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We give a brief survey of the SB�PRAM architecture as a realization of the priority
CRCW PRAM model� The sequential semantics of a parallel program allows the
use of classical techniques to prove its correctness� The SB�PRAM shows good
performance and speedup for the presented �ve scienti�c applications which are�
due to their irregular behavior�di�cult to parallelize e�ciently on other parallel
machines�

� Introduction

The SB�PRAM is a realization of a synchronously working priority CRCW
PRAM with single�instruction multipre�x operation� A four processor proto�
type is built��� Synchronous means that all processors execute one instruction
within one time step �clock cycle�� Concurrent read and concurrent write
�CRCW� means that di�erent processors can read or write the same memory
cell simultaneously� Priority means that in case of concurrent write the par�
ticipating processor with largest number wins� Multipre�x means that several
groups of processors can perform parallel pre�x operations at the same time�
The pre�x order is determined by the priority as well� The execution time of
such an operation is equal to the execution time of a �xed point arithmetic
operation�

The concepts underlying the SB�PRAM have not been developed indepen�
dently from others� The concept of virtual processors in hardware was already
used in the Denelcor HEP��� and is used again in the Tera MTA� The concepts
of hashing and combining were already used in the NYU Ultracomputer and
IBM RP	� NYU Ultracomputer� IBM RP	� Tera MTA� and Stanford DASH
also have hardware support for parallel pre�x operations��� although DASH is
restricted to increment
decrement� The aim of the SB�PRAM which is based
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on the Fluent Machine�� is to bring all these concepts together in a single
machine�

Section � introduces the PRAMmodel� In Section 	� we show how to prove
the correctness of a program on the SB�PRAM� Section 
 brie�y describes the
hardware of the SB�PRAM and the current status of the prototype� It follows a
survey of the system software in Section �� Section � presents the programming
model from a users point of view and brie�y discusses some applications already
ported to the machine�

� PRAM Model

The PRAM �Parallel Random Access Machine�� is a model that allows the
speci�cation and the analysis of parallel algorithms in a way that abstracts
from particular architectures� Hence� programmers can concentrate on paral�
lelism and need not to be concerned about implementation details� The model
assumes a �nite number n of processors� each working like a random access ma�
chine� All processors can access a shared memory with the same speed as they
perform a �xed point arithmetic operation� The processors work synchronously
and� hence� there are no race conditions because of di�erent processor speeds
as it might happen in distributed systems�

There are several variants of the PRAM model� depending on whether
one or several processors are allowed to simultaneously read or write a shared
memory location� The variants are EREW �exclusive read exclusive write��
CREW �concurrent read exclusive write� and CRCW �concurrent read concur�
rent write�� the ERCW variant is not used� If concurrent writes are allowed�
there are several possibilities to determine which processor succeeds� An arbi�

trary processor might succeed� one can request that all participating processors
write a common value� or one can specify a priority among the processors� such
that the one with the highest priority succeeds� The priority CRCW PRAM
is the strongest model� The PRAM model has been successfully employed to
develop a wealth of parallel algorithms�������

� Sequential Semantics

How can we prove that a parallel program for the SB�PRAM is correct� Gener�
ally� we cannot expect that we can prove the correctness of a parallel program
more easily than a sequential program� but the synchronous priority�CRCW
model provides a simple technique that enables us to prove the correctness in
the same way as for a sequential program�
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Consider the following example� Let pi� � � � � � pik for i� � � � � � ik be a
group of processors� Each processor pij owns a local variable xj �for instance
a value stored in a register�� Now� consider a concurrent write operation is
executed� i� e�� each processor pij writes its value xj into the global memoryM
at address a� Let us write this �similar to C syntax� as pij � M �a� � xj�� For the
priority CRCW PRAM� the k concurrent writes can be seen as k consecutive
write operations according to the order of the processors� Hence� in a proof
we can assume that the k assignments are performed one after another�

