heights,
fault rates in SRAMs increase by 3-10, approximately by
1.3 per 1000ft [14]. To decrease the energy consumption,
e.g. the clock is dynamically adjusted and the current
potential between logic 0 and 1 is reduced. Thus, the
signal-to-noise ratio and the critical charge Qcrit needed to
change the state of a flip-flop or latch is decreased. It is
commonly believed, that soft-errors mainly occur in
memory elements (flip-flops and capacitors). At mini-
mum feature sizes below 90nm, this is not the case any
more. With high integration, protons are able to induce
Single Event Upsets (SEUs), leading to a higher rate of
transient faults, especially in deep-space applications. The
consequence is an increased susceptibility for Single
Event Upsets. Downtime costs by SEUs already have
dramatically increased in the last years. The soft-error
rate in combinatorial circuits will increase by ~105 from
1992 until 2011 [5]. For the next decade a total error rate
of 104 FIT (Failure In Time=1 error in 109 hours of opera-
tion=one year MTBF) -5fault rate 10 / h⇒ in combinato-
rial circuits is forecasted [6].

This paper makes the following contributions:
– It clarifies some obscurities from preceding papers

proposing queues to forward results like branch tar-
gets, loads and stores between redundant threads and
proposes a faster result-forwarding scheme.

– We show how existing structures like the branch tar-
get address cache (BTAC) can be integrated, omitting
the duplicate storage of branch targets.

– We propose how the structure can help to detect tran-
sient and permanent bus faults in the start-up phase of
the processor.

– We validate the idea by using a FPGA implementation
and analyze the efficiency (speed and space) in com-
parison with the original outcome-queue concept.

The rest of the paper is organized as follows: Related
work and the fault model are presented in Section 2.

Section 3 presents the main idea of this work, the tempo-
ral memory for branches and values. Section 4 describes
the implementation methodology and presents the results.
Section 5 concludes the paper.

2 Related Work
To limit the extensive space, energy and perform-

ance needs of triple modular redundant systems, numer-
ous approaches exist. Duplex systems (DMR) are a
common technique to detect transient faults by duplicat-
ing two instead of three components. Lockstepping is one
possibility to implement a duplex system. Here, two
processors are provided with the same clock. Due to time-
dependences, the processors must have the same mask
revision if no additional logic helps to produce the results
at the same time. It is simple and cost-efficient to imple-
ment and therefore used in many commercial processor
designs (e.g. Compaq Himalaya [16] or IBM G5 [13]).
Virtual duplex systems are using time instead of struc-
tural redundancy. Here, identical processes are not con-
currently executed on processing nodes (like TMR,
DMR) but two times - one after the other - on one node.
Recently, Simultaneous Multithreading [1][2][3][13] has
been discovered to detect transient faults. Apart from
variations (e.g. [17][18][19][20]), two identical copies of
the same program are run as independent threads either
on a multithreaded processor and the outputs are com-
pared for mismatch. SMT processors need 22% less
energy per instruction due to better resource utilization
[15]. If less energy is consumed, the processor can be
clocked faster or can achieve the same performance while
consuming less power. Thus, the transistor lifetime and
reliability will increase. If duplicate processor cores are
used fault detection, the forfeiture is the performance of
an entire processor. If multithreaded processors are used,
only 20 to 40% of the processor’s performance
[18][19][20] will be sacrificed.
AR-SMT [9] used SMT to run redundant copies of the
same program in one active(A) and one redundant(R)
thread on the same processor. Here, the idea to exploit
previously computed results (e.g. branch outcomes) of the
A-thread by the R-thread with the help of a delay buffer
was introduced. Reinhardt and Mukherjee proposed a
detection scheme for transient faults similar to AR-SMT.
Simultaneous and Redundantly Threaded processors
[8][10] (SRT) also uses two redundant threads to run the
same program, one leading and one trailing thread. Both
threads are separated by a slack, where the slack repre-
sents the number of instructions by which the leading
thread executes ahead of the trailing one. The R-thread
also computes branch targets etc. Since the A-thread was
fetching values etc. from the main memory they are
stored in the cache, so that the R-thread experiences a
speedup. Another method not used by AR-SMT for the
sake of reliability is to let the R-thread not fetch the val-
ues and branch targets over the bus and entirely use the
values in the outcome queues. To provide fault detection

