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Abstract—Many-core systems provide a great performance po-
tential with the massively parallel hardware structure. Yet, these
systems are facing increasing challenges such as high operating
temperatures, high electrical bills, unpleasant noise levels due
to active cooling and high battery drainage in mobile devices;
factors caused directly by poor energy efficiency. Furthermore
by pushing the power beyond the limits of the power envelope,
parts of the chip cannot be used simultaneously – a phenomenon
referred to as “dark silicon”. Power management is therefore
needed to distribute the resources to the applications on demand.
Traditional power management systems have usually been ag-
nostic to the underlying hardware, and voltage and frequency
control is mostly driven by the workload. Static schedules, on
the other hand, can be a preferable alternative for applications
with timing requirements and predictable behavior since the
processing resources can be more precisely allocated for the given
workload. In order to efficiently implement power management
in such systems, an accurate model is important in order to make
the appropriate power management decisions at the right time.
For making correct decisions, practical issues such as latency
for controlling the power saving techniques should be considered
when deriving the system model, especially for fine timing gran-
ularity. In this paper we present an accurate energy model for
many-core systems which includes switching latency of modern
power saving techniques. The model is used when calculating an
optimal static schedule for many-core task execution on systems
with dynamic frequency levels and sleep state mechanisms. We
derive the model parameters for an embedded processor with the
help of benchmarks, and we validate the model on real hardware
with synthetic applications that model streaming applications. We
demonstrate that the model accurately forecasts the behaviour on
an ARM multicore platform, and we also demonstrate that the
model is not significantly influenced by variances in common type
workloads.

I. INTRODUCTION

Computer systems often face a trade-off decision between
performance and power dissipation. High power dissipation
and fast execution usually lead to high energy consumption
in modern many-core systems [13], [12]. Execution speed
is usually optimized by the programmer and compiler while
minimizing energy is often left to the operating system which
employs Dynamic Voltage and Frequency Scaling (DVFS)
and Dynamic Power Management (DPM) using sleep states.
However, an operating system with a dynamic scheduler has no
knowledge about the application, its behavior and its timeline.
In practice, the power management for dynamic schedules is
performed with respect only to the workload level, which does
not describe performance requirements. This means that the

application is normally executed faster than what is actually
required, and energy is being wasted because of the unneces-
sarily high power dissipation.

For applications consisting of a set of tasks with a pre-
dictable behavior and a known execution deadline, a schedule
with the information when to execute which task at which
speed can be devised at compile time (i.e. a static schedule).
With hints from the application, the power management tech-
niques can more precisely scale the hardware according to the
software performance demands, and energy is minimized by
eliminating unnecessary resource allocation. However, Power
management is a practical interplay between software al-
gorithms and physical hardware actions. This means that
accessing power management techniques in general purpose
operating systems introduces practical shortcomings such as
access latency. Two separate mechanisms – DVFS and DPM –
are currently used for minimizing the CPU power dissipation.
As DVFS regulates voltage and frequency to minimize the
dynamic power, DPM is used to switch off parts of the CPU
to minimize the rapidly growing static power [16]. The tech-
niques are therefore complementing each other and a minimal
energy consumption is achieved by proper coordination of
both techniques [1], [24]. While both mechanisms have been
evaluated in the literature [9], [17], no work has been done to
determine the practical latency of both DVFS and DPM on a
single platform, and its impact on power management.

In this work we present an accurate energy model for
static schedules in many-core systems using DVFS and DPM.
The model is based on measurements of a single synthetic
application on real hardware to conform with complete plat-
form details and a realistic view of the static and dynamic
power balance. In practical real-world systems, there is always
a certain latency for utilizing DVFS and DPM both due to
hardware and software implementations (in this paper Linux).
Instead of focusing on eliminating or minimizing this latency,
we chose to acknowledge this short coming in current com-
puting systems, and learn how to integrate this detail in the
system model. We account for the latency of using DVFS and
DPM on a statically scheduled many-core system by including
the timings in the decision making process of power manage-
ment techniques. We validate the results by implementing a
framework for synthetic workloads on real hardware (ARM
multicore) running an unmodified Linux OS. The evaluation
demonstrates that the model is able to accurately forecast
the energy consumption of a selected static schedule under
different workload configurations and different deadlines. We



also demonstrate by experiments that the forecasts of the model
remain stable if the benchmarks used to generate the model
and the applications scheduled by the model differ in their
characteristics.