M �a� � x�� � � � M �a� � xk�

The value �nally stored is xk� The more interesting example of a parallel
pre�x operation illustrates more clearly the advantage of the sequential se�
mantics� Let us assume that each of the k processors participates in a parallel
pre�x operation mpadd� With the same notation as above� let us write this as
pij � mpadd�xj��a��� For the priority CRCW PRAM� the k concurrent pre�x
operations can be seen as 	k consecutive assignments�

y� � x�� x� � M �a�� M �a�� � y�� � � � yk � xk� xk � M �a�� M �a�� � yk�

Hence� in the end we have the following correct semantics of a parallel
pre�x add operation�

M �a� � M �a� �
X

��l�k

xl xj � M �a� �
X

l�j

xl�

Thus� we can split the execution of one step of the synchronously work�
ing parallel machine into a sequence of simple assignments� The method works
well only if the operations which are performed concurrently on the same global
memory address are identical� For mixing read� write� and multipre�x opera�
tions see the hardware description in Section 
�

� The SB�PRAM

The SB�PRAM� is a massively parallel multiprocessor architecture with p pro�
cessors that implements a priority CRCW PRAM with n � v � p processors�
It is based on Ranade�s Fluent Machine��� The shared memory is physically
distributed among p memory modules� Memory requests are transmitted be�
tween the processors and the memory modules via a butter�y network� The
SB�PRAM uses universal hashing to distribute addresses among the memory
modules� Every shared memory access is remote� Hashing avoids module con�
gestion and leads to a large but uniform memory access time� The latency

	



to access global memory is hidden by using multithreaded processors which
simulate v virtual processors in a pipeline� Each virtual processor has its own
register set� thus context switching does not cause any overhead� Network
latency is found to be 	 logp cycles �by simulation� even in the presence of
contention� hence v can be set to that or any larger value�

Concurrent access of multiple processors to some memory cell is handled
by combining� The requests of each physical processor are sorted according
to their hashed addresses� The sorted order of requests is maintained in each
network node by merging the incoming streams of requests� Requests to one
cell must inevitably meet and can be combined� Answers are duplicated on
the way back� Computation of parallel pre�x operation is implemented by the
same mechanism� The network nodes can perform simple integer arithmetic�

The sequential semantics of the priority PRAM permits us to split one
round of virtual processors into several subrounds� which makes the sorting
array cheaper� Only v�
 requests are sorted at a time� This leads to four
subrounds in the emulation of one PRAM step� Combining and concurrent
writing is performed in the memory for the di�erent subrounds� To guarantee
that di�erent operations on one cell are not issued in the same round� they can
be scheduled at run time in odd or even rounds� respectively�

The SB�PRAM prototype consists of p � ��� physical processors and the
same number of memory modules� A version with 
 processors is running�
the assembly of the complete prototype is not �nished yet� Each physical
processor implements v � 	� virtual processors which are scheduled round�
robin for every instruction� Load instructions to global memory are delayed
by one cycle� The speed of routing chips is 	�MHz� Due to pin restrictions�
requests are transmitted between chips in two cycles� Selection starts after
having received the �rst part of a request and takes two cycles as well� hence
network speed is ��MHz� A network utilization of ���� is not possible because
con�icts can occur� To keep the protocol between processors and network chips
simple� we chose cycle times that are multiples of each other� Hence� �MHz
was the maximum frequency for the processor�

The physical processor� the sorting chip and the network chip are realized
as ASICs� The register sets of the virtual processors are held o��chip in a
fast static RAM� With high end technology� e� g�� modern process technology�
optical links in the interconnection network� and a more sophisticated com�
piler� e� g�� separating local and global memory operations� a clock frequency
of ��MHz for the processor seems to be possible��






� System Software

In order to guarantee synchronous operation of the SB�PRAM and� thus� se�
quential semantics of programs� we avoid using interrupts� For handling exter�
nal I
O� e� g�� accessing disks� the operating system reserves one virtual pro�
cessor per physical processor� It polls on interrupt requests and then handles
them� So� 	� of the processing power is lost for the user�

In a multiprogramming environment� an interrupt is the only practical
means for aborting programs� Here� we interrupt all virtual processors at the
same time� and take care that the virtual processors which do not belong to
the aborted program leave the interrupt service routine simultaneously�

We ported and extended the GNU C�compiler for the SB�PRAM� The
di�erences to standard C lie in two newly introduced keywords� namely shared
and private as variable classes� and di�erent sizes for the elementary data
types �SB�PRAM is not byte but word oriented�� Besides simple C� the parallel
programming language FORK� is implemented for the machine� A library of
PRAM algorithms using FORK is under construction���

To express parallelism in C programs� the parallel library p
 has been
ported to the SB�PRAM�	 Among other routines� the library provides several
types of locks� barriers and ask�for constructs� To achieve portability� all of
them are based on a simple lock function� which must be adapted to a new
architecture� Besides the normal p
 macros� we implemented a very e�cient
parallel library which makes use of the multipre�x operation�

The sequential semantics is the means to prove the correctness of the
implementation� The basic operations for a lock� for instance� are implemented
in the following way�

lock init�l� l���

lock�l� while�mpmax�l���	����

unlock�l� l���

The lock is initialized by setting the lock variable to �� One or more
processors can do this step concurrently at the beginning of a program� If
a processor p wants to access the lock� p performs the lock operation until
the lock is granted� The multipre�x operation mpmax guarantees that only
one processor achieves a return value of � and l is set to �� An unsuccessful
processor spins in the lock until its request is granted� The unlocking operation
simply assigns � to l� A disadvantage of the simple lock described above is that
the processor with lowest priority may never get the lock� However� a fair lock
can be implemented by using a ticket mechanism�
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fair lock init�l� l
t��� l
c���

fair lock�l� my ticket�mpadd�l
t����

while�l
c	�my ticket��

fair unlock�l� l
c���

The fair lock is initialized by setting both the ticket counter and the current
ticket number to �� If a processor p wants to access the fair lock� p takes a
unique ticket through an mpadd operation on the ticket counter� Then� p waits
until the current ticket counter has reached its ticket value� The fair lock is
released by incrementing the current ticket number� giving the next processor
�in line� the chance to acquire the lock�

With almost the same simplicity� we can implement di�erent types of bar�
riers and parallel queues� The overhead in these data structures is constant
�from a virtual processor�s point of view�� Our implementation of a barrier has
to execute 	� instructions on every virtual processor� if the processors arrive
synchronously at the barrier� This time does not depend on the number of
participating processors� while the p
 variant of a barrier has a run time of
��p� 
� which is linear in the number p of participating processors� since the
underlying locks serialize the barrier�

	 Applications

As example problems we consider �ve irregular applications� most of which are
taken from the SPLASH application suite��
��	 the routing algorithm Locus�
Route from SPLASH�� for VLSI design� a ray tracing algorithm with a hier�
archical space subdivision�� the adaptive hierarchical radiosity algorithm from
SPLASH��� the conservative discrete event simulator PTHOR from SPLASH�
�� and the particle simulator MP	D from SPLASH��� We modi�ed the imple�
mentations to adapt them to the speci�c demands of an e�cient implementa�
tion on an architecture providing a large number of processors�

We consider a task oriented shared�memory model as the parallel program�
ming model in which we formulate a parallel program� The execution of an al�
gorithm is split up into tasks representing well�de�ned portions of computation


which are executed concurrently on di�erent processors� Di�erent tasks coop�
erate by accessing the same data structures in the shared memory� To maintain
determinism� a careful coordination of memory accesses is needed� This can
be achieved by the locking mechanism as described in Section �� A centralized
task pool is used to store all executable tasks� New tasks are included after
their creation but not before all tasks that they depend on have been executed�
A task is removed from the pool when it is assigned to a processor starting its
execution� The centralized task pool is implemented with multipre�x opera�
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tions� Therefore� it can be accessed in parallel by several processors without
serialization�

A potential user of a parallel machine is basically interested in the run

time and the memory requirement of the application suite to be executed on
the machine� Another important factor for the user is the e�ort needed to
port or program the parallel application onto the machine� The e�ort should
not outweigh the bene�t� To convince a user to take advantage of a parallel
computer� its performance must be predictable�

