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Abstract 
Today, nearly every user of electronic devices is affected by threats. Computer viruses infect harmless programs and 
change the function of that program. One means against these threats is a virus scanner, searching for signatures of 
known viruses within code and/or data. In this work, we present a novel approach to on-line virus scanning and hash 
calculation with the help of GPUs (graphics processing units). The main idea is to speed up the search by not searching 
for signatures on the hard-drive but to scan parts of the main memory and concurrently generate hash values on the code 
to detect changes. This is appealing and obvious, as the pattern matching has to look at most characters in the text. The 
first experiments showed that the CPU needs much more time for the execution of shift-like operations and testing for 
equivalence than the GPU, demonstrating that pattern matching algorithms and hash functions can be efficiently 
computed on GPUs. As a basis, we use the SHA-1 (160 bit) algorithm. The algorithm uses text properties for the 
initialization of the hash value and partial sums and/or path properties for the constants in each round. A fundamental 
part of future research will therefore be the testing if such an initialization can help to detect concatenated extensions 
like h(m)=h(m·x), where m and x are messages of arbitrary length, furthermore, if the independent calculation of hash 
results in each round will increase or reduce collision resistance. 
 
 
 

1 Introduction 

The bandwidth needs for Internet applications grow 
constantly. Data must be processed at low latencies to 
achieve high throughput. Ever since the development 
of comfortably programmable GPUs, there has been 
the idea to speed up calculations. For an overview of 
general purpose computations on graphics hardware, 
please see [5] and [11]. The market pressure urges 
companies to develop applications for the everyday 
user, not for distinguished engineers. One of these 
applications is a virus scanner [7]. At the moment 
several companies seem to work on this idea but none 
of them has published, except the basic concept [8] and 
implementation hints. The main work of a virus 
scanner is pattern matching, which is also the main 
process for intrusion detection systems (IDS), already 
implemented for GPUs [9]. The data must be 
transferred from the network to the GPU, today over 
the PCIe bus. The basic bandwidths (the time unit is 
seconds) of PCIe 2.0 (2.5 GHz bus frequency) 
interfaces, as well as for Ethernet [10] and SATA 
standards are depicted in Table 1. We show these 
values, since they represent raw bandwidth values per 
second for all devices mentioned in this work. One 
bottleneck of virus detection which is not described nor 

considered in [8] is the hard-drive. The bandwidth of 
hard-drives (ܾ௛ௗ) is much lower than the bandwidth of 
the graphics card bus (ܾ௕௨௦). A parallel implementation 
does not seem to make sense if the achieved bandwidth 
is ܾ௦௖௔௡ ൏ ܾ௕௨௦ ש ܾ௦௖௔௡ ൏ ܾ௛ௗ ש ܾ௕௨௦ ا ܾ௦௖௔௡ ש ܾ௛ௗ  .௦௖௔௡ܾا

Bandwidth 

PCIe-Slot
Lanes/ 
Direction

PCIe 
GByte 

Ethernet 
Mbit/MByte 

SATA 
Gbit/GByte

x1 1 0.5  1/0.125 N/A 

x4 4 2  10/1.25 N/A 

x8 8 4  100/12.5 1.5/0.1875 

x16 16 8  1/0.125 3.0/0.375 

x32 32 16 10/1.25 6.0/0.75 

Table 1 Raw bandwidths of PCIe, Ethernet and SATA 
 
This work is organized as follows: in Section 2, we 
present related work. Section 3 deals with pattern 
matching and hash generation for GPUs. Section 4 
concludes the paper. 
 
 
 