The repeated execution of our synthetic applications (set of
tasks with predictable workload and common deadline) models
streaming applications with throughput requirements, which
form a large class of applications for many-core processors.
Considering several executions (rounds) together can allow
further optimizations, which we include into our model. While
our experiments only address a single platform, we note that
the approach can be applied to other hardware platforms with-
out re-engineering the core algorithm, as long as the platforms
allow measurement for creating the model parameters.

The remainder of this article is structured as follows.
In Section II, we discuss related work. In Section III, we
investigate the latency and energy overhead of DVFS and
DPM mechanisms as experienced by applications running on
typical platform (ARM multicore) with a typical operating
system (Linux). From these measurements we derive an energy
model for task-based applications in Section IV. In Section V,
we evaluate the forecasting capabilities of this energy model
with respect to execution on a real hardware. We extend
the model towards streaming applications in Section VI, and
present additional energy optimizations possible by scheduling
several rounds of computation together. In Section VII, we give
conclusions and an outlook onto future work.

II. RELATED WORK

DVFS and its efficiency for multi-cores has been studied
in the past [9], [17], but mostly the focus has been put directly
on measuring the overhead of physically switching hardware
states [17], [27] including PLL locking, voltage level switching
etc. Mazouz et al. present in [25] a frequency transition latency
estimator called FTaLaT, which chooses a frequency depending
on the current phase of a program. They argue that programs
mostly have either CPU intensive phases in which the CPU
is running on a high clock frequency or memory intensive
phases in which the clock frequency can be decreased to save
power. For very small memory intensive regions, it is favorable
to ignore the frequency scaling because the switching delay
would be higher than the length of the memory phase. They
evaluate their estimator with a few micro-benchmarks (based
on OpenMP) on different Intel machines, and they show that
the transition latency varies between 20 and 70 microseconds
depending on the machine. As the total switching latency is
the sum of both hardware and software mechanisms, we study
in this paper the practical aspects of switching latency in both
DVFS and DPM for off-the-shelf operating systems running
on real hardware. Influences of user space interaction and the
kernel threads which control the power saving mechanisms are
studied, and related to the effects on the energy consumption.

The paper of Schöne et al. [29] describes the implemen-
tation of the low-power states in current x86 processors. The
wake-up latencies of various low-power states are measured
and the results are compared with the vendor’s specifications
that are exposed to the operating system. The results show fluc-
tuations e.g. depending on the location of the callee processor.
Their work complements ours, but rather than using the x86

architecture we focus on mobile ARM processors with less
support for hardware power management.

Algorithms for minimizing energy based on power and
execution time have been presented in previous work such
as [3], [9], [10]. Cho et al. define an analytical algorithm
for expressing dynamic and static power in a multi-core
system with multiple frequency levels. The minimum-energy-
operation point is then calculated by determining the first order
derivative of the system energy with respect to time. The math-
ematical expression defined in [3] exploits the task parallelism
in the system to determine the amount of processing elements
required, and hence influencing the static power dissipation.
In our work, we define the system power model based on
experiments on real hardware rather than analytical expressions
in order to tailor the model closer to real-world devices.

The work in [10] uses similar reasoning to determine an
energy efficient frequency based on the timing guarantees and
available resources for real-time tasks. Their mechanism was
able to map a certain number of replica tasks in a multi-core
system in order to parallelize the work to an optimal number
of cores running on an optimal frequency. Similar to [3], the
authors used a bottom-up model to define the power as an
analytical expression without taking temperature into account.

The work in [20] defines an algorithm for calculating
the minimum energy consumption for a microprocessor when
taking both dynamic power and static power into account in a
system with DVFS and DPM. The authors define an analytical
expression for the power dissipation and divides the workload
for a given timeline into active time slots and sleep slots, and
calculates the total energy over a given time with a given power
dissipation for each slot.

In [21] an Energy-Aware Modeling and Optimization
Methodology (E-AMOM) framework is presented. It is used
to develop models of runtime and power consumption with
the help of performance counters. These models are used to
reduce the energy by optimizing the execution time and power
consumption with focus on HPC systems and scientific appli-
cations. Our approach follows the same principle, but instead
we use a top-down power model based on real experiments
rather than analytical expressions. We also account for the
latency of both DVFS and DPM which, as explained, becomes
important when the time scale is shrinking.

Gerards and Kuper [6] describe various possibilities and
techniques to reduce the energy consumption of a device (e.g.
a processor core) under real-time constraints. They describe
the problems and present optimal solutions for DPM-based
and also combined DPM and DVFS approaches when both
the energy and time for scaling the frequency and shutdown
or wakeup a core are considered. The theoretical part is close
to ours but they only focus on single devices with a fixed
deadline and on real-time systems. In our approach we focus
on many-core processors and static schedules and we consider
different deadlines for each schedule.

