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Abstract - Traditional fault-tolerance techniques like 
triple modular redundant (TMR)-systems can detect and 
correct a single transient fault with majority voting 
among the replicated units at about 200% space increase. 
The performance of two processors is sacrificed for the 
detection and localization of faults. Simultaneous multi-
threading (SMT) offers the detection of transient faults at 
only 20-40% performance degradation. Most of these 
techniques rely on the duplicated execution of the same 
process on different hardware threads. Due to SMT, the 
execution can be parallel or time-shifted. The fact that 
e.g. the direction of a branch or the value of a load en-
countered by the thread which is executing ahead is ex-
ploited by using structures like the branch outcome queue 
(BOQ) or the value outcome queue (VOQ). In this work 
we will first extend the idea of the BOQ/ VOQ to a more 
sophisticated structure, so that results being produced by 
the leading thread can be consumed faster by the trailing 
thread. Additionally, we propose how the scheme can 
help to detect transient and permanent bus faults. We 
validated the scheme by using a FPGA implementation, 
including a branch target address and instruction cache. 
The results show a space increase of less than 4% and a 
speedup of 20%. 
 

Keywords: Design and Test for Reliability, Redundant 
Multithreading. 

 

1 Introduction 
The development of commercial microprocessors is a 
quest for high performance. Processing speed can be 
gained by increasing the clock frequency and integration 
density. Examples are dual-core systems on a die or Si-
multaneous Multithreading (SMT) [3]. The Semiconduc-
tor Industry Association (SIA) roadmap shows an 
increase of integration density to 22nm until 20161. 
Shrinking the thickness of gate and interlayer dielectrics 
leads to increased leakage current in CMOS devices. 
More current is collected at interconnects which raises the 
processors temperature. Thus, the lifetime of the con-
                                                           
1 http://public.itrs.net/Files/ITRS_Overview.pdf 

cerned transistors is shortened. At 90nm and below [4] a 
problem occurs at sea-level, which is known from aero-
space applications: The collision of high-energetic neu-
trons from deep-space with silicon, causing a partial or 
total failure of the concerned circuit. At large heights, 
fault rates in SRAMs increase by 3-10, approximately by 
1.3 per 1000ft [14]. To decrease the energy consumption, 
e.g. the clock is dynamically adjusted and the current 
potential between logic 0 and 1 is reduced. Thus, the 
signal-to-noise ratio and the critical charge Qcrit needed to 
change the state of a flip-flop or latch is decreased. It is 
commonly believed, that soft-errors mainly occur in 
memory elements (flip-flops and capacitors). At mini-
mum feature sizes below 90nm, this is not the case any 
more. With high integration, protons are able to induce 
Single Event Upsets (SEUs), leading to a higher rate of 
transient faults, especially in deep-space applications. The 
consequence is an increased susceptibility for Single 
Event Upsets. Downtime costs by SEUs already have 
dramatically increased in the last years. The soft-error 
rate in combinatorial circuits will increase by ~105 from 
1992 until 2011 [5]. For the next decade a total error rate 
of 104 FIT (Failure In Time=1 error in 109 hours of opera-
tion=one year MTBF) -5fault rate 10 / h⇒  in combinato-
rial circuits is forecasted [6].  
 
This paper makes the following contributions: 
– It clarifies some obscurities from preceding papers 

proposing queues to forward results like branch tar-
gets, loads and stores between redundant threads and 
proposes a faster result-forwarding scheme. 

– We show how existing structures like the branch tar-
get address cache (BTAC) can be integrated, omitting 
the duplicate storage of branch targets. 

– We propose how the structure can help to detect tran-
sient and permanent bus faults in the start-up phase of 
the processor. 

– We validate the idea by using a FPGA implementation 
and analyze the efficiency (speed and space) in com-
parison with the original outcome-queue concept. 

 

The rest of the paper is organized as follows: Related 
work and the fault model are presented in Section 2. 



 

Section 3 presents the main idea of this work, the tempo-
ral memory for branches and values. Section 4 describes 
the implementation methodology and presents the results. 
Section 5 concludes the paper.  