2 Related Work  

 
Several pattern matching algorithms have been 
proposed in the past decades. First, we start to discuss 
single-pattern-matching, then multi-pattern-matching 
algorithms. The easiest is the naive algorithm with time 
complexity O(n·m), comparing each character in s with 
each in t. Boyer-Moore[13][14] extend the search by 
moving s forward by more than one position. This is 
done by two heuristics, bad-character and good-suffix. 
Horspool [15] uses the bad-character strategy not with 
the character causing a mismatch, but the rightmost 
character within the text window. Sunday [16] uses the 
character adjacent right to the text window. The skip-
search algorithm [17] truncates the text in multiple 
areas with length n+1 and searches within these areas. 
For an overview and description of these and many 
other algorithms, please see [18]. The Aho-Corasick 
algorithm, the basis for the UNIX command-line tool 
fgrep [1] and the Wu-Manber algorithm [2] are the 
most widely adopted multi-pattern matching 
algorithms. For the requirements of quick deep packet 
inspection, hardware-based solutions like 
reconfigurable silicon hardware [3] and TCAM-based 
solution [4] have been proposed and implemented, but 
they are usually expensive and not flexible enough. 
Commentz and Walter [19] combine Boyer-Moore 
with Aho-Corasick. In practice it is substantially faster 
than Aho-Corasick. Baeza-Yates [20] proposed an 
algorithm that combines Boyer-Moore, Horspool [15] 
and Aho-Corasick. We will not discuss the various 
works in the direction of hash calculation and 
cryptographic hash functions here and redirect the 
interested reader to [21]. We regard unkeyed hash 
functions to verify the integrity of a message 
(Modification Detection Codes - MDC1). The 
algorithm on the GPU should be protected by a hash 
and check itself against modification. With keyed hash 
functions, a user and a code section can be associated 
in a multi-user system. Encryption with GPUs (block 
cipher) is also possible and described in [26]. However, 
due to the timely limitations of our work, we develop a 
simple hash function which is not cryptographically 
strong but clarifies the main idea. We will therefore 
speak of a hash value instead of an MDC.  
 
 

                                                            
1 In contrary to the comment of Cook et al. [22] we are of the 
opinion that current graphics processors are also capable to compute 
message authentication codes (MACs). 

3 Parallel Pattern Matching and 
Hash Computation 

Virus detection relies heavily on pattern matching. We 
do no focus on network security, but on workstation 
security for two main reasons. Firstly, the applicability, 
since the on-line scanning for virus signatures and the 
protection of code and data against modification is of 
concern for every user. Secondly, high bandwidth can 
only be achieved when regarding memory locations. 
Pattern matching algorithms compare data within code 
or data streams against a database of known viruses 
(signatures). Different signature lengths etc. require 
each input byte to be read and processed many times. 
This offers the chance to compute a hash value in 
parallel. Unfortunately, we already seem to have a 
trade-off here, since the hash should include every byte 
of the message and the matching should exclude as 
many bytes as possible to achieve high throughput. The 
additional needs for the pattern matching and the hash 
calculation in our work are:  

• All algorithms must (to a great extent) support 
operations which can be carried out by the GPU – our 
task is not fulfilled if vast amounts of the workload 
are done by the CPU 

• the implementation must be as simple as possible to 
exclude programming flaws 

• the results from one algorithm can be efficiently (re-) 
used by the other one 

• naturally, the implementation should be faster than 
the sole CPU implementation 

We describe the problems separately. 
 
Problem Definition #1: Exact (Single/ Multi)-
Pattern Matching without Wildcard 
Let Σ≠∅ a finite alphabet. Let n א Գ be the length of 

the search string s=s0...sn-1∈Σn and m א Գ the length of 

the string t=t0...tm-1∈Σm to be scanned. A single pattern 
is found, if the Hamming distance Hd(s, ti…ti+m−1)=0. 
Other distances can be used, if we want to support no 
exact match, e.g. wildcards with Hd(s, ti…ti+m−1)<k or 
the Hausdorff distance [24]. If we have multiple search 
strings with different lengths, we have a multi-pattern 
match. 
 
Problem Definition #2: Hash Function 
A (compressive) hash function h maps a finite message 

m=m0...mn-1∈Σn of arbitrary finite length to a string of 
fixed length. Alternatively (see [21]) for a domain D 

and range R with h:D→R, |D|>|R| results. Compressive 
hash functions imply the existence of collisions (pairs 



of inputs with identical output). A cryptographic hash 
function should fulfill the three well-known properties: 

• Collision resistance: It is infeasible to find x, y, x ≠ y 
such that H(x) = H(y) in appropriate time. 

• Preimage resistance: Given an output value y, it is 
infeasible to find x such that H(x) = y in appropriate 
time. 

• Second preimage resistance: Given an input x’, it is 
infeasible to find x such that H(x) = H(x’) in 
appropriate time. 

The term appropriate time means that the time to solve 
the problem with state-of-the-art computational means 
exceeds the lifetime and therefore the worth of the 
information to be changed. Note, that we changed the 
definition from computationally infeasible [21] to 
appropriate time. Figure 1 shows the basic function of 
the matching/hashing algorithm. The code section of 
the processes to monitor is transferred to the GPUs 
texture memory. The code section (CS) is found by 
using the task state segment (TSS) of the operating 
system. Therefore the process to transfer the code must 
run with operating system privileges. The GPU 
calculates the hash on the code section. The hash is 
also stored in the texture memory. In parallel to the 
hash calculation the pattern matching is done. Note, 
that the source for the transfer need not be a code 
section. It can e.g. be a buffer holding a data stream.  