Zuhravlev et al. [32] give a survey of energy-cognizant
scheduling techniques. Many scheduling algorithms are pre-
sented and different techniques are explained. They distinguish
between DVFS and DPM-based solutions, thermal manage-
ment solutions and asymmetry-aware scheduling. None of



the described scheduling algorithms take the switching or
shutdown/wakeup overhead into account like our approach.

While acknowledging that DVFS and DPM are possible
energy savers in data centers [5], [19], [14], our work focus
on core level granularity with a smaller time scale and our
measurements are based on the per-core sleep state mechanism
rather than suspension to RAM or CPU hibernation. Aside
from the mentioned differences, none of the previous work
deals with latency overhead for both DVFS and DPM on
a practical level from the operating system’s point of view.
Without this information, it is difficult to determine the ad-
ditional penalty regarding energy and performance for using
power management on modern multi-core hardware using an
off-the-shelf OS such as Linux.

III. POWER DISTRIBUTION AND LATENCY
OF POWER-SAVING MECHANISMS

Power saving techniques in microprocessors are hardware-
software coordinated mechanisms used to scale up or down
parts of the CPU dynamically during runtime. We outline
the functionalities and current implementation in the Linux
kernel to display the obstacles of practically using power
management.

A. Dynamic Voltage and Frequency Scaling (DVFS)

The DVFS functionality was integrated into microproces-
sors to lower the dynamic power dissipation of a CPU by
scaling the clock frequency and the chip voltage. Equation
1 shows the simple relation of these characteristics and the
dynamic power

Pdynamic = C · f · V 2 (1)

where C is the effective charging capacitance of the CPU,
f is the clock frequency and V is the CPU supply voltage.
Since DVFS reduces both the frequency and voltage of the
chip (which is squared), the power savings are more significant
when used on high clock frequencies [28], [31].

The relation between frequency and voltage is usually
stored in a hardware specific look-up table from which the
OS retrieves the values as the DVFS functionality is utilized.
Since the clock frequency switching involves both hardware
and software actions, we investigated the procedure in more
detail to pinpoint the source of the latency. In a Linux based
system the following core procedure describes how the clock
frequency is scaled:

1) A change in frequency is requested by the user
2) A mutex is taken to prevent other threads from changing
the frequency
3) Platform-specific routines are called from the generic
interface
4) The PLL is switched out to a temporary MPLL source
5) A safe voltage level for the new clock frequency is selected
6) New values for clock divider and PLL are written to
registers
7) The mutex is given back and the system returns to normal
operation

1) DVFS implementations: To adjust the DVFS settings,
the Linux kernel uses a frequency governor [15] to select,
during run-time, the most appropriate frequency based on a set
of policies. In order to not be affected by the governors, we
selected the userspace governor for application-controlled
DVFS. The DVFS functionality can be accessed either by
directly writing to the sysfs interface or by using the system
calls. By using the sysfs, the DVFS procedure includes file
management which is expected to introduce more overhead
than calling the kernel headers directly from the application.
We studied, however, both options in order to validate the
latency differences between the user space interface and the
system call.

a) System call interface: The system call interface for
DVFS under Linux is accessible directly in the Linux kernel.
We measured the elapsed time between issuing the DVFS
system call and the return of the call which indicates a
change in clock frequency. Listing 1 outlines the pseudo code
for accessing the DVFS functionality from the system call
interface.

#include <cpufreq.h>
#include <sys/time.h>
latency_syscall(){
gettimeofday(&time1);
cpufreq_set_frequency(Core0, FREQ1);
gettimeofday(&time2);
cpufreq_set_frequency(Core0, FREQ2);
gettimeofday(&time3);

}

Listing 1. Pseudo code for measuring DVFS latency using system calls

b) User space interface: The second option is to use the
sysfs interface for accessing the DVFS functionality from
user space. The CPU clock frequency is altered by writing the
frequency to be used from now on into a sysfs file, which
is read and consequently used to change the frequency. The
kernel functionality is not directly called from the c-program,
but file system I/O is required for both reads and writes to
the sysfs filesystem. Listing 2 outlines an example for the
DVFS call via the sysfs interface.

