
1

Extending Static Scheduling Algorithms for

Moldable Tasks towards Dynamic Scheduling

of Multiple Applications with

Soft Real-time Properties

Extended Abstract

Jörg Keller

Parallelism and VLSI Group, FernUniversität in Hagen, Germany

Abstract: We investigate scheduling of multiple parallel applications

with real-time constraints and the goal of energy minimization onto

a multicore processor with frequency scaling. We propose a method

to employ recent static scheduling algorithms for parallelizable tasks

and adapt them in order to create a dynamic scheduler for the situa-

tionwhere applicationsmay terminate, new applicationsmay start, or

applications change their behaviour, e.g. their degree of parallelism,

at runtime. We list achievements so far and open problems.

1 Introduction

We consider real-time computing in the sense that a number of tasks (with dif-

ferent computational requirements) must be periodically invoked in order to

meet real-time constraints in the form of minimum required throughput or max-

imum latency for reaction. Worst-case execution time (WCET) analysis of task

code together with static scheduling of tasks has been employed for many years

to ensure meeting the imposed real-time constraints. In recent years, several

developments have widened the scope of real-time computing.

• Processor cores can be frequency scaled also in embedded systems, with

the possibility to reduce power and energy consumption, but with the con-

sequence that execution speed of tasks can vary, which complicates static

analysis and scheduling.



2 J. Keller

• Even embedded microprocessors comprise multiple cores, in order to in-

crease processing capability while maintaining moderate frequency and

thus power consumption levels. This increases complexity of scheduling,

even if interferences between tasks (like contention on shared memory) do

not occur.

• Tasks have become more and more complex, so that tasks themselves

might have to be parallelized in order to meet latency constraints. This

again complicates scheduling, especially if the degree of parallelism is a

parameter to be determined by the static scheduler. Also, the parallel ef-

ficiency of a task for different core counts must be analyzed statically in

addition to the sequential WCET.

• The consolidation of embedded systems to reduce the number of process-

ing elements puts multiple applications onto one multicore. Thus, if not

all applications are always active, the situation occurs that the workload

changes which necessitates a change of the (so far static) schedule. Sim-

ilarly, an application which might be used in two different environments

might change its behaviour while running, which also changes the work-

load, with similar effect.

We investigate the problem how far static scheduling with all its advantages

can still be used when all the above extensions are taken into account. Some

of the challenges have already been addressed. For example, there are several

static scheduling algorithms that compute energy-optimal or close-to-optimal

schedules for independent, parallelizable1 tasks with a common deadline on

multicore processors with frequency scaling [3–5]. Some of these algorithms

assume discrete frequency levels and allow arbitrary power profiles of cores, so

that their processor model is quite realistic. By assigning frequency levels per

task, the algorithms overcome some of the limitations from a small number of

available frequencies. Thus, as long as the different tasks of an application have

a common periodicity2 those scheduling algorithms can be used. While those

algorithms require the parallel efficiency functions of the parallel tasks as an

input, there are approaches to use profiling on codes in order to compute a table

of parallel efficiencies for different core counts [2]. Multiple applications, where

1The tasks are assumed to bemoldable, i.e. they do not change their degree of parallelism during

runtime.
2If not, it might be possible to achieve that situation by finding a small least common multiple

of the individual deadlines and duplicating tasks accordingly.



Scheduling Multiple Real-time Applications 3

all applications are present all the time, could be treated by considering all of

their tasks together.

Despite all these achievements, the last item in the list above requires dynamic

adaption. If an application terminates, the slots for its tasks remain empty, and

the resulting idle times could be used to improve energy efficiency by slowing

down other tasks. If an application starts while others are already running, the

additional tasks from the new application must be mapped to cores, and some

of the frequencies must be increased in order to handle the increased workload.

Finally, an application that modifies its behaviour can be considered a combina-

tion of the previous two cases: the old behaviour terminates, the new behaviour

starts. At least, a partial problem has been addressed in [1]: For a single par-

allel application, compiler analysis is available to determine different phases of

the application, where a phase represents a period of fixed performance require-

ments and parallel efficiency. The application is instrumented so that it informs

the operating system scheduler when it enters a new phase. The information

comprises the future performance requirement and degree of parallelism, so

that the scheduler can adapt frequencies and core allocations.

