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We give a brief survey of the SB-PRAM architecture as a realization of the priority
CRCW PRAM model. The sequential semantics of a parallel program allows the
use of classical techniques to prove its correctness. The SB-PRAM shows good
performance and speedup for the presented five scientific applications which are—
due to their irregular behavior—difficult to parallelize efficiently on other parallel
machines.

1 Introduction

The SB-PRAM is a realization of a synchronously working priority CRCW
PRAM with single-instruction multiprefix operation. A four processor proto-
type is built!3 Synchronous means that all processors execute one instruction
within one time step (clock cycle). Concurrent read and concurrent write
(CRCW) means that different processors can read or write the same memory
cell simultaneously. Priority means that in case of concurrent write the par-
ticipating processor with largest number wins. Multiprefix means that several
groups of processors can perform parallel prefix operations at the same time.
The prefix order is determined by the priority as well. The execution time of
such an operation 1s equal to the execution time of a fixed point arithmetic
operation.

The concepts underlying the SB-PRAM have not been developed indepen-
dently from others. The concept of virtual processors in hardware was already
used in the Denelcor HEP!7 and is used again in the Tera MTA. The concepts
of hashing and combining were already used in the NYU Ultracomputer and
IBM RP3. NYU Ultracomputer, IBM RP3, Tera MTA, and Stanford DASH
also have hardware support for parallel prefix operations,!? although DASH is
restricted to increment/decrement. The aim of the SB-PRAM which is based
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on the Fluent Machine!® is to bring all these concepts together in a single
machine.

Section 2 introduces the PRAM model. In Section 3, we show how to prove
the correctness of a program on the SB-PRAM. Section 4 briefly describes the
hardware of the SB-PRAM and the current status of the prototype. It follows a
survey of the system software in Section 5. Section 6 presents the programming
model from a users point of view and briefly discusses some applications already
ported to the machine.

2 PRAM Model

The PRAM (Parallel Random Access Machiney is a model that allows the
specification and the analysis of parallel algorithms in a way that abstracts
from particular architectures. Hence, programmers can concentrate on paral-
lelism and need not to be concerned about implementation details. The model
assumes a finite number n of processors, each working like a random access ma-
chine. All processors can access a shared memory with the same speed as they
perform a fixed point arithmetic operation. The processors work synchronously
and, hence, there are no race conditions because of different processor speeds
as 1t might happen in distributed systems.

There are several variants of the PRAM model, depending on whether
one or several processors are allowed to simultaneously read or write a shared
memory location. The variants are EREW (exclusive read exclusive write),
CREW (concurrent read exclusive write) and CRCW (concurrent read concur-
rent write); the ERCW variant is not used. If concurrent writes are allowed,
there are several possibilities to determine which processor succeeds: An arbi-
trary processor might succeed, one can request that all participating processors
write a common value, or one can specify a priority among the processors, such
that the one with the highest priority succeeds. The priority CRCW PRAM
is the strongest model. The PRAM model has been successfully employed to

develop a wealth of parallel algorithms? ™10

3 Sequential Semantics

How can we prove that a parallel program for the SB-PRAM is correct? Gener-
ally, we cannot expect that we can prove the correctness of a parallel program
more easily than a sequential program, but the synchronous priority-CRCW
model provides a simple technique that enables us to prove the correctness in
the same way as for a sequential program.
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Consider the following example. Let p;,, ... p;, for ¢4 < ... < i be a
group of processors. Each processor p;; owns a local variable x; (for instance
a value stored in a register). Now, consider a concurrent write operation is
executed, i.e., each processor p;, writes its value z; into the global memory M
at address a. Let us write this (similar to C syntax) as p;; : M[a] = a;;. For the
priority CRCW PRAM, the k concurrent writes can be seen as k consecutive
write operations according to the order of the processors. Hence, in a proof
we can assume that the k assignments are performed one after another:

Mla]l = «1; ... M[a] = ag;

The value finally stored is 3. The more interesting example of a parallel
prefix operation illustrates more clearly the advantage of the sequential se-
mantics. Let us assume that each of the k processors participates in a parallel
prefix operation mpadd. With the same notation as above, let us write this as
pi; - mpadd(zx;, &a);. For the priority CRCW PRAM, the k concurrent prefix
operations can be seen as 3k consecutive assignments:

y1 = x1; 21 = Mlal; Mla]l+=y1; ... yp = 2p; 2 = M[a]; M[a]4+ = yr;