#include <sys/time.h>
latency_sysfs(){
gettimeofday(&time1);
system("echo FREQ1 > /sys/devices/system/cpu/cpu0/cpufreq/

scaling_setspeed");
gettimeofday(&time2);
system("echo FREQ2 > /sys/devices/system/cpu/cpu0/cpufreq/

scaling_setspeed");
gettimeofday(&time3);

}

Listing 2. Pseudo code for measuring DVFS latency using sysfs

2) DVFS Measurement results: The user space and the
kernel space mechanisms were evaluated, and the results
are presented in this section. Since the DVFS mechanism
is ultimately executed on kernel- and user space threads,
the system should be stressed using different load levels to
evaluate the impact on the response time. For this purpose, we
used spurg-bench [23]. Spurg-bench is a benchmark



Fig. 1. Average latency for changing clock frequency under different load
conditions using system call and sysfs mechanisms

capable of generating a defined set of load levels on a set
of threads executing for example floating point multiplica-
tions. We generated load levels in the range [0;90]% using
spurg-Bench. Furthermore we generated a load level of
100% using stress1 since this benchmark is designed to
represent the maximum case CPU utilization. All experiments
were iterated 100 times with different frequency hops, and with
a timing granularity of microseconds. We used an Exynos 4412
SoC with an ARM core capable of clock speeds in the range
[200;1600] MHz.

Figure 1 shows the average latency for all load levels and
with frequency hops from 1600 to 200 MHz and from 200 to
1600 MHz. When using the system call interface, the average
latency decreases slightly when increasing the load (left part
of Figure 1). On the other hand, the switching latency has a
strong correlation to current frequency and target frequency in
the sysfs implementation. The measurements of the sysfs
interface show a latency increase until the load is roughly
60% after which it slightly declines and finally increases when
stressing the CPU to 100%. As expected, the latency is shorter
as the CPU frequency jumps from 1600 to 200 MHz because
most of the DVFS procedure (including the file system call) is
executed on the higher frequency. Table I shows the standard
deviation from samples in the same experiments. The sysfs
experiments show a much higher standard deviation because
of filesystem I/O when accessing the sysfs filesystem.

B. Dynamic Power Management (DPM)

In older generation microprocessors, most of the power was
dissipated by switching activities in the chip (dynamic power).
In recent years, the static power has, on the other hand, become
more dominant [16], and is even expected to dominate the total
power dissipation in next generation microprocessors [22].
The static power is dissipated due to leakage currents through

1http://people.seas.harvard.edu/ apw/stress/

TABLE I. STANDARD DEVIATION OF DVFS LATENCY USING SYSTEM
CALL AND SYSFS

Load 0% 25% 50% 75% 90% 100%
1600-200MHz

System call 2% 5% 5% 6% 6% 8%
sysfs 27% 28% 40% 26% 20% 30%

200-1600MHz
System call 3% 6% 6% 8% 6% 6%
sysfs 25% 30% 34% 39% 29% 25%

transistors, which is mostly a result of subthreshold and gate-
oxide leakage [18]. Equation 2 shows the subthreshold leakage
current

Isub = K1 ·W · e−Vth/n·Vθ (1− e−V/Vθ ) (2)

where K1 and n are architecture specific constants, W is the
gate width and Vθ is the thermal voltage. Hence, the silicon
temperature causes an exponential increase in leakage currents
[8]. Moreover, when lowering the supply voltage of integrated
circuits, the subthreshold leakage current increases which also
increases the dissipated static power [2], [30]. The leakage
current is present as long as the chip (or parts of the chip) is
connected to a power source. This means that in order to reduce
the leakage current, parts of the chip must be disconnected
from the power source and re-connected as the functionality
is required again.

CPU sleep states (or DPM) are used to disable parts of the
CPU on demand to decrease the static power consumption. The
functionality is accessed in Linux by the CPU hotplug facility,
which was originally implemented to replace physical CPUs
during run-time. On our test platform the hotplug functionality
places the core in a Wait For Interrupt (wfi) state in which
the core clock is shut down, and re-activated as soon as the
core receives an interrupt from another core. The functionality
of hotplugging a core differs depending on the state of the
core designated to be turned off. In case the core is executing
workload, the mechanism re-allocates the workload to another
core in order to make it idle. In case the core is idle this action
is not required. The hotplug functionality can be accessed in
Linux either as a kernel space module or directly from user
space using the sysfs interface.