Besides run time� speedup and e�ciency are the means often used for a
quantitative performance analysis of parallel programs and the evaluation of
di�erent computer architectures� T � denotes the run time of the fastest known
sequential algorithm on one �physical� processor of the parallel machine and
T �p� denotes the run time of a parallel algorithm for p processors� We com�
pare di�erent algorithms and machines with two speedup de�nitions� relative

speedup sr � T ����T �p� and absolute speedup sa � T ��T �p��

We measure run time always as wall clock time on physical processors�
For the SB�PRAM as a parallel machine with multi�threading processors� we
present the run times and speedups in two forms� for a machine where each
physical processor is simulating v � 	� virtual processors and for an optimally
scaled machine for the given problem� To guarantee� in the second case� unit
access time to memory for a virtual processor of an SB�PRAM with p phys�
ical processors� each physical processor must simulate at least 	 logp virtual
ones� The network� the sorting array� and the number of banks in the memory
modules must be scaled as well� This leads to a special purpose machine opt�
SB�PRAM for the problem which might be unfair in a comparison with other
general purpose machines� however� we can present an upper bound for the
speedup which is achievable with an SB�PRAM�like architecture� Because we
are not interested in relative speedups respective to a slow virtual processor�
we measured the run times T ��� and T � using one physical processor where
only one virtual processor was busy� but we scaled the run time assuming that
the virtual processor runs with the clock frequency of the physical one�

For circuit simulation as a special case of discrete event simulation the
degree of parallelism is limited by the number of events that can be simulated
in parallel� We implemented the conservative asynchronous PTHOR simu�
lator using multipre�x operations whenever possible �for instance to resolve
the deadlocks�� The comparisons depicted in Figure � show that only the
SB�PRAM is able to exhibit a speedup larger than � provided the inherent
parallelism is not too small�

For complex scenes� ray tracing requires a highly unstructured read�only
access to the entire data base� We used a pixel oriented task pool to paral�
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Figure �� Absolute speedup on PTHOR for Dash�circuit 	very low inherent parallelism
� left�
and for Multiplier�circuit 	high inherent parallelism
� right�

lelize the kernel� Due to the nature of the problem and the properties of the
SB�PRAM almost linear absolute speedup can be achieved� Figure ��left� com�
pares the expected run time on an SB�PRAM with an �� processor KSR�� and
a � processor SGI challenge for a benchmark scenes with increasing number of
objects��

We implemented LocusRoute with two parallel task queues� one for wire
tasks and one for route tasks� Figure ��right� shows the impact of di�erent
implementations for the queues� The SB�PRAM is clocked four times slower
than DASH� an SB�PRAM achieves a better run time although the speedup is
smaller �Figure 	�� Instead of locking the data structure� we use multipre�x
commands for updating the cost array� Thus� many processors can be employed
without performance degradation�
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Figure �� Left� Comparison of the run times for ray tracing� Right� Relative speedup from
a virtual processor
s of view 	SB�PRAM
 for LocusRoute with di�erent implementations�

MP	D is a particle simulator for �uid dynamics problems� which uses a

�



0

50

100

150

200

0 2 4 6 8 10 12 14 16

ru
n 

tim
e 

[s
ec

on
ds

]

processors (physical)

DASH
SB-PRAM

opt-SB-PRAM

0

2

4

6

8

10

12

0 2 4 6 8 10 12 14 16

re
la

tiv
e 

sp
ee

du
p

processors (physical)

opt-SB-PRAM
DASH

SB-PRAM

Figure �� Run time and relative speedup of LocusRoute for the largest benchmark circuit�

uniform subdivision in cubic cells� We implemented a particle based task pool
to achieve dynamic load balancing� The change of the static mapping of the
original SPLASH implementation to the dynamic mapping leads to an increase
of the relative speedup from ��� to  ��� The SB�PRAM can exploit e�ciently
the high degree of parallelism of this application and achieves a three times
faster run time compared to DASH �Figure 
��
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Figure �� Run time of MP�D on DASH and SB�PRAM and relative speedup on DASH�
SB�PRAM� KSR��� and multiprocessor SGI� The number of particles was ����� on DASH

and SB�PRAM� ����� on KSR��� and ���� on SGI�

The hierarchical radiosity method is used for a fast simulation of global
illumination in environments with di�usely re�ecting surfaces� For the SB�
PRAM we use a lock management with modi�ed tasks of �ner granularity to
generate enough work for the virtual processors� The resulting speedup for 	�
processors is �
�� compared to � �� for the DASH� but the resulting program
is much simpler�
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