Hence, in the end we have the following correct semantics of a parallel
prefix add operation:

Mla)=Mlal+ > w x;=Mla+ > a

1<I<k 1<j

Thus, we can split the execution of one step of the synchronously work-
ing parallel machine into a sequence of simple assignments. The method works
well only if the operations which are performed concurrently on the same global
memory address are identical. For mixing read, write, and multiprefix opera-
tions see the hardware description in Section 4.

4 The SB-PRAM

The SB-PRAM' is a massively parallel multiprocessor architecture with p pro-
cessors that implements a priority CRCW PRAM with n = v - p processors.
It is based on Ranade’s Fluent Machine!* The shared memory is physically
distributed among p memory modules. Memory requests are transmitted be-
tween the processors and the memory modules via a butterfly network. The
SB-PRAM uses universal hashing to distribute addresses among the memory
modules. Every shared memory access is remote. Hashing avoids module con-
gestion and leads to a large but uniform memory access time. The latency
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to access global memory is hidden by using multithreaded processors which
simulate v virtual processors in a pipeline. Each virtual processor has its own
register set, thus context switching does not cause any overhead. Network
latency is found to be 3logp cycles (by simulation) even in the presence of
contention, hence v can be set to that or any larger value.

Concurrent access of multiple processors to some memory cell is handled
by combining. The requests of each physical processor are sorted according
to their hashed addresses. The sorted order of requests is maintained in each
network node by merging the incoming streams of requests. Requests to one
cell must inevitably meet and can be combined. Answers are duplicated on
the way back. Computation of parallel prefix operation is implemented by the
same mechanism. The network nodes can perform simple integer arithmetic.

The sequential semantics of the priority PRAM permits us to split one
round of virtual processors into several subrounds, which makes the sorting
array cheaper. Only v/4 requests are sorted at a time. This leads to four
subrounds in the emulation of one PRAM step. Combining and concurrent
writing is performed in the memory for the different subrounds. To guarantee
that different operations on one cell are not issued in the same round, they can
be scheduled at run time in odd or even rounds, respectively.

The SB-PRAM prototype consists of p = 128 physical processors and the
same number of memory modules. A version with 4 processors is running;
the assembly of the complete prototype i1s not finished yet. Each physical
processor implements v = 32 virtual processors which are scheduled round-
robin for every instruction. Load instructions to global memory are delayed
by one cycle. The speed of routing chips is 32 MHz. Due to pin restrictions,
requests are transmitted between chips in two cycles. Selection starts after
having received the first part of a request and takes two cycles as well, hence
network speed is 16 MHz. A network utilization of 100% is not possible because
conflicts can occur. To keep the protocol between processors and network chips
simple, we chose cycle times that are multiples of each other. Hence, 8 MHz
was the maximum frequency for the processor.

The physical processor, the sorting chip and the network chip are realized
as ASICs. The register sets of the virtual processors are held off-chip in a
fast static RAM. With high end technology, e. g., modern process technology,
optical links in the interconnection network, and a more sophisticated com-
piler, e.g., separating local and global memory operations, a clock frequency
of 96 MHz for the processor seems to be possible?
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5 System Software

In order to guarantee synchronous operation of the SB-PRAM and, thus, se-
quential semantics of programs, we avoid using interrupts. For handling exter-
nal 1/O, e.g., accessing disks, the operating system reserves one virtual pro-
cessor per physical processor. It polls on interrupt requests and then handles
them. So, 3% of the processing power is lost for the user.

In a multiprogramming environment, an interrupt is the only practical
means for aborting programs. Here, we interrupt all virtual processors at the
same time, and take care that the virtual processors which do not belong to
the aborted program leave the interrupt service routine simultaneously.

We ported and extended the GNU C-compiler for the SB-PRAM. The
differences to standard C lie in two newly introduced keywords, namely shared
and private as variable classes, and different sizes for the elementary data
types (SB-PRAM is not byte but word oriented). Besides simple C, the parallel
programming language FORK® is implemented for the machine. A library of
PRAM algorithms using FORK is under construction!!