The hotplug implementation consists of a platform-
independent part and a platform-specific part, which lastly calls
the CPU specific assembly routines for accessing the hotplug.
The following procedure describes how the hotplug mechanism
is used to shut down a core:

1) A core shutdown command is issued in the system
2) The system locks the core with a mutex in order to block
tasks from being scheduled to this core
3) A notification is sent to the kernel:
CPU_DOWN_PREPARE
4) A kernel thread executes a callback function and receives
the notification
5) Tasks are migrated away from the core being shut down
6) A notification is sent to the kernel: CPU_DEAD
7) A kernel thread executes a callback function and receives
the notification
8) Interrupts to the core are disabled, the cache is flushed and
the cache coherency is turned off
9) Power source is removed and core is physically shut down

As seen from the procedure, the shutdown of a core is
reliant on callback functionalities in the Linux kernel, which
means that the system performance and current utilization
will affect the response time of the scheduled kernel thread
issuing this functionality. As suggested in [7], improvements
can be made to decrease the hotplug latency but the current
main stream kernels still rely on the aforementioned callback
facilities. The wake-up procedure is, similarly to the shutdown
procedure, dependent on callbacks but with an inter-core
interrupt to trigger the core startup.



1) CPU hotplug implementations: Two separate experi-
ments were conducted to determine the latency of CPU hotplug
from kernel space and user space. Similarly to the DVFS
measurements, we measured the elapsed time between issuing
the shutdown/wake-up call and the return of the call.

a) Kernel space module: In the first implementation we
accessed the CPU hotplug functionality directly in a kernel
module which Linux executes in kernel space with closer
access to the hardware. Listing 3 outlines the functionality
of accessing the CPU hotplug in kernel space.

#include <linux/cpu.h>
#include <linux/time.h>
latency_kernel(){
mutex_lock(&lock);
do_gettimeofday(&time1);
cpu_down(1); //Core 1 is shut down
do_gettimeofday(&time2);
mutex_unlock(&lock);
mutex_lock(&lock);
do_gettimeofday(&time3);
cpu_up(1); //Core 1 is waken up
do_gettimeofday(&time4);
mutex_unlock(&lock);

}

Listing 3. Pseudo code for measuring hotplug latency in kernel module

b) User space interface: The second mechanism for
accessing the CPU hotplug functionality was implemented as
a normal user space application accessing sysfs files. The
benefit of using the user space functionality rather than the
kernel space is a significantly simpler implementation and
misbehavior in user space will be intercepted safely by the
kernel rather than causing system crashes. The downside is an
expected higher latency for accessing the hardware due to file
system I/O and kernel space switches. Listing 4 outlines the
functionality of accessing the CPU hotplug in user space.

#include <sys/time.h>
latency_user(){
gettimeofday(&time1);
system("echo 0 > /sys/devices/system/cpu/cpu1/online");
gettimeofday(&time2);
system("echo 1 > /sys/devices/system/cpu/cpu1/online");
gettimeofday(&time3);

}

Listing 4. Pseudo code for measuring hotplug latency in user space

2) CPU hotplug results: Similarly to the DVFS exper-
iments, we stressed the system with different load levels
using spurg-bench. The system was running on a selected
range of clock frequencies and the timings were measured on
microsecond granularity.

Figure 2 shows the average latency for shutting down
a core in kernel- and user space respectively. The axes of
the figures have been fixed in order to easily compare the
different configurations and implementations. From Figure 2
it is clear that the average latency for shutting down a core is
rather constant in kernel space and not significantly dependent
on clock frequency. The user space implementation is more

Fig. 2. Average latency for shutting down a core under different load
conditions using kernel and userspace mechanisms

Fig. 3. Average latency for waking up a core under different load conditions
using kernel and userspace mechanisms

dependent on the load level as the latency doubles between
0% load and 100% load.

On the contrary, the wake-up time is dependent on the load
level in both the kernel space and the user space case. As seen
in Figure 3 (left), the kernel space implementation measures
up to 6x higher latency for the 100% load case compared to
the 0% load case. A similar ratio is seen in the user space
implementation, but the latency is on average roughly 2x
higher than the kernel space implementation. Similarly to the
shutdown procedure, the wake-up is also dependent on several
kernel notifications followed by kernel callbacks. An additional
factor in waking up a core is the long process of creation and
initialization of kernel threads (kthreads), which are required
to start the idle loop on a newly woken-up core. Only after the
kthread is running, the CPU mask for setting a core available
can be set.

Since this work focus on user space implementations with
static scheduling, we chose to access the hotplug functionality
from the sysfs interface in our evaluation. However we
acknowledge that a more optimized solution is possible by
embedding parts of the functionality in kernel space. Table II
shows the standard deviation for shutdown and wake-up from
the experiments.

