
GPU-Based Parallel Signature Scanning and Hash Generation

Bernhard Fechner, FernUniversität in Hagen, 58084 Hagen, Germany

Abstract
Today, nearly every user of electronic devices is affected by threats. Computer viruses infect harmless programs and
change the function of that program. One means against these threats is a virus scanner, searching for signatures of
known viruses within code and/or data. In this work, we present a novel approach to on-line virus scanning and hash
calculation with the help of GPUs (graphics processing units). The main idea is to speed up the search by not searching
for signatures on the hard-drive but to scan parts of the main memory and concurrently generate hash values on the code
to detect changes. This is appealing and obvious, as the pattern matching has to look at most characters in the text. The
first experiments showed that the CPU needs much more time for the execution of shift-like operations and testing for
equivalence than the GPU, demonstrating that pattern matching algorithms and hash functions can be efficiently
computed on GPUs. As a basis, we use the SHA-1 (160 bit) algorithm. The algorithm uses text properties for the
initialization of the hash value and partial sums and/or path properties for the constants in each round. A fundamental
part of future research will therefore be the testing if such an initialization can help to detect concatenated extensions
like h(m)=h(m·x), where m and x are messages of arbitrary length, furthermore, if the independent calculation of hash
results in each round will increase or reduce collision resistance.

1 Introduction

The bandwidth needs for Internet applications grow
constantly. Data must be processed at low latencies to
achieve high throughput. Ever since the development
of comfortably programmable GPUs, there has been
the idea to speed up calculations. For an overview of
general purpose computations on graphics hardware,
please see [5] and [11]. The market pressure urges
companies to develop applications for the everyday
user, not for distinguished engineers. One of these
applications is a virus scanner [7]. At the moment
several companies seem to work on this idea but none
of them has published, except the basic concept [8] and
implementation hints. The main work of a virus
scanner is pattern matching, which is also the main
process for intrusion detection systems (IDS), already
implemented for GPUs [9]. The data must be
transferred from the network to the GPU, today over
the PCIe bus. The basic bandwidths (the time unit is
seconds) of PCIe 2.0 (2.5 GHz bus frequency)
interfaces, as well as for Ethernet [10] and SATA
standards are depicted in Table 1. We show these
values, since they represent raw bandwidth values per
second for all devices mentioned in this work. One
bottleneck of virus detection which is not described nor

considered in [8] is the hard-drive. The bandwidth of
hard-drives (ܾ௛ௗ) is much lower than the bandwidth of
the graphics card bus (ܾ௕௨௦). A parallel implementation
does not seem to make sense if the achieved bandwidth
is ܾ௦௖௔௡ ൏ ܾ௕௨௦ ש ܾ௦௖௔௡ ൏ ܾ௛ௗ ש ܾ௕௨௦ ا ܾ௦௖௔௡ ש ܾ௛ௗ .௦௖௔௡ܾا

Bandwidth

PCIe-Slot
Lanes/
Direction

PCIe
GByte

Ethernet
Mbit/MByte

SATA
Gbit/GByte

x1 1 0.5 1/0.125 N/A

x4 4 2 10/1.25 N/A

x8 8 4 100/12.5 1.5/0.1875

x16 16 8 1/0.125 3.0/0.375

x32 32 16 10/1.25 6.0/0.75

Table 1 Raw bandwidths of PCIe, Ethernet and SATA

This work is organized as follows: in Section 2, we
present related work. Section 3 deals with pattern
matching and hash generation for GPUs. Section 4
concludes the paper.