2 Related Work 
To limit the extensive space, energy and perform-

ance needs of triple modular redundant systems, numer-
ous approaches exist. Duplex systems (DMR) are a 
common technique to detect transient faults by duplicat-
ing two instead of three components. Lockstepping is one 
possibility to implement a duplex system. Here, two 
processors are provided with the same clock. Due to time-
dependences, the processors must have the same mask 
revision if no additional logic helps to produce the results 
at the same time. It is simple and cost-efficient to imple-
ment and therefore used in many commercial processor 
designs (e.g. Compaq Himalaya [16] or IBM G5 [13]). 
Virtual duplex systems are using time instead of struc-
tural redundancy. Here, identical processes are not con-
currently executed on processing nodes (like TMR, 
DMR) but two times - one after the other - on one node. 
Recently, Simultaneous Multithreading [1][2][3][13] has 
been discovered to detect transient faults. Apart from 
variations (e.g. [17][18][19][20]), two identical copies of 
the same program are run as independent threads either 
on a multithreaded processor and the outputs are com-
pared for mismatch.  SMT processors need 22% less 
energy per instruction due to better resource utilization 
[15]. If less energy is consumed, the processor can be 
clocked faster or can achieve the same performance while 
consuming less power. Thus, the transistor lifetime and 
reliability will increase. If duplicate processor cores are 
used fault detection, the forfeiture is the performance of 
an entire processor.  If multithreaded processors are used, 
only 20 to 40% of the processor’s performance 
[18][19][20] will be sacrificed. 
AR-SMT [9] used SMT to run redundant copies of the 
same program in one active(A) and one redundant(R) 
thread on the same processor. Here, the idea to exploit 
previously computed results (e.g. branch outcomes) of the 
A-thread by the R-thread with the help of a delay buffer 
was introduced. Reinhardt and Mukherjee proposed a 
detection scheme for transient faults similar to AR-SMT. 
Simultaneous and Redundantly Threaded processors 
[8][10] (SRT) also uses two redundant threads to run the 
same program, one leading and one trailing thread. Both 
threads are separated by a slack, where the slack repre-
sents the number of instructions by which the leading 
thread executes ahead of the trailing one. The R-thread 
also computes branch targets etc. Since the A-thread was 
fetching values etc. from the main memory they are 
stored in the cache, so that the R-thread experiences a 
speedup. Another method not used by AR-SMT for the 
sake of reliability is to let the R-thread not fetch the val-
ues and branch targets over the bus and entirely use the 
values in the outcome queues. To provide fault detection 

for Chip Multi-Processing (CMP), SRT was extended in 
context of a study to the so called Chip-level Redundantly 
Threaded multiprocessor (CRT). Similar to SRT, CRT 
uses leading and trailing threads on separate processors. 
CRT achieved a reduction of the probability that one fault 
will corrupt both threads at the same instruction. Slip-
stream [11], the CMP fault detection scheme correspond-
ing to AR-SMT maximizes performance rather than to 
provide robust fault detection. With the concept of Simul-
taneous and Redundantly Threaded processors with Re-
covery (SRTR), Vijaykumar et al. [12] addressed the 
issue of providing robust and efficient recovery from 
transient faults in a uniprocessor SMT-system. Gomaa et 
al. [7] introduced a scheme called Chip-level Redun-
dantly Threaded multiprocessor with Recovery (CRTR), 
porting SMT transient fault recovery to multiprocessors.  
The applied fault model assumes one fault at a time for a 
component and transient faults in the form of Single 
Event Upsets (SEUs) in memory elements. Multiple 
faults are not addressed since they are extremely seldom. 
SEUs are modeled by bit-flips (flip-to 0 and flip-to 1) of 
the corresponding latches or memory cells [21]. Further-
more, we assume transient and permanent faults in the 
form of stuck-at faults (stuck-at 0 and stuck-at 1) for the 
external bus. 