 
Figure 1 Basic function of GPU-based on-line virus 
scanning 

On the GPU, we separate the code into n blocks of 
equal length and eventually pad it with zeroes. If 
larger, more transfers must be conducted. Thus, 
depending on the size of the code segment, there can be 
an arbitrary number of hash values, starting from n. For 
clarity, we show the initialization and execution phase 
of the algorithm in Listing 1. We are aware of the fact, 
that the signature database is verified each time. 
Instead, a process running at low priority could do the 
checking. 

 
Listing 1 Initialization phase, on-line scanning and 
hash computation 
 

3.1. Implementation 

First, we take a look at an excerpt of the signature 
database from ClamAV [23] in Figure 2. We see that 
the input pattern can match from any offset, and that 
heuristics are allowed. The format is <name>:<target-
filetype>:<offset>:<signature>. For simplicity, we 
do not regard the offset and regular expressions now. 
 
Exploit.HTML.ObjectType:3:*:3c6f626a6563742074
7970653d222f2f2f2f2f2f2f2f2f2f2f2f 
... 
Email.Phishing.Webmail-
25:4:*:756e616c6c6f79656420737570706f727420697
320686967686c79206e6565646564203d{-
4}746f3d3230{-
10}73656375726520616e64207472616e7366657220736
f6d652066756e6473 

 

Figure 2 ClamAV signature excerpt 

The GPU maintains a version of the signature database 
which should be preprocessed in such a way that 
signatures can be easily found. E.g. the ClamAV [23] 
database (main.cvd, 20.3 MB compressed, 40 MB 
uncompressed) easily fits into the available GPU 
memory of the experimental system (2·768 MB). 
Signatures do not seem to be ordered in a special way. 
In contrary to [8], we first sort the signature database 
according to the length (ascending), the signature and 
the sum of the first 4 bytes S (ex. 1.2).  



The first question was to answer how quick logic 
operations can be conducted on the graphics card. The 
workload consists of vector operations in dim(224) with 
different data types and operations, shown on the x-
axis in Figure 3. The vector data is randomized in each 
run, logic operations were carried out on integers only 
and no deviation from the OpenMP-based multicore 
CPU implementation was detected. For the 
experimental setup, please see section 3.3. We 
additionally included floats on basic arithmetic 
operation to determine if the numerical algorithms 
could perform faster. We see that the CPU needs much 
more time for the execution of shift-like operations and 
testing for equivalence than the GPU. This clearly 
shows that pattern matching algorithms and hash 
functions can be efficiently computed on GPUs.  

 
Figure 3 Execution time, logic functions, GPU/ CPU 

We remark, that shifts and the tests for equality took 
much more time on the CPU.  The results will change 
in each round due to the dynamic scheduling in both 
architectures. For best performance, we recommend a 
non-SLI system configuration. 

3.2. Preparation and Search 

We first take a look at the search string (in our case the 

signature) and look for symmetries, regularities. If we 

want to extract character probabilities pi, we have to 
look at most of the characters in the search string. As 
this can be done in the preparation phase of the 
algorithm, we consider this for an implementation. The 
search text is split up in parts with the length of the 
first signature in the database, l1. Thus, we get ݐ ൌݐଵ … ,௟భݐ ௟భାଵݐ … ሺ௡ିଵሻ௟భାଵݐ,…,ଶ௟భݐ …  ௡. Since we split theݐ

signature in different parts, we eventually have to pad 
the rest of t with zeroes. Now, we sum up the bytes in 

each section (ex. 1.1), resulting in ݑ ൌ ቒ௡௟భቓ 
summations. Note that the summation can be done in 
parallel and very efficiently on the GPU, since these 
are basic pixel operations. To omit an overflow, we 
suggest XOR. For clarity, we show an example (ex. 1.1 
code, ex. 1.2 signature). S is the sum of the signature. 

6 35 121
[1] [2] [3]

276 375
[4] [5]

0x00010203.0x23000000.0x1E243700.