for Chip Multi-Processing (CMP), SRT was extended in
context of a study to the so called Chip-level Redundantly
Threaded multiprocessor (CRT). Similar to SRT, CRT
uses leading and trailing threads on separate processors.
CRT achieved a reduction of the probability that one fault
will corrupt both threads at the same instruction. Slip-
stream [11], the CMP fault detection scheme correspond-
ing to AR-SMT maximizes performance rather than to
provide robust fault detection. With the concept of Simul-
taneous and Redundantly Threaded processors with Re-
covery (SRTR), Vijaykumar et al. [12] addressed the
issue of providing robust and efficient recovery from
transient faults in a uniprocessor SMT-system. Gomaa et
al. [7] introduced a scheme called Chip-level Redun-
dantly Threaded multiprocessor with Recovery (CRTR),
porting SMT transient fault recovery to multiprocessors.
The applied fault model assumes one fault at a time for a
component and transient faults in the form of Single
Event Upsets (SEUs) in memory elements. Multiple
faults are not addressed since they are extremely seldom.
SEUs are modeled by bit-flips (flip-to 0 and flip-to 1) of
the corresponding latches or memory cells [21]. Further-
more, we assume transient and permanent faults in the
form of stuck-at faults (stuck-at 0 and stuck-at 1) for the
external bus.

3 Temporal Memory for Branches
and Memory Accesses

Until today, all structures within redundantly multi-
threaded (RMT) systems used a FIFO buffer to forward
results between the leading and the trailing thread. The
FIFO is needed to preserve the time-dependence between
results. Figure 1 illustrates the delay buffer concept to
forward the results between the commit phase of the A-
stream and the fetch phase of the R-stream [9]. Results
(branches, loads and stores) produced by the A-stream
during its commit phase are inserted in the delay buffer
and consumed by the R-thread. In fact, during its fetch
phase, the R-thread accesses both, the main memory and
the delay buffer. Stores can not be committed to main
memory until the R-thread wants to commit the store,
since a computation of the R-thread could depend on a
memory value which is in the meantime overwritten by
the A-thread.

Figure 1. The delay buffer used within AR-SMT

Whereas Figure 1 suggests using a FIFO for the exchange
of results between threads, we propose a more sophisti-
cated structure which allows keeping the time-
dependence between instructions, but exploits multiple
commitments of modern superscalar, simultaneously
multithreaded processors. Supposing a real-world imple-
mentation, the FIFO queue between threads will be a
bottleneck, since we must have the possibility to simulta-
neously write back multiple results. Simulations will not
reveal this bottleneck. If multiple instructions are commit-
ted, the queue will perform poorly, since we can only
write back one result at a time. This disadvantage can
partly be balanced by accessing the queue asynchro-
nously if the logic is fast enough. As a consequence, the
implementation will be more complex. Another disadvan-
tage of a queue is that target addresses of loops will be
stored again and again in the outcome queue, no matter if
the branch target or value was previously computed or
not. This will consume power and valuable space in the
queue and thus keep results from being forwarded to the
trailing thread because the queue will be occupied much
earlier. Furthermore, structures like the Branch Target
Address Cache (BTAC) will work in parallel to the delay
buffer. The A-thread will always enter the outcome in the
BTAC and the delay buffer. This is a waste of space and
unnecessary and unwanted redundancy. Since both cir-
cuits are active in each cycle, the power consumption will
increase. Furthermore, both structures are very vulner-
able, since they contain only valid targets. Therefore,
both structures must be secured against SEUs, leading to
a further space increase, because error detection mecha-
nisms must be implemented for both structures. We are
putting it all together by solving performance problems
from delay-buffer queues and by integrating the BTAC
and the Branch Target Instruction Cache (BTIC) into the
result feed-forward structure. We call this structure tem-
poral memory. It is shared between both hardware
threads. We do not have to separate thread-specific en-
tries since we have a duplicated execution of identical
instruction streams. Naturally, the temporal memory is a
vulnerable structure and should be secured against tran-
sient faults by commonly used error detection/ error cor-
rection codes. For data and instructions we consider
separate structures. Table 1 shows a temporal memory
entry for instructions/ branch targets, Table 2 the entry for
a data value.

Table 1. A temporal memory entry (branches)

Name Width Description
PC 32 Program counter at branch.
DEST 32 Branch target+4.
INST 32 Instruction at branch target.
FREE@acc 4 Free entries at time of access.
Total 100 Total bits used.

Table 2. Temporal memory entry (data)

Name Width Description
ADDR 32 Memory access register.
VAL 32 Data value.
FREE@acc 4 Free entries at time of access.
Total 68 Total bits used.