3 Temporal Memory for Branches 
and Memory Accesses 

Until today, all structures within redundantly multi-
threaded (RMT) systems used a FIFO buffer to forward 
results between the leading and the trailing thread. The 
FIFO is needed to preserve the time-dependence between 
results. Figure 1 illustrates the delay buffer concept to 
forward the results between the commit phase of the A-
stream and the fetch phase of the R-stream [9]. Results 
(branches, loads and stores) produced by the A-stream 
during its commit phase are inserted in the delay buffer 
and consumed by the R-thread. In fact, during its fetch 
phase, the R-thread accesses both, the main memory and 
the delay buffer. Stores can not be committed to main 
memory until the R-thread wants to commit the store, 
since a computation of the R-thread could depend on a 
memory value which is in the meantime overwritten by 
the A-thread. 
 
 

 
 

Figure 1. The delay buffer used within AR-SMT 



 

Whereas Figure 1 suggests using a FIFO for the exchange 
of results between threads, we propose a more sophisti-
cated structure which allows keeping the time-
dependence between instructions, but exploits multiple 
commitments of modern superscalar, simultaneously 
multithreaded processors. Supposing a real-world imple-
mentation, the FIFO queue between threads will be a 
bottleneck, since we must have the possibility to simulta-
neously write back multiple results. Simulations will not 
reveal this bottleneck. If multiple instructions are commit-
ted, the queue will perform poorly, since we can only 
write back one result at a time. This disadvantage can 
partly be balanced by accessing the queue asynchro-
nously if the logic is fast enough. As a consequence, the 
implementation will be more complex. Another disadvan-
tage of a queue is that target addresses of loops will be 
stored again and again in the outcome queue, no matter if 
the branch target or value was previously computed or 
not. This will consume power and valuable space in the 
queue and thus keep results from being forwarded to the 
trailing thread because the queue will be occupied much 
earlier. Furthermore, structures like the Branch Target 
Address Cache (BTAC) will work in parallel to the delay 
buffer. The A-thread will always enter the outcome in the 
BTAC and the delay buffer. This is a waste of space and 
unnecessary and unwanted redundancy. Since both cir-
cuits are active in each cycle, the power consumption will 
increase. Furthermore, both structures are very vulner-
able, since they contain only valid targets. Therefore, 
both structures must be secured against SEUs, leading to 
a further space increase, because error detection mecha-
nisms must be implemented for both structures. We are 
putting it all together by solving performance problems 
from delay-buffer queues and by integrating the BTAC 
and the Branch Target Instruction Cache (BTIC) into the 
result feed-forward structure. We call this structure tem-
poral memory. It is shared between both hardware 
threads. We do not have to separate thread-specific en-
tries since we have a duplicated execution of identical 
instruction streams. Naturally, the temporal memory is a 
vulnerable structure and should be secured against tran-
sient faults by commonly used error detection/ error cor-
rection codes. For data and instructions we consider 
separate structures. Table 1 shows a temporal memory 
entry for instructions/ branch targets, Table 2 the entry for 
a data value. 
 

Table 1. A temporal memory entry (branches) 

Name Width Description 
PC 32 Program counter at branch. 
DEST 32 Branch target+4. 
INST 32 Instruction at branch target. 
FREE@acc 4 Free entries at time of access. 
Total 100 Total bits used. 
 
 
 

Table 2. Temporal memory entry (data) 

Name Width Description 
ADDR 32 Memory access register. 
VAL 32 Data value. 
FREE@acc 4 Free entries at time of access. 
Total 68 Total bits used. 
 
Separate structures were chosen to limit the number of 
read/write ports and the space increase. Figure 2 shows 
how the temporal memory can be seamlessly integrated to 
speedup a SMT processor core applying redundant multi-
threading. We integrate a start-up entry-point memory 
and a counter, whose function will be described in the 
next subsection. 
 