2 Related Work

Several pattern matching algorithms have been
proposed in the past decades. First, we start to discuss
single-pattern-matching, then multi-pattern-matching
algorithms. The easiest is the naive algorithm with time
complexity O(n·m), comparing each character in s with
each in t. Boyer-Moore[13][14] extend the search by
moving s forward by more than one position. This is
done by two heuristics, bad-character and good-suffix.
Horspool [15] uses the bad-character strategy not with
the character causing a mismatch, but the rightmost
character within the text window. Sunday [16] uses the
character adjacent right to the text window. The skip-
search algorithm [17] truncates the text in multiple
areas with length n+1 and searches within these areas.
For an overview and description of these and many
other algorithms, please see [18]. The Aho-Corasick
algorithm, the basis for the UNIX command-line tool
fgrep [1] and the Wu-Manber algorithm [2] are the
most widely adopted multi-pattern matching
algorithms. For the requirements of quick deep packet
inspection, hardware-based solutions like
reconfigurable silicon hardware [3] and TCAM-based
solution [4] have been proposed and implemented, but
they are usually expensive and not flexible enough.
Commentz and Walter [19] combine Boyer-Moore
with Aho-Corasick. In practice it is substantially faster
than Aho-Corasick. Baeza-Yates [20] proposed an
algorithm that combines Boyer-Moore, Horspool [15]
and Aho-Corasick. We will not discuss the various
works in the direction of hash calculation and
cryptographic hash functions here and redirect the
interested reader to [21]. We regard unkeyed hash
functions to verify the integrity of a message
(Modification Detection Codes - MDC1). The
algorithm on the GPU should be protected by a hash
and check itself against modification. With keyed hash
functions, a user and a code section can be associated
in a multi-user system. Encryption with GPUs (block
cipher) is also possible and described in [26]. However,
due to the timely limitations of our work, we develop a
simple hash function which is not cryptographically
strong but clarifies the main idea. We will therefore
speak of a hash value instead of an MDC.

1 In contrary to the comment of Cook et al. [22] we are of the
opinion that current graphics processors are also capable to compute
message authentication codes (MACs).

3 Parallel Pattern Matching and
Hash Computation

Virus detection relies heavily on pattern matching. We
do no focus on network security, but on workstation
security for two main reasons. Firstly, the applicability,
since the on-line scanning for virus signatures and the
protection of code and data against modification is of
concern for every user. Secondly, high bandwidth can
only be achieved when regarding memory locations.
Pattern matching algorithms compare data within code
or data streams against a database of known viruses
(signatures). Different signature lengths etc. require
each input byte to be read and processed many times.
This offers the chance to compute a hash value in
parallel. Unfortunately, we already seem to have a
trade-off here, since the hash should include every byte
of the message and the matching should exclude as
many bytes as possible to achieve high throughput. The
additional needs for the pattern matching and the hash
calculation in our work are:

• All algorithms must (to a great extent) support
operations which can be carried out by the GPU – our
task is not fulfilled if vast amounts of the workload
are done by the CPU

• the implementation must be as simple as possible to
exclude programming flaws

• the results from one algorithm can be efficiently (re-)
used by the other one

• naturally, the implementation should be faster than
the sole CPU implementation

We describe the problems separately.

Problem Definition #1: Exact (Single/ Multi)-
Pattern Matching without Wildcard
Let Σ≠∅ a finite alphabet. Let n א Գ be the length of

the search string s=s0...sn-1∈Σn and m א Գ the length of

the string t=t0...tm-1∈Σm to be scanned. A single pattern
is found, if the Hamming distance Hd(s, ti…ti+m−1)=0.
Other distances can be used, if we want to support no
exact match, e.g. wildcards with Hd(s, ti…ti+m−1)<k or
the Hausdorff distance [24]. If we have multiple search
strings with different lengths, we have a multi-pattern
match.

Problem Definition #2: Hash Function
A (compressive) hash function h maps a finite message

m=m0...mn-1∈Σn of arbitrary finite length to a string of
fixed length. Alternatively (see [21]) for a domain D

and range R with h:D→R, |D|>|R| results. Compressive
hash functions imply the existence of collisions (pairs

of inputs with identical output). A cryptographic hash
function should fulfill the three well-known properties:

• Collision resistance: It is infeasible to find x, y, x ≠ y
such that H(x) = H(y) in appropriate time.

• Preimage resistance: Given an output value y, it is
infeasible to find x such that H(x) = y in appropriate
time.

• Second preimage resistance: Given an input x’, it is
infeasible to find x such that H(x) = H(x’) in
appropriate time.

The term appropriate time means that the time to solve
the problem with state-of-the-art computational means
exceeds the lifetime and therefore the worth of the
information to be changed. Note, that we changed the
definition from computationally infeasible [21] to
appropriate time. Figure 1 shows the basic function of
the matching/hashing algorithm. The code section of
the processes to monitor is transferred to the GPUs
texture memory. The code section (CS) is found by
using the task state segment (TSS) of the operating
system. Therefore the process to transfer the code must
run with operating system privileges. The GPU
calculates the hash on the code section. The hash is
also stored in the texture memory. In parallel to the
hash calculation the pattern matching is done. Note,
that the source for the transfer need not be a code
section. It can e.g. be a buffer holding a data stream.