To express parallelism in C programs, the parallel library p4 has been
ported to the SB-PRAM?® Among other routines, the library provides several
types of locks, barriers and ask-for constructs. To achieve portability, all of
them are based on a simple lock function, which must be adapted to a new
architecture. Besides the normal p4 macros, we implemented a very efficient
parallel library which makes use of the multiprefix operation.

The sequential semantics is the means to prove the correctness of the
implementation. The basic operations for a lock, for instance, are implemented
in the following way:

lock_init(1) 1=0;
lock(1l) while (mpmax(1,1)!=0);
unlock(l) 1=0;

The lock is initialized by setting the lock variable to 0. One or more
processors can do this step concurrently at the beginning of a program. If
a processor p wants to access the lock, p performs the lock operation until
the lock is granted. The multiprefix operation mpmaz guarantees that only
one processor achieves a return value of 1 and [ is set to 1. An unsuccessful
processor spins in the lock until its request is granted. The unlocking operation
simply assigns 0 to [. A disadvantage of the simple lock described above is that
the processor with lowest priority may never get the lock. However, a fair lock
can be implemented by using a ticket mechanism:
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fair_lock_init(l) 1.t=0; 1.c=0;

fair lock(1) my_ticket=mpadd(l.t,1);
while(1l.c'!'=my_ticket);
fair unlock(l) 1.c++;

The fair lock is initialized by setting both the ticket counter and the current
ticket number to 0. If a processor p wants to access the fair lock, p takes a
unique ticket through an mpadd operation on the ticket counter. Then, p waits
until the current ticket counter has reached its ticket value. The fair lock is
released by incrementing the current ticket number, giving the next processor
‘in line’ the chance to acquire the lock.

With almost the same simplicity, we can implement different types of bar-
riers and parallel queues. The overhead in these data structures is constant
(from a virtual processor’s point of view). Our implementation of a barrier has
to execute 36 instructions on every virtual processor, if the processors arrive
synchronously at the barrier. This time does not depend on the number of
participating processors, while the p4 variant of a barrier has a run time of
68p — 4, which is linear in the number p of participating processors, since the
underlying locks serialize the barrier.

6 Applications

As example problems we consider five irregular applications, most of which are
taken from the SPLASH application suite!®!® the routing algorithm Locus-
Route from SPLASH-1 for VLSI design, a ray tracing algorithm with a hier-
archical space subdivision®, the adaptive hierarchical radiosity algorithm from
SPLASH-2, the conservative discrete event simulator PTHOR from SPLASH-
1, and the particle simulator MP3D from SPLASH-1. We modified the imple-
mentations to adapt them to the specific demands of an efficient implementa-
tion on an architecture providing a large number of processors.

We consider a task oriented shared-memory model as the parallel program-
ming model in which we formulate a parallel program. The execution of an al-
gorithm is split up into tasks representing well-defined portions of computation’
which are executed concurrently on different processors. Different tasks coop-
erate by accessing the same data structures in the shared memory. To maintain
determinism, a careful coordination of memory accesses is needed. This can
be achieved by the locking mechanism as described in Section 5. A centralized
task pool is used to store all executable tasks. New tasks are included after
their creation but not before all tasks that they depend on have been executed.
A task is removed from the pool when it is assigned to a processor starting its
execution. The centralized task pool is implemented with multiprefix opera-
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tions. Therefore, it can be accessed in parallel by several processors without
serialization.

A potential user of a parallel machine is basically interested in the run
time and the memory requirement of the application suite to be executed on
the machine. Another important factor for the user is the effort needed to
port or program the parallel application onto the machine. The effort should
not outweigh the benefit. To convince a user to take advantage of a parallel
computer, its performance must be predictable.

Besides run time, speedup and efficiency are the means often used for a
quantitative performance analysis of parallel programs and the evaluation of
different computer architectures. T* denotes the run time of the fastest known
sequential algorithm on one (physical) processor of the parallel machine and
T(p) denotes the run time of a parallel algorithm for p processors. We com-
pare different algorithms and machines with two speedup definitions: relative
speedup s, = T(1)/T(p) and absolute speedup sq = T*/T(p).