 

Start-up
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Figure 2. Temporal memory system integration 
 
 
We distinguish two different modes the memory can be 
accessed in: 

1. Start-up operation after reset and 
2. Lookup-mode during normal operation. 

 
 
3.1 Start-up Operation 
The start-up mode serves to initialize the temporal mem-
ory and to detect transient and permanent bus faults. All 
we have to do is to configure the temporal memory after 
reset with the jump addresses of the system startup-code. 
The entry points are stored in a small programmable on-
chip storage (Start-up Entry-Points in Figure 2). When 
the leading thread starts to fetch instructions, it will try to 
store them in the temporal memory. As the entry is al-
ready occupied by data after a reset (as the number of 
occupied entries is equal to the number of available en-
tries), the entry point addresses of branch, load and store 
instructions fetched over the bus will be found in the 
temporal memory by using the program counter (PC) or 
memory addresses (ADDR) as index. If we know the size 
of the temporal memory, we can use an access counter to 
indicate the end of the start-up phase. This is exactly 



 

when the counter reaches zero. It will be initialized with 
the number of entries in the memory and decremented 
each time it is accessed. The fetched instructions and 
issued PCs/ memory addresses will be compared with the 
entries in the temporal memory. If they match, no fault 
occurred. If not, a transient or permanent fault corrupted 
the issued (addresses) or fetched values (instructions or 
data). When encountering such an error, the system will 
restart. To cover as much errors as possible the addresses 
and the data being fetched should be disjunct concerning 
bit values at the equal positions so the Hamming distance 
between both words is maximal. It is plain to see, that not 
all transient or permanent errors can be detected by using 
this scheme, if the system start-up code is not written in a 
way taking this error detection into account. Even if the 
data is disjunct, most addresses or at least the most sig-
nificant bits of the address will not change during start-
up, since the system start-up code will reside in a limited 
area. This error detection scheme is only thought as a 
feature, which we can apply at marginal cost increase (a 
counter and a small programmable ROM).  
 
 
3.2 Lookup-Mode 
If the access counter reaches zero, the start-up phase has 
finished and the system will enter normal lookup-mode. 
This mode does not differ much from the start-up mode 
except that no values will be loaded from the start-up 
entry point memory into temporal memory and the 
counter will be used in a different way. We initialize the 
counter with the number of available entries in the mem-
ory. The leading thread has to be stalled if all entries in 
the table are occupied. Thus, the memory size should be 
chosen in a way that no stall occurs. The counter will be 
decremented, at each write of the leading thread. It is 
incremented, when the trailing thread accesses the table. 
In the following, we clarify the accesses of the leading 
and the trailing thread.  
 
Leading thread access:  

Write access: in this mode, precomputed branch targets 
and values are written to the temporal memory if a 
branch, load or store is decoded. The number of free 
entries (the counter value) is entered in the field 
FREE@acc. If simultaneous writes occur, we use the 
same values for FREE@acc. This will help to save 
multiple addition units. Then the counter is decre-
mented by the number of write accesses. The branch 
target (DEST), the program counter (PC) and the in-
struction at the branch target (INST) of the entry are 
updated. We use the PC as index in the table. Then, we 
compare the data value or the branch target to insert 
with the according entry. If they are equal, we do not 
store the value. If not, we enter the value in the first 
free entry (if available) and decrement the counter. 
What do we do to resolve the time-dependence between 
threads? For example, the leading thread could produce 

a value and enter it in the memory. After some instruc-
tions another value for the same variable will be en-
tered again. If the value was not consumed by the 
trailing thread in the meantime, we have equal program 
counters but different values. This is no problem, since 
we use the field for the counter of free elements, 
FREE@acc, to determine the time of the access. The 
counter and FREE@acc cannot be equal until the ele-
ment was read by the trailing thread.  
 
Read access: Since the memory replaces the BTAC and 
the BTIC, each issued PC will be used to search an en-
try in the memory. If it is found, the stored address will 
be used as future PC. Since we use a subset of the 
MIPS ISA and do not allow self-modifying code, we do 
not have to handle conditional jumps at the same PC 
with different branch targets.  
 

Trailing thread access: 
If a branch, load or store is decoded, the counter of free 
entries will be used to find the corresponding entry in 
the table. If entries with the same FREE@acc value are 
encountered, they can be read simultaneously if enough 
read ports are available. After the entries are accessed, 
the counter will be decremented by the number of par-
allel reads.  We must not fetch the concerned instruc-
tions or data over the bus. Thus, we can save power and 
cycles by omitting bus accesses. The consequence is 
that instructions fetched by the leading thread can be 
corrupted by a transient fault and the error will not be 
detected since we only fetched one value. For a better 
comparison of both schemes, we considered the fetch-
ing of instructions and data over the bus by both 
threads. 