TABLE II. STANDARD DEVIATION OF DPM LATENCY IN KERNEL-
AND USERSPACE

Load 0% 25% 50% 75% 90% 100%
Shut-down

Kernelspace 3% 8% 9% 11% 5% 9%
userspace 3% 9% 11% 12% 16% 15%

Wake-up
Kernelspace 7% 20% 26% 27% 23% 4%
userspace 8% 13% 18% 17% 18% 28%



IV. ENERGY MODEL

An energy model is used to predict the energy consumption
of the system using a set of fixed parameters. The input to
our model are descriptions of the workload and the target
architecture. The workload is represented by the number of
instructions w to be executed, and the deadline D before which
the workload must be processed as illustrated in Figure 4.
In case the workload is processed sufficiently prior to the
deadline, the cores can be shut down or scaled down with a
given overhead penalty, and woken up or scaled up again prior
to reaching the deadline, so that the initial setting is restored.

Fig. 4. Execution of workload before a given deadline

As we target compute-bound applications, we do not have
to care for long I/O latencies and thus the time t to process
the workload is considered inversely proportional to the core
frequency. For simplicity we assume that the proportionality
factor is 1, i.e. one instruction per cycle is processed on
average. Thus:

t(w, f) = w/f

Let tmin be the time to process the workload at maximum
possible speed, we then call D/tmin ≥ 1 the pressure. If the
pressure is close to 1, the CPU must run on maximum speed to
meet the deadline. If the pressure is e.g. 2, the CPU can either
run at half the maximum speed for time D, or run at maximum
speed until time D/2, and then idle or shut down the cores
until the deadline. We assume a workload consisting of a large
number of small, independent tasks, so that the workload can
be balanced among the cores.

The target architecture is a many-core CPU represented by
p cores with frequencies f1, . . . , fk, together with the power
consumption of the chip at each frequency in idle mode and
under load, i.e. Pidle(j, fi) and Pload(j, fi), where 1 ≤ j ≤ p
denotes the number of active cores. As we target compute-
bound applications, we assume that the cores are stressed to
100% load, however, extensions for power consumptions at
different load levels are possible. We further assume that all
cores run at the same frequency, because that is a feature of
our target architecture.

From previous sections we have obtained the latency tscale
of switching frequencies of the cores (the cores are assumed
to be idle) from fi1 to fi2, the power consumption during this
time is assumed to be the average of Pidle(fi1) and Pidle(fi2).
While tscale might vary depending on the frequencies, the
model confines it to an average value as a close enough
approximation. An idle core at frequency fi can be shut down,
and later wake up again. We consider these consecutive events,
as the cores must be available after the deadline. The total time
for shutdown and wake-up is denoted by tshut(fi), we assume

that the core consumes idle power during this time2.

If each of the j active cores, where 1 ≤ j ≤ p has to
process the same workload w/j until the deadline, the cores
must run at least at frequency fmin = (w/j)/D. Hence they
can utilize any fi ≥ fmin to process the workload in time
ti = (w/j)/fi.

There are several possibilities to process the workload w:
1) For any number j of active cores, the cores can run at any
frequency fi ≥ fmin for time ti to process the workload and
then idle at the same frequency for time D − ti consuming
total energy:

E1(j, fi) = ti · Pload(j, fi) + (D − ti) · Pidle(j, fi) (3)

2) The idle cores could also be scaled down to the lowest
frequency f1 if D − ti is larger than tscale, with a resulting
energy consumption of

E2(j, fi) = ti · Pload(j, fi) + tscale · Pidle(j, fi)+
(D − ti − tscale) · Pidle(j, f1)

(4)

3) Finally, the cores could be shut down after processing the
workload, and wake up just before the deadline, if D − ti ≥
tshut(fi). In our target architecture, the cores must be shut
down in sequence. This follows the implementation in the
mainline Linux kernel which executes the shut down/wake up
call in kernel threads scheduled by the kernel. The first core
must remain active idle to wake the others up. Consider q
being the cores to shut down: If D − ti ≥ q · tshut(fi) but
D − ti < (q + 1) · tshut(fi), then at most q < p cores can be
shut down. The consumed energy can be modeled as:

E3(j, fi) = ti · Pload(j, fi) +
j∑

l=j−q+1

tshut · Pidle(l, fi)+

(D − ti − (j − q)tshut) · Pidle(1, f1)
(5)

where l is the (j − q):th core to shut down out of the j active
cores. The last part of the equation (D − ti − (j − q)tshut)
is the time the remaining active cores (j − q) idle in case not
shut down.