We measure run time always as wall clock time on physical processors.
For the SB-PRAM as a parallel machine with multi-threading processors, we
present the run times and speedups in two forms: for a machine where each
physical processor is simulating v = 32 virtual processors and for an optimally
scaled machine for the given problem. To guarantee, in the second case, unit
access time to memory for a virtual processor of an SB-PRAM with p phys-
ical processors, each physical processor must simulate at least 3logp virtual
ones. The network, the sorting array, and the number of banks in the memory
modules must be scaled as well. This leads to a special purpose machine opt-
SB-PRAM for the problem which might be unfair in a comparison with other
general purpose machines; however, we can present an upper bound for the
speedup which is achievable with an SB-PRAM-like architecture. Because we
are not interested in relative speedups respective to a slow virtual processor,
we measured the run times 7'(1) and 7™ using one physical processor where
only one virtual processor was busy, but we scaled the run time assuming that
the virtual processor runs with the clock frequency of the physical one.

For circuit simulation as a special case of discrete event simulation the
degree of parallelism is limited by the number of events that can be simulated
in parallel. We implemented the conservative asynchronous PTHOR, simu-
lator using multiprefix operations whenever possible (for instance to resolve
the deadlocks). The comparisons depicted in Figure 1 show that only the
SB-PRAM is able to exhibit a speedup larger than 1 provided the inherent
parallelism is not too small.

For complex scenes, ray tracing requires a highly unstructured read-only
access to the entire data base. We used a pixel oriented task pool to paral-
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Figure 1: Absolute speedup on PTHOR for Dash-circuit (very low inherent parallelism), left,
and for Multiplier-circuit (high inherent parallelism), right.

lelize the kernel. Due to the nature of the problem and the properties of the
SB-PRAM almost linear absolute speedup can be achieved. Figure 2(left) com-
pares the expected run time on an SB-PRAM with an 18 processor KSR-1 and
a 1 processor SGI challenge for a benchmark scenes with increasing number of
objects3

We implemented LocusRoute with two parallel task queues: one for wire
tasks and one for route tasks. Figure 2(right) shows the impact of different
implementations for the queues. The SB-PRAM is clocked four times slower
than DASH, an SB-PRAM achieves a better run time although the speedup 1is
smaller (Figure 3). Instead of locking the data structure, we use multiprefix
commands for updating the cost array. Thus, many processors can be employed
without performance degradation.
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Figure 2: Left: Comparison of the run times for ray tracing. Right: Relative speedup from
a virtual processor’s of view (SB-PRAM) for LocusRoute with different implementations.

MP3D is a particle simulator for fluid dynamics problems, which uses a
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Figure 3: Run time and relative speedup of LocusRoute for the largest benchmark circuit.

uniform subdivision in cubic cells. We implemented a particle based task pool
to achieve dynamic load balancing. The change of the static mapping of the
original SPLASH implementation to the dynamic mapping leads to an increase
of the relative speedup from 20% to 70%. The SB-PRAM can exploit efficiently
the high degree of parallelism of this application and achieves a three times
faster run time compared to DASH (Figure 4).

700 T T T T T T LT T T T T T T
600 DASH -o— . opt-SB-PRAM —<—
= SB-PRAM —+-- 10 |- SB-PRAM —-- i
e DASH B+
° 500 opt-SB-PRAM  -EF-- S
< b SGI -x
§ 400 g 8 KSR-1 - b
— 0
g 300 E 6 P 7
S 200 K 4l 4
100 | 4 2 e B
B A e X
o Lo L L 1 1 1 T P e i ettt sttt St
2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16
processors (physical) processors (physical)

Figure 4: Run time of MP3D on DASH and SB-PRAM and relative speedup on DASH,
SB-PRAM, KSR-1, and multiprocessor SGI. The number of particles was 40000 on DASH
and SB-PRAM, 50000 on KSR-1, and 8000 on SGI.

The hierarchical radiosity method is used for a fast simulation of global
illumination in environments with diffusely reflecting surfaces. For the SB-
PRAM we use a lock management with modified tasks of finer granularity to
generate enough work for the virtual processors. The resulting speedup for 32
processors is 24.5 compared to 27.5 for the DASH, but the resulting program
is much simpler.
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