0x12345678.0x3C6F626a

  

 
 

(1.1) 

375

0x3C6F626a
S =


 

(1.2) 

We know that the signature is certainly not found in a 

section, iff 
n l

i
i n

S t
+

=

> . In our example, the length 

l=l1=4. Thus, we can exclude sections 1 to 4. Example 
1.1 is convenient, but usually we also have to regard 
both adjacent borders of two sections. Here, the 
signature cannot be contained, iff  

1

1

2 2

n n l

i i
i n l i n

n n l

i i
i n l i n

S S
t t

S t t

− +

= − =

− +

= − =

    > ∧ > ∨        
 > + 
 

 

 
. (1.3) 

Therefore, we do not have to check sections 1 and 2 
but 3, 4 and 5. We take a look at another example (ex. 
1.4), where the search text is 0xAB (171), a single 
character. The methodology can be formulated 
recursively for different text sizes. Each entry on each 
level contains the sums from the two previous levels. 

356 372 375 00
[1] [2] [3] [4]

728 375

1103

1 2 17
[5] [6]

3

AA BA CA AA CC AB 00 00

00 01 02 00 00 AB

   

 


 


1 187

[7] [8]

358

359

1462

00 BB 





(1.4) 

Starting at the root level (bottom of ex. 1.4), we travel 
down the summation tree two steps (since 1452>171, 
1103>171, 359>171) and can exclude sections 5 and 6. 
One step further, we have a match in section 7 and can 
exclude sections 4, 8. For the hash calculation, we 
focus our interest on the initial values h1,…,h5, e.g. of 
the 160 bit result of the SHA-1 [21] hash function. 
Note that this method can be applied to any hash 
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function with initial values. The root level is used as 
part h1 of the initial values. The length of the message 
is used as part h5. The other constants can be the sums 
on each level of the summation tree, depending on the 
number of rounds and/or the coded path (0: left, 1: 
right) to regions where the signature is not contained 
(condition 1.3 fulfilled). E.g. section 4 is found by the 
path 011, starting at the top level. Since there can be 
many paths with different lengths, we have to define 
the right format, which is <length of path><path>, where 
the path length is a fixed number of bits. The other per-
round integer additive constants are y1,…,y4. We are 
aware that this is a far away from being 
cryptographically safe, but it can be carried out in 
parallel and speeds up the search. The computed hash 
value is stored in the dedicated hash memory on the 
graphics card, together with the address received from 
the TSS. We can support multiple entries, showing the 
development of a code/data section over time. For 
clarity, we depict the algorithm in Listing 2, based on 
the FIPS-180-1 pseudo-code [25]. We read 3 byte 
values resulting in a 3 byte index into a 224-entry array. 
This number of entries is needed to address at least 
every one of the 633992 (10/21/09) signatures from 
ClamAV. If we have a match, we compare the rest of 

the signature until we have a complete match or not. 

 

 

Listing 2 Parallel on-line scanning, hash computation 
 
 

3.3. Experimental Setup 
Our experimental setup consists of a 6 GB main 
memory Core i7 system, configured with two NVidia 

GTX260 cards (PCIe 2.0 x16, non-SLI) and two hard 
disks (500 GB each, RAID 0). An SLI-system is 
constructed on hardware level and must be configured 
on software level. Either the GPUs work independently 
in non-SLI mode to support multi-view displays or all 
GPUs in a SLI configuration appear as a single unit. 
For the CUDA programming environment, a non-SLI 
system appears as a set of graphics cards, an SLI 
system as one graphics card. Multiple GPUs appear as 
multiple host threads. We applied the least aggressive 
clock settings (engine=500, shader=1150, 
memory=1900) MHz. 

4 Conclusion and Future Work 

In this work, we presented a first and novel approach to 
concurrently compute hash values for dedicated code 
sections and search for virus signatures. Today’s 
processors are capable to protect code and data sections 
against modification. But changes from processes 
running on operating system level cannot be easily 
detected. The first experimental results show that the 
CPU needs much more time for the execution of shift-
like operations and testing for equivalence than the 
GPU. This proved that pattern matching algorithms and 
hash functions can be efficiently computed with GPUs. 
The search algorithm is able to e.g. exclude regions 
containing a large number of zeroes etc. With the right 
ordering of signatures, all other signatures can be 
excluded with a single match. The simple hash value 
computations, based on summation are used to speed 
up the search. Our future work will consist of an 
implementation and experiments concerning 
throughput measurement. Furthermore, we will include 
regular expressions and the inclusion of offsets. 
Another part of future research is to find out if the 
initialization of the hash with text properties can help 
to detect concatenated extensions like h(m)=h(m·x), 
where m and x are messages of arbitrary length. An 
investigation should be carried out, if our method of 
parallel and independent hash computation leads to 
more collisions or not. To the opinion of the author this 
is elementary research, providing a starting point for 
independent hash functions which can be computed in 
parallel. 
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