Having formulated the model, and given a concrete work-
load, we enumerate all feasible solutions prior to execution,
and choose the one with the lowest energy consumption. Hence
we create a static schedule, i.e. a balanced mapping of the tasks
onto the cores together with information about core speeds
and necessary frequency scalings or shutdowns. If the target
architecture has some other characteristics such as concurrent
shutdown of all cores, the energy formula can be adapted,
e.g. to E3(j, fi) = ti · Pload(j, fi) + tshut · Pidle(j, fi). Also,
the number of solutions might increase, e.g. if the cores can
be run at different frequencies. However, the core algorithm
design remains, as the number of feasible solutions is still
small enough for enumeration. The model can also be refined
to scale the frequency of the cores prior to shutdown to a
frequency level with a more favorable shutdown time.

2Others [6] assume power under load during shutdown. We have tested this,
but found that in Table V it will not lead to differences except in one corner
case where best and 2nd best configurations switch their places. However,
both are very close together, so that slight variation of any parameter might
promote one or the other configuration



TABLE III. POWER DISSIPATION (IN WATTS) FOR THE EXYNOS 4412
UNDER FULL WORKLOAD. ROWS ARE THE NUMBER OF ACTIVE CORES

AND COLUMNS ARE CLOCK FREQUENCY

200 400 600 800 1000 1200 1400 1600
1 2.875 3.02 3.095 3.16 3.315 3.43 3.675 3.955
2 2.975 3.125 3.275 3.375 3.55 3.775 4.22 4.715
3 3.045 3.305 3.45 3.65 3.85 4.225 4.935 5.71
4 3.105 3.365 3.6 3.845 4.185 4.745 5.795 7.615

TABLE IV. POWER DISSIPATION (IN WATTS) FOR THE EXYNOS 4412
UNDER IDLE WORKLOAD. ROWS ARE THE NUMBER OF ACTIVE CORES AND

COLUMNS ARE CLOCK FREQUENCY

200 400 600 800 1000 1200 1400 1600
1 2.148 2.162 2.173 2.139 2.048 2.035 2.143 2.284
2 2.152 2.163 2.179 2.133 2.11 2.057 2.202 2.381
3 2.156 2.167 2.183 2.146 2.122 2.08 2.279 2.407
4 2.158 2.173 2.181 2.155 2.172 2.105 2.33 2.503

In contrast to an analytic model, we do not have to make
assumptions of convexity and continuity of power functions
etc., which are often not true in practice, as well as the
distinction between idle power and power under load. Yet, the
model still uses optimizations, such as a non-decreasing power
function with respect to frequency and number of active cores.
For example, we do not scale frequencies while processing
workload.

A. Model based simulation

The model based simulation was, as mentioned, based
on real-world measurements using different numbers of cores
and different clock frequencies. The system parameters were
obtained from the quad-core Exynos 4412 platform by mea-
suring the power under full load Pload using the stress
benchmark shown in Table III. Similarly, the idle power Pidle
was measured for each configuration in a completely idle
system shown in Table IV. These power values were used to
create the power model used in the simulator.

We scheduled task sets with 10k, 100k and 1M synthetic
jobs with pressure levels 1.1, 1.3, 1.5 and 4.0 in order to
determine the best, 2nd best and worst energy efficient configu-
ration parameters. The number of instructions of each job were
randomly chosen to obtain a [0;500ms] runtime normalized to
the highest clock frequency.

The scheduler used four threads for execution, which mod-
els a scalability up to four cores. We executed the scheduler
with different parameters, and the output shows the possible
scheduling configurations which meet the deadline. Table V
shows the configuration settings for three chosen outputs: best,
2nd best and worst energy efficiency with the aforementioned
power values and scheduling parameters. The output is a work-
ing frequency combined with a power management feature:
DPM, DVFS or idling the whole slack time.

Since a pressure of 1.1 poses a very tight deadline for the
jobs, the only feasible clock frequency setting is 1600 MHz.
The best case with this parameter uses rather DVFS than DPM
because of a faster switching time which costs less energy. For
pressure levels > 1.1 a more relaxed deadline allows slower
execution speed, which impacts significantly on the dynamic
power dissipation. Hence, the best case uses DPM rather than
DVFS since the more relaxed deadline allows a longer sleep

time, which reduces the energy consumption more than the
cost of activating the DPM mechanism. Finally the pressure
level 4.0 – with a very relaxed deadline – allows the system
to execute on 1000 MHz, which is the most energy efficient
clock frequency. Because of the execution model illustrated
in Figure 4, the number of jobs does not affect the usage of
the power management techniques, since the clock frequency
scaling or core shutdown is always executed only once after
the workload finishes.