Separate structures were chosen to limit the number of
read/write ports and the space increase. Figure 2 shows
how the temporal memory can be seamlessly integrated to
speedup a SMT processor core applying redundant multi-
threading. We integrate a start-up entry-point memory
and a counter, whose function will be described in the
next subsection.

Start-up
Entry-PointsCounter

A-stream R-stream

Temporal memory

Fetch Commit

R-stream

SMT Processor Core

A-stream

Figure 2. Temporal memory system integration

We distinguish two different modes the memory can be
accessed in:

1. Start-up operation after reset and
2. Lookup-mode during normal operation.

3.1 Start-up Operation
The start-up mode serves to initialize the temporal mem-
ory and to detect transient and permanent bus faults. All
we have to do is to configure the temporal memory after
reset with the jump addresses of the system startup-code.
The entry points are stored in a small programmable on-
chip storage (Start-up Entry-Points in Figure 2). When
the leading thread starts to fetch instructions, it will try to
store them in the temporal memory. As the entry is al-
ready occupied by data after a reset (as the number of
occupied entries is equal to the number of available en-
tries), the entry point addresses of branch, load and store
instructions fetched over the bus will be found in the
temporal memory by using the program counter (PC) or
memory addresses (ADDR) as index. If we know the size
of the temporal memory, we can use an access counter to
indicate the end of the start-up phase. This is exactly

when the counter reaches zero. It will be initialized with
the number of entries in the memory and decremented
each time it is accessed. The fetched instructions and
issued PCs/ memory addresses will be compared with the
entries in the temporal memory. If they match, no fault
occurred. If not, a transient or permanent fault corrupted
the issued (addresses) or fetched values (instructions or
data). When encountering such an error, the system will
restart. To cover as much errors as possible the addresses
and the data being fetched should be disjunct concerning
bit values at the equal positions so the Hamming distance
between both words is maximal. It is plain to see, that not
all transient or permanent errors can be detected by using
this scheme, if the system start-up code is not written in a
way taking this error detection into account. Even if the
data is disjunct, most addresses or at least the most sig-
nificant bits of the address will not change during start-
up, since the system start-up code will reside in a limited
area. This error detection scheme is only thought as a
feature, which we can apply at marginal cost increase (a
counter and a small programmable ROM).

3.2 Lookup-Mode
If the access counter reaches zero, the start-up phase has
finished and the system will enter normal lookup-mode.
This mode does not differ much from the start-up mode
except that no values will be loaded from the start-up
entry point memory into temporal memory and the
counter will be used in a different way. We initialize the
counter with the number of available entries in the mem-
ory. The leading thread has to be stalled if all entries in
the table are occupied. Thus, the memory size should be
chosen in a way that no stall occurs. The counter will be
decremented, at each write of the leading thread. It is
incremented, when the trailing thread accesses the table.
In the following, we clarify the accesses of the leading
and the trailing thread.

Leading thread access:

Write access: in this mode, precomputed branch targets
and values are written to the temporal memory if a
branch, load or store is decoded. The number of free
entries (the counter value) is entered in the field
FREE@acc. If simultaneous writes occur, we use the
same values for FREE@acc. This will help to save
multiple addition units. Then the counter is decre-
mented by the number of write accesses. The branch
target (DEST), the program counter (PC) and the in-
struction at the branch target (INST) of the entry are
updated. We use the PC as index in the table. Then, we
compare the data value or the branch target to insert
with the according entry. If they are equal, we do not
store the value. If not, we enter the value in the first
free entry (if available) and decrement the counter.
What do we do to resolve the time-dependence between
threads? For example, the leading thread could produce

a value and enter it in the memory. After some instruc-
tions another value for the same variable will be en-
tered again. If the value was not consumed by the
trailing thread in the meantime, we have equal program
counters but different values. This is no problem, since
we use the field for the counter of free elements,
FREE@acc, to determine the time of the access. The
counter and FREE@acc cannot be equal until the ele-
ment was read by the trailing thread.

Read access: Since the memory replaces the BTAC and
the BTIC, each issued PC will be used to search an en-
try in the memory. If it is found, the stored address will
be used as future PC. Since we use a subset of the
MIPS ISA and do not allow self-modifying code, we do
not have to handle conditional jumps at the same PC
with different branch targets.