2 Proposed Approach

To tackle the problem for multiple applications, we propose to extend the cur-

rent procedure of static scheduling and subsequent execution as follows.

Initially, a set of applications with known task behaviours is present. Thus, a

static scheduling algorithm can be used to compute a schedule that allows to

repeatedly invoke all the tasks with chosen frequencies such that all deadlines

are respected and energy (per scheduling round) is minimized.

If an application terminates, we leave the schedule as it is, i.e. we create idle

phases where the tasks of the terminated application have been mapped. This

schedule still respects all deadlines, but is not necessarily energy-optimal any-

more. We call this an ad-hoc adapted schedule.

If another application (with known task characteristics) starts at some time, then

it is mapped to as many cores as possible, and the frequencies of these cores are

increased to a level that ensures that the deadlines are respected. Such a level

must exist if we assume that the system is not overloaded. Also this schedule is

ad-hoc adapted.



4 J. Keller

If some application enters a new phase, it informs the runtime system about

its new behaviour and is treated like a combination of a terminated and a new

application, with the difference that the idle phases created by “terminating”

the previous phase are preferably used to map the tasks for the new phase.

As the ad-hoc adapted schedules still respect all deadlines, the real-time proper-

ties of the system aremaintained, only the energy per roundmay not beminimal

anymore. Therefore, if the system has switched to an ad-hoc adapted schedule,

it may invest some resources (in addition to invoking the application tasks) to

compute a new energy-optimal schedule. As soon as this schedule is ready, it

replaces the ad-hoc adapted schedule, and the system is energy-optimal again.

3 Open Problems

So far, the proposed approach has not been implemented, although implemen-

tations of some parts are available (cf. the literature in Sect. 1). Thus, the pa-

rameters for such a system to run smoothly must be determined. For example,

so far it is not exactly known how much energy must be spent to compute a

new optimized schedule. While there are indications that it is much cheaper to

compute a schedule that only differs little from a previously computed sched-

ule (in contrast to computing a schedule from scratch), this has to be tested.

Also, the energy to compute a schedule has to be put in relation to the energy

savings achievable when going from an ad-hoc adapted schedule to an opti-

mal schedule again. Hence, if the ad-hoc adapted schedule is close to optimum,

one could wait until several changes have assembled before computing a new

energy-optimal schedule. Consequently, the frequency of changes in workload

would be needed for an assessment. This could be achieved by benchmarking

real-time applications with these characteristics, as far as they are available. Yet

it could also turn out a chicken-and-egg problem, where systems with multiple

real-time applications of changing behaviour only show up when appropriate

scheduling algorithms are available. Finally, the accuracy of the scheduling fore-

cast must be tested by implementing a prototype on a real machine. Ultimately,

a production system would need operating system support for applying the

above proposal, or even integration of such a proposal into the scheduler of a

real-time operating system.

Acknowledgements

I would like to thank Christoph Kessler for several helpful discussions about

this topic.



Scheduling Multiple Real-time Applications 5

References

[1] Simon Holmbacka, Erwan Nogues, Maxime Pelcat, Sebastien Lafond and

Johan Lilius. Energy Efficiency and Performance Management of Parallel

Dataflow Applications. In: Proc. Conference on Design and Architectures for

Signal and Image Processing (DASIP), 2014, pp. 1–8.

[2] ChristophW. Kessler, Welf Löwe. Optimized Composition of Performance-

aware Parallel Components. Concurrency and Computation: Practice and

Experience, Volume 24 Issue 5, 2012, pp. 481–498.

[3] Nicolas Melot, Christoph Kessler, Jörg Keller, Patrick Eitschberger. Fast

Crown Scheduling Heuristics for Energy-Efficient Mapping and Scaling

of Moldable Streaming Tasks on Manycore Systems. ACM Transactions on

Architecture and Code Optimization (TACO), Volume 11 Issue 4, January

2015, Article No. 62.

[4] Peter Sanders and Jochen Speck. Energy efficient frequency scaling and

scheduling for malleable tasks. In: Proc. 18th International Conference Euro-

Par, 2012, pp. 167–178.

[5] H. Xu, F. Kong, and Q. Deng. Energy minimizing for parallel real-time

tasks based on levelpacking. In: Proc. 18th International Conference on Em-

bedded and Real-Time Computing Systems and Applications (RTCSA12), 2012,

pp. 98–103.