Figure 1 Basic function of GPU-based on-line virus
scanning

On the GPU, we separate the code into n blocks of
equal length and eventually pad it with zeroes. If
larger, more transfers must be conducted. Thus,
depending on the size of the code segment, there can be
an arbitrary number of hash values, starting from n. For
clarity, we show the initialization and execution phase
of the algorithm in Listing 1. We are aware of the fact,
that the signature database is verified each time.
Instead, a process running at low priority could do the
checking.

Listing 1 Initialization phase, on-line scanning and
hash computation

3.1. Implementation

First, we take a look at an excerpt of the signature
database from ClamAV [23] in Figure 2. We see that
the input pattern can match from any offset, and that
heuristics are allowed. The format is <name>:<target-
filetype>:<offset>:<signature>. For simplicity, we
do not regard the offset and regular expressions now.

Exploit.HTML.ObjectType:3:*:3c6f626a6563742074
7970653d222f2f2f2f2f2f2f2f2f2f2f2f
...
Email.Phishing.Webmail-
25:4:*:756e616c6c6f79656420737570706f727420697
320686967686c79206e6565646564203d{-
4}746f3d3230{-
10}73656375726520616e64207472616e7366657220736
f6d652066756e6473

Figure 2 ClamAV signature excerpt

The GPU maintains a version of the signature database
which should be preprocessed in such a way that
signatures can be easily found. E.g. the ClamAV [23]
database (main.cvd, 20.3 MB compressed, 40 MB
uncompressed) easily fits into the available GPU
memory of the experimental system (2·768 MB).
Signatures do not seem to be ordered in a special way.
In contrary to [8], we first sort the signature database
according to the length (ascending), the signature and
the sum of the first 4 bytes S (ex. 1.2).

The first question was to answer how quick logic
operations can be conducted on the graphics card. The
workload consists of vector operations in dim(224) with
different data types and operations, shown on the x-
axis in Figure 3. The vector data is randomized in each
run, logic operations were carried out on integers only
and no deviation from the OpenMP-based multicore
CPU implementation was detected. For the
experimental setup, please see section 3.3. We
additionally included floats on basic arithmetic
operation to determine if the numerical algorithms
could perform faster. We see that the CPU needs much
more time for the execution of shift-like operations and
testing for equivalence than the GPU. This clearly
shows that pattern matching algorithms and hash
functions can be efficiently computed on GPUs.

Figure 3 Execution time, logic functions, GPU/ CPU

We remark, that shifts and the tests for equality took
much more time on the CPU. The results will change
in each round due to the dynamic scheduling in both
architectures. For best performance, we recommend a
non-SLI system configuration.

3.2. Preparation and Search

We first take a look at the search string (in our case the

signature) and look for symmetries, regularities. If we

want to extract character probabilities pi, we have to
look at most of the characters in the search string. As
this can be done in the preparation phase of the
algorithm, we consider this for an implementation. The
search text is split up in parts with the length of the
first signature in the database, l1. Thus, we get ݐ ൌݐଵ … ,௟భݐ ௟భାଵݐ … ሺ௡ିଵሻ௟భାଵݐ,…,ଶ௟భݐ … ௡. Since we split theݐ

signature in different parts, we eventually have to pad
the rest of t with zeroes. Now, we sum up the bytes in

each section (ex. 1.1), resulting in ݑ ൌ ቒ௡௟భቓ
summations. Note that the summation can be done in
parallel and very efficiently on the GPU, since these
are basic pixel operations. To omit an overflow, we
suggest XOR. For clarity, we show an example (ex. 1.1
code, ex. 1.2 signature). S is the sum of the signature.

6 35 121
[1] [2] [3]

276 375
[4] [5]

0x00010203.0x23000000.0x1E243700.

0x12345678.0x3C6F626a

  

 

(1.1)

375

0x3C6F626a
S =



(1.2)

We know that the signature is certainly not found in a

section, iff
n l

i
i n

S t
+

=

> . In our example, the length

l=l1=4. Thus, we can exclude sections 1 to 4. Example
1.1 is convenient, but usually we also have to regard
both adjacent borders of two sections. Here, the
signature cannot be contained, iff

1

1

2 2

n n l

i i
i n l i n

n n l

i i
i n l i n

S S
t t

S t t

− +

= − =

− +

= − =

    > ∧ > ∨        
 > + 
 

 

 
. (1.3)

Therefore, we do not have to check sections 1 and 2
but 3, 4 and 5. We take a look at another example (ex.
1.4), where the search text is 0xAB (171), a single
character. The methodology can be formulated
recursively for different text sizes. Each entry on each
level contains the sums from the two previous levels.