Trailing thread access:
If a branch, load or store is decoded, the counter of free
entries will be used to find the corresponding entry in
the table. If entries with the same FREE@acc value are
encountered, they can be read simultaneously if enough
read ports are available. After the entries are accessed,
the counter will be decremented by the number of par-
allel reads. We must not fetch the concerned instruc-
tions or data over the bus. Thus, we can save power and
cycles by omitting bus accesses. The consequence is
that instructions fetched by the leading thread can be
corrupted by a transient fault and the error will not be
detected since we only fetched one value. For a better
comparison of both schemes, we considered the fetch-
ing of instructions and data over the bus by both
threads.

4 Results
To measure the space requirements, we discuss the syn-
thesis results of a FPGA implementation using VHDL.
As a target, we chose the Xilinx Virtex-E XCV1000,
bg560, speed grade -8 FPGA [22]. The reasons why we
selected this kind of FPGA were:
1. This FPGA is used in our development platform.
2. The FPGA does not support content addressable

memories (CAMs) which can be easily used to im-
plement temporal memory. By using FPGAs support-
ing such memories, the space increase will be even
smaller and the circuit will perform faster.

Both concepts - the outcome queue and the temporal
memory - were implemented by using the Xilinx ISE
software version 6.3. Table 3 shows the resource usage
after synthesis. The column ‘OQ’ holds the number of
slices used by the outcome queue implementation. The
column ‘Temp’ holds the number of slices used by the
temporal memory result propagation scheme. We in-
cluded the number of external IOBs (IO Blocks) because

logic was mainly routed to external IOBs by the synthesis
tool. Remember, that we are able to spare the BTAC and
BTIC. This will further reduce the cost in comparison
with the outcome-queue concept.

Table 3. Resource usage of the two examined result
propagation schemes

 OQ Temp Increase Total

Number of
External

IOBs

93 130 ~9% 404

Number of
Slices

369 807 ~3% 12288

Min.
period (ns)

9.8 11.8 ~20%

As size for the outcome queue and the temporal memory
we assumed 16 entries. To implement a structure which is
able to hold instructions and/or data we have to consider
either another queue or a tag within the queue. We used
dedicated structures for the outcome queue and the tem-
poral memory. Furthermore, we assumed a fixed instruc-
tion width of 32 bit. In relation to the total number of
FPGA slices and IOBs (12692), the overall space increase
is less than 4%. As Figure 2 suggests, we used four paral-
lel write and one read port to the temporal memory for the
leading thread. We assumed that the redundant thread is
able to issue one fetch at a time. Thus, we implemented
one read port for the R-thread. If the trailing thread is
able to issue multiple fetches at a time, the performance
will increase further.

5 Conclusion
To fight transient faults induced by Single Event Upsets
is one of the major challenges for microarchitects and
manufacturers in the present and future. Redundant multi-
threading is one means to detect transient faults. This
work presented a space and time efficient scheme to for-
ward results in redundantly multithreaded systems. The
scheme can be seamlessly integrated in most microproc-
essors with support for redundant multithreading. It is
able to eliminate the bandwidth bottleneck of queue-like
structures used to forward results between the active and
the redundant thread and to keep the time-dependence
between threads. To prove and validate our approach, we
synthesized the proposed circuit in VHDL with normal
place and route effort. As target we selected a Xilinx
Virtex-E XCV1000bg560 speed grade -8 FPGA [22]. The
overall space increase was less than 4% in comparison
with the original outcome-queue concept, but we are able
spare the BTAC and the BTIC. The FPGA implementa-
tion yielded a maximal clock rate of tTM=84.4 MHz for

the proposed result propagation scheme and tOQ=102
MHz for the outcome queue concept. Thus, the outcome
queue implementation was about 20% faster. One expla-
nation for this performance is that we did not apply spe-
cial search algorithms to speed up the matching and the
FIFO was better synthesized by the synthesis tool, im-
plemented by using pointers and an asynchronous con-
trol. If we assume # 5pcommit = as the percentage of
instructions than can be concurrently committed on addi-
tional _# 4w commit = write and consumed on _# 2r commit =
read access ports, we have a maximal speedup of

_ _# # # 40%pcommit w commit r commit⋅ ⋅ = . Thus, we have a per-
formance increase of 20%.

4 References
[1] J.S. Emer, Simultaneous Multithreading: Multiply-

ing Alpha Performance, Microprocessor Forum,
Oct. 1999.

