
Securing Execution in Simultaneous Multithreaded
Processors

Bernhard Fechner1

1 FernUniversität Hagen, Fachbereich Informatik,
Lehrgebiet Parallelität und VLSI, 58084 Hagen
Bernhard.Fechner@fernuni-hagen.de

1 Introduction

In today’s sub-micron, ultra-low voltage and high clock rate technologies, circuits are
much more vulnerable to single event upsets (SEUs) causing mostly (90%) transient
but also permanent hardware (10%) faults. For future processors it will therefore be
essential to secure execution against SEUs. SEUs are modeled by bit-flips of the
corresponding latches or memory cells. Newer recovery and roll-forward schemes,
like [2] and [5] use simultaneous multithreaded processors [1] to increase
performance by using multiple hardware threads. To apply these recovery schemes,
hash values for each hardware thread must be computed.

2 Signatures for Multithreaded Pipeline Execution

We present a technique to compute thread signatures on a micro-architectural level,
exploiting the deep-pipeline execution scheme on a minimal multithreaded system
(two hardware threads). Let P be an S-stage pipelined (s1,…,ss), superscalar 2-way
multithreaded processor with a finite instruction set of B≠∅ instructions and two sets
of instruction streams m, n∈IN. i1,…,in, j1,…,jm∈B, ∀a≤n∧b≤m.|ia|=|jb|=C,
I={i1,…,in}≠∅, J={j1,…,jm}≠∅ which are fetched by two hardware threads. For
simplicity, we set I=J. Instruction streams do not have to be necessarily finite, because
of program loops. In each stage of the pipeline there can one or multiple parts of
decoded instructions from both threads, so t1→ia→si, t2→jb→sj, where i=j for
(multiple) out-of-order resources, i≠j else. Each stage has a little storage, where the
processor saves the thread-ID. Hardware redundancy can be used to store multiple
copies of the thread IDs, where the correct id is chosen according to a majority voting.
The signature computation involves the well known cyclic redundancy check codes
(CRCs) [3,4]. Suppose as a message m(x) the content of the latches of pipeline stages,
e.g. the fetch stage. We use thread IDs of active instruction streams for each stage, so
that we can have two different generator polynomials g(x),h(x) where

. . () () () ()x t c x g x t c x h x∀ ∃ ⊕ = . Since it is I=J, we set t=0. The computation of data
checksums d(x) is enabled by inserting a multiplexer. We compute the signature for
block multithreading according to Fig. 1:

Fig. 1. Computation for block multithreading

A decrementer is initialized with the length of the pipeline. If it reaches zero, the part
of the instruction stream in the pipeline before the context switch will participate to
the corresponding checksum. After an even number of context switches (we support
two threads) the signatures are compared. If the results are not equal an error in the
pipeline execution is detected. Additionally of taking the first stage into checksum
computation, we can use information out of any pipeline stage (arrows from s2,…,sn to
XOR-gates). For fine-grained multithreading, the circuit described in Fig. 1 must be
modified, so that a multiplexer for each polynomial factor selects the correct
instruction stream. Common branch prediction schemes will not hurt the scheme
because speculated instructions of both threads will be in both checksums, but
schemes based on pre-recognition of branches or pre-computation by threads [5], will
lead to different checksums.

References

1. D. Tullsen, S. Eggers, and H. Levy, Simultaneous Multithreading: Maximizing On-chip
Parallelism, 22nd Annual International Symposium on Computer Architecture, June 1995

2. B. Fechner, J. Keller, P. Sobe. Performance Estimation of Virtual Duplex Systems on
Simultaneous Multithreaded Processors. In Proc. 9th IEEE Workshop on Fault-Tolerant
Parallel, Distributed and Network-Centric Systems, Santa Fe, April 2004

3. S. Lin, D. Costello, Error Control Coding, Prentice-Hall, 1983
4. Peterson, W. & E. Weldon. Error-Correcting Codes, MIT Press, Second Edition, 1972
5. S.K. Reinhardt, S.S. Mukherjee. Transient Fault Detection via Simultaneous

Multithreading. In Proc. of the 27th annual International Symposium on Computer
Architecture, pp. 25 – 36, 2000