356 372 375 00
[1] [2] [3] [4]

728 375

1103

1 2 17
[5] [6]

3

AA BA CA AA CC AB 00 00

00 01 02 00 00 AB

   

 


 


1 187

[7] [8]

358

359

1462

00 BB 





(1.4)

Starting at the root level (bottom of ex. 1.4), we travel
down the summation tree two steps (since 1452>171,
1103>171, 359>171) and can exclude sections 5 and 6.
One step further, we have a match in section 7 and can
exclude sections 4, 8. For the hash calculation, we
focus our interest on the initial values h1,…,h5, e.g. of
the 160 bit result of the SHA-1 [21] hash function.
Note that this method can be applied to any hash

1

10

100

1000

FLOAT
ADD

INT
ADD

NOT AND OR XOR SHL1 SHL10 SHR1 SHR10 ==

Ti
m

e
in

 m
s

GPUSLI

GPU

CPU

function with initial values. The root level is used as
part h1 of the initial values. The length of the message
is used as part h5. The other constants can be the sums
on each level of the summation tree, depending on the
number of rounds and/or the coded path (0: left, 1:
right) to regions where the signature is not contained
(condition 1.3 fulfilled). E.g. section 4 is found by the
path 011, starting at the top level. Since there can be
many paths with different lengths, we have to define
the right format, which is <length of path><path>, where
the path length is a fixed number of bits. The other per-
round integer additive constants are y1,…,y4. We are
aware that this is a far away from being
cryptographically safe, but it can be carried out in
parallel and speeds up the search. The computed hash
value is stored in the dedicated hash memory on the
graphics card, together with the address received from
the TSS. We can support multiple entries, showing the
development of a code/data section over time. For
clarity, we depict the algorithm in Listing 2, based on
the FIPS-180-1 pseudo-code [25]. We read 3 byte
values resulting in a 3 byte index into a 224-entry array.
This number of entries is needed to address at least
every one of the 633992 (10/21/09) signatures from
ClamAV. If we have a match, we compare the rest of

the signature until we have a complete match or not.

Listing 2 Parallel on-line scanning, hash computation

3.3. Experimental Setup
Our experimental setup consists of a 6 GB main
memory Core i7 system, configured with two NVidia

GTX260 cards (PCIe 2.0 x16, non-SLI) and two hard
disks (500 GB each, RAID 0). An SLI-system is
constructed on hardware level and must be configured
on software level. Either the GPUs work independently
in non-SLI mode to support multi-view displays or all
GPUs in a SLI configuration appear as a single unit.
For the CUDA programming environment, a non-SLI
system appears as a set of graphics cards, an SLI
system as one graphics card. Multiple GPUs appear as
multiple host threads. We applied the least aggressive
clock settings (engine=500, shader=1150,
memory=1900) MHz.

4 Conclusion and Future Work

In this work, we presented a first and novel approach to
concurrently compute hash values for dedicated code
sections and search for virus signatures. Today’s
processors are capable to protect code and data sections
against modification. But changes from processes
running on operating system level cannot be easily
detected. The first experimental results show that the
CPU needs much more time for the execution of shift-
like operations and testing for equivalence than the
GPU. This proved that pattern matching algorithms and
hash functions can be efficiently computed with GPUs.
The search algorithm is able to e.g. exclude regions
containing a large number of zeroes etc. With the right
ordering of signatures, all other signatures can be
excluded with a single match. The simple hash value
computations, based on summation are used to speed
up the search. Our future work will consist of an
implementation and experiments concerning
throughput measurement. Furthermore, we will include
regular expressions and the inclusion of offsets.
Another part of future research is to find out if the
initialization of the hash with text properties can help
to detect concatenated extensions like h(m)=h(m·x),
where m and x are messages of arbitrary length. An
investigation should be carried out, if our method of
parallel and independent hash computation leads to
more collisions or not. To the opinion of the author this
is elementary research, providing a starting point for
independent hash functions which can be computed in
parallel.