[2] N. Tuck, D.M. Tullsen. Initial Observations of the
Simultaneous Multithreading Pentium 4 Processor.
Proceedings of 12th Intl Conference on Parallel Ar-
chitectures and Compilation Techniques, September
2003.

[3] D.M. Tullsen, S.J. Eggers, H.M. Levy, Simultaneous
Multithreading: Maximizing On-Chip Parallelism,
Proc. 22nd Annual Int’l Symp. on Computer Archi-
tecture, pp. 392-403, Jun. 1995.

[4] T. Juhnke: Die Soft-Error-Rate von Submikrometer-
CMOS-Logikschaltungen. Fakultät Elektrotechnik
und Informatik, Technischen Universität Berlin,
Dissertation, 2003.

[5] E. Normand, Single Event Upset at Ground Level.
IEEE Transactions on Nuclear Science, Vol. 43, No.
6, December 1996.

[6] P. Shivakumar, M. Kistler, S.W. Keckler, D. Bur-
ger, L. Alvisi. Modeling the effect of technology
trends on soft-error rate of combinational logic.
Int’l. Conference of Dependable Systems and Net-
works, June 2002.

[7] Gomaa, M. et al: Transient-Fault Recovery for Chip
Multiprocessors. In Proc. of the 30th Annual Int’l.
Symp. on Computer Architecture, pp. 98-109, June
2003.

[8] S. Reinhardt, S.S. Mukherjee. Transient-Fault De-
tection via Simultaneous Multithreading. In Proc. of
the 27th Annual Int’l. Symp. on Computer Architec-
ture, pp. 25-36, June 2000.

[9] E. Rothenberg. AR-SMT: A Microarchitectural
Approach to Fault Tolerance in Microprocessors, In
Proc. of Fault-Tolerant Computing Systems, pp. 84-
91, 1999.

[10] S.S. Mukherjee, M. Kontz, S. Reinhardt. Detailed
Design and Evaluation of Redundant Multithreading
Alternatives, Proc. of the 29th Int’l. Symp. on Com-
puter Architecture, May 2002.

[11] S., K., Purser, Z., E. E. Rotenberg: Slipstream Proc-
essors: Improving Both Performance and Fault-
Tolerance. In Proc. of the 9th Int’l. Symp. on Archi-
tectural Support for Programming Languages and
Operating Systems, pp. 257-268, November 2000.

[12] Vijaykumar, T.N., Pomeranz, I, Cheng, K.: Tran-
sient Fault Recovery using Simultaneous Multi-
threading, Proc. of the 29th Int’l. Symp. on
Computer Architecture, pp. 87-98, May 2002.

[13] T. J. Slegel, et al. IBM’s S/390 G5 Microprocessor
Design, IEEE Micro, 19(2):12–23, Mar/Apr 1999.

[14] H. Kobayashi, et. al. Soft Errors in SRAM Devices
Induced by High Energy Neutrons, Thermal Neu-
trons and Alpha Particles, IEDM Tech. Digest, Dec.
2002, pp. 337-340.

[15] J. Seng, D.M. Tullsen, G.Z. Cai. Power-Sensitive
Multithreaded Architecture, Int’l. Conference on
Computer Design, pp. 199-206, Sept. 2000.

[16] Alan Wood, Data Integrity Concepts, Features, and
Technology, White paper, Tandem Division, Com-
paq Computer Corporation.

[17] Todd M. Austin, DIVA: A Reliable Substrate for
Deep Submicron Microarchitecture Design Pro-
ceedings of the 32nd Annual International Sympo-
sium on Microarchitecture, 1999.

[18] Eric Rotenberg, AR-SMT: A Microarchitectural
Approach to Fault Tolerance in Microprocessor,
Proceedings of Fault-Tolerant Computing Systems
(FTCS), 1999.

[19] Steven K. Reinhardt and Shubhendu S. Mukherjee,
Transient Fault Detection via Simultaneous Multi-
threading, International Symposium on Computer
Architecture, 2000.

[20] Shubhendu S. Mukherjee, Michael Kontz, and Ste-
ven K. Reinhardt, Detailed Design and Evaluation
of Redundant Multithreading Alternatives, submit-
ted for publication.

[21] J.P. Hayes: Fault Modeling, IEEE Design& Test,
pp. 88-95, April 1985.

[22] Xilinx: Virtex-E 1.8 V Field Programmable Gate Arrays,
2002.http://direct.xilinx.com/bvdocs/publications/ds0
22.pdf

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