 
 
4 Results  
To measure the space requirements, we discuss the syn-
thesis results of a FPGA implementation using VHDL.  
As a target, we chose the Xilinx Virtex-E XCV1000, 
bg560, speed grade -8 FPGA [22]. The reasons why we 
selected this kind of FPGA were: 
1. This FPGA is used in our development platform. 
2. The FPGA does not support content addressable 

memories (CAMs) which can be easily used to im-
plement temporal memory. By using FPGAs support-
ing such memories, the space increase will be even 
smaller and the circuit will perform faster.  

 
Both concepts - the outcome queue and the temporal 
memory - were implemented by using the Xilinx ISE 
software version 6.3. Table 3 shows the resource usage 
after synthesis. The column ‘OQ’ holds the number of 
slices used by the outcome queue implementation. The 
column ‘Temp’ holds the number of slices used by the 
temporal memory result propagation scheme. We in-
cluded the number of external IOBs (IO Blocks) because 



 

logic was mainly routed to external IOBs by the synthesis 
tool.  Remember, that we are able to spare the BTAC and 
BTIC. This will further reduce the cost in comparison 
with the outcome-queue concept. 

Table 3. Resource usage of the two examined result 
propagation schemes 

 OQ Temp Increase Total 

Number of 
External 

IOBs 

93 130 ~9% 404 

Number of 
Slices 

369 807 ~3% 12288 

Min.  
period (ns) 

9.8 11.8 ~20%  

 
As size for the outcome queue and the temporal memory 
we assumed 16 entries. To implement a structure which is 
able to hold instructions and/or data we have to consider 
either another queue or a tag within the queue. We used 
dedicated structures for the outcome queue and the tem-
poral memory. Furthermore, we assumed a fixed instruc-
tion width of 32 bit. In relation to the total number of 
FPGA slices and IOBs (12692), the overall space increase 
is less than 4%. As Figure 2 suggests, we used four paral-
lel write and one read port to the temporal memory for the 
leading thread. We assumed that the redundant thread is 
able to issue one fetch at a time. Thus, we implemented 
one read port for the R-thread. If the trailing thread is 
able to issue multiple fetches at a time, the performance 
will increase further. 
 
 
5 Conclusion 
To fight transient faults induced by Single Event Upsets 
is one of the major challenges for microarchitects and 
manufacturers in the present and future. Redundant multi-
threading is one means to detect transient faults. This 
work presented a space and time efficient scheme to for-
ward results in redundantly multithreaded systems. The 
scheme can be seamlessly integrated in most microproc-
essors with support for redundant multithreading. It is 
able to eliminate the bandwidth bottleneck of queue-like 
structures used to forward results between the active and 
the redundant thread and to keep the time-dependence 
between threads. To prove and validate our approach, we 
synthesized the proposed circuit in VHDL with normal 
place and route effort. As target we selected a Xilinx 
Virtex-E XCV1000bg560 speed grade -8 FPGA [22]. The 
overall space increase was less than 4% in comparison 
with the original outcome-queue concept, but we are able 
spare the BTAC and the BTIC. The FPGA implementa-
tion yielded a maximal clock rate of tTM=84.4 MHz for 

the proposed result propagation scheme and tOQ=102 
MHz for the outcome queue concept. Thus, the outcome 
queue implementation was about 20% faster. One expla-
nation for this performance is that we did not apply spe-
cial search algorithms to speed up the matching and the 
FIFO was better synthesized by the synthesis tool, im-
plemented by using pointers and an asynchronous con-
trol. If we assume # 5pcommit =  as the percentage of 
instructions than can be concurrently committed on addi-
tional  _# 4w commit =  write and consumed on _# 2r commit =  
read access ports, we have a maximal speedup of 

_ _# # # 40%pcommit w commit r commit⋅ ⋅ = . Thus, we have a per-
formance increase of 20%. 
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