Literature

[1] A.V. Aho, M.J. Corasick, Efficient string
matching: An aid to bibliographic search,
Communications of the ACM, vol. 20, Session
10, pp. 761–772, 1977

[2] S. Wu and U. Manber, A fast algorithm for
multipattern searching, Technical Report TR-94-
17, Department of Computer Science, University
of Arizona, 1994

[3] J. Moscola, J. Lockwood, R. P. Loui, and M.
Pachos, Implementation of a content-scanning
module for an internet firewall, IEEE Symposium
on Field-Programmable Custom Computing
Machines (FCCM), pp. 31–38, 2003

[4] F. Yu, R. H. Katz, T. V. Lakshman, Gigabit rate
packet pattern-matching using TCAM, ICNP, Oct.
5–8, 2004, pp. 174–183, 2004

[5] GPGPU, http://www.gpgpu.org, checked
10/15/09

[6] N. Jacob, C. Brodley, Offloading IDS
Computation to the GPU, Computer Security
Applications Conference (ACSAC), pp. 371-380,
2006

[7] F. Abazovic. CUDA can speed up virus scan,
http://www.fudzilla.com/content/view/15832/1/,
checked, 10/15/09

[8] E. Seamans, T. Alexander. GPU Gems 3. Chapter
35. Fast Virus Signature Matching on the GPU.
http://http.developer.nvidia.com/GPUGems3/gpu
gems3_ch35.html, checked 10/15/09

[9] N. Huang, H. Hung, et al., A GPU-Based
Multiple-Pattern Matching Algorithm for Network
Intrusion Detection Systems, pp.62-67, 22nd Int’l.
Conference on Advanced Information
Networking and Applications - Workshops (aina
workshops 2008), 2008

[10] C. E. Spurgeon: Ethernet. The Definitive Guide.
O’Reilly, Sebastopol, ISBN 1-56592-660-9, 2000

[11] J. D. Owens, D. Luebke, et al., A Survey of
General-Purpose Computation on Graphics
Hardware. Computer Graphics Forum, 26(1):80–
113, 2007

[12] Karp, Richard M.; Rabin, Michael O. Efficient
randomized pattern-matching algorithms. IBM
Journal of Research and Development 31 (2),
249–260, March 1987

[13] R. S. Boyer; J. S. Moore: A fast string searching
algorithm. CACM 20 (Issue 10): 762-772

[14] R. S. Boyer, J. S. Moore: A Lemma Driven
Automatic Theorem Prover for Recursive
Function Theory. IJCAI pp. 511-519, 1977

[15] R.N. Horspool: Practical Fast Searching in
Strings. Software - Practice and Experience 10,
pp. 501-506, 1980

[16] D.M. Sunday: A Very Fast Substring Search
Algorithm. Communications of the ACM, 33, 8,
pp. 132-142, 1990

[17] C. Charras, T. Lecroq, J.D. Pehoushek: A Very
Fast String Matching Algorithm for Small
Alphabets and Long Patterns. Proc. of the 9th
Annual Symposium on Combinatorial Pattern
Matching. LNCS 1448, Springer, 55-64, 1998

[18] http://www-igm.univ-
mlv.fr/~lecroq/string/string.pdf, checked 10/10/09

[19] B. Commentz-Walter, A string matching
algorithm fast on the average, Proc. 6th
International Colloquium on Automata,
Languages, and Programming, pp. 118-132, 1979

[20] R.A. Baeza-Yates, Improved string searching,
Software — Practice and Experience 19, pp. 257-
271, 1989

[21] A. J. Menezes, P.C. van Oorschot, S.A. Vanstone.
Handbook of Applied Cryptography, CRC Press,
ISBN 0-8493-8523-7, pp. 321-383, 1996
(http://www.cacr.math.uwaterloo.ca/hac, checked
10/21/09)

[22] D.L. Cook, R.Baratto, A.D. Keromytis, Remotely
Keyed Cryptographics Secure Remote Display
Access Using (Mostly) Untrusted Hardware, In
Proc. of ICICS, LNCS 3783, 2004

[23] http://www.clamav.net, checked 10/20/09
[24] R. Shonkwiler, Computing the Hausdorff set

distance in linear time for any Lp point distance.
Information Processing Letters, v. 38, pp. 201-
207, 1991

[25] Federal Information Processing Standards
Publication 180-1, Secure Hash Standard, 1995

[26] V. Korobitsin, S. Ilyin, GOST-28147 Encryption
Implementation on Graphics Processing Units,
pp.967-974, 3rd International Conference on
Availability, Reliability and Security, 2008