Finally, in Table V we only list configurations that use all
four cores since this is be most energy efficient configuration
for all settings in this particular platform. The model predicts
an identical usage of power saving techniques independently of
the number of jobs. This is predicted since the number of job
only affects the total execution time but not the relation to the
pressure. When demanding a low pressure, the clock frequency
is forced to a high value in order to keep the deadline, and
DPM introduces a too large overhead to be energy efficient.
When gradually relaxing the pressure with higher values, DPM
is favored over DVFS and the clock frequencies can be lowered
to save energy.

TABLE V. CONFIGURATION PARAMETERS FOR DIFFERENT NUMBER
OF JOBS AND DIFFERENT PRESSURE LEVELS

Number of jobs
Config 10k 100k 1M

Pr
es

su
re

1.1
Best 1600MHz+DVFS 1600MHz+DVFS 1600MHz+DVFS
2nd Best 1600MHz+DPM 1600MHz+DPM 1600MHz+DPM
Worst 1600MHz+IDLE 1600MHz+IDLE 1600MHz+IDLE

1.3
Best 1400MHz+DPM 1400MHz+DPM 1400MHz+DPM
2nd Best 1400MHz+DVFS 1400MHz+DVFS 1400MHz+DVFS
Worst 1600MHz+IDLE 1600MHz+IDLE 1600MHz+IDLE

1.5
Best 1200MHz+DPM 1200MHz+DPM 1200MHz+DPM
2nd Best 1200MHz+IDLE 1200MHz+IDLE 1200MHz+IDLE
Worst 1600MHz+IDLE 1600MHz+IDLE 1600MHz+IDLE

4.0
Best 1000MHz+DPM 1000MHz+DPM 1000MHz+DPM
2nd Best 1000MHz+DVFS 1000MHz+DVFS 1000MHz+DVFS
Worst 1600MHz+IDLE 1600MHz+IDLE 1600MHz+IDLE

V. REAL-WORLD VALIDATION

To validate the model presented in Section IV we executed
real-world experiments to compare the final energy consump-
tion with the mathematical representation.

A. Experimental setup

We replicated the scenarios described in Section IV by
constructing experiments with: a) a set of configuration pa-
rameters used to time trigger the hardware power saving
features according to the scheduler results b) one or more
benchmark threads executing a selected job for a given time.
In one example configuration, the benchmark executes on four
threads on 1600 MHz for n milliseconds after which the clock
frequency is reduced to 200 MHz for m milliseconds or the
cores are shut down until the deadline. We chose stress
as the benchmark since it was used to train the mathematical
model and its behavior is easily repeatable. stress is also a
good candidate for representing CPU intensive workloads.

We used the quad-core Exynos 4412 platform on which the
experiments were earlier conducted. In order to measure the
power of the Exynos board and to not disturb its performance,
we added an external Raspberry Pi board to monitor the board
power consumption similar to the work in [11]. Figure 5 shows
the complete workflow for time synchronization and power



measurements:

1) Raspberry Pi sends a start signal over UDP to Exynos
2) Raspberry Pi starts to log the power measured by an INA226
A/D converter connected to its i2c bus
3) Exynos starts the benchmark threads
4) Exynos scales frequency or shuts down cores if requested
5) Exynos finishes benchmark and sends stop signal over UDP
6) Raspberry Pi ends power monitor

Figure 6 shows the real implementation of the power
measurement device consisting of the INA226 A/D converter
allowing the Raspberry Pi to sample the power values of the
odroid board.

In order to get an average power log as accurate as possible,
the additional overhead including 2 ms ping latency between
the Raspberry Pi and the Exynos was accounted for and
excluded in the power monitor.

Fig. 5. Raspberry Pi connected to Exynos board with A/D converter to
measure power and send data to Raspberry-Pi

266

Fig. 6. Real-world implementation of power measurement device. The power
feed of the odroid board (right hand side) is connected via the INA226 A/D
converter (middle) to the Raspberry Pi board (left hand side).

B. Experimental Results

We used the task sets with 10k, 100k and 1M jobs from the
previous section. The respective execution times for executing
the jobs were measured and used in the benchmark framework.
Furthermore, we also evaluated pressure levels: 1.1, 1.3, 1.5
and 4.0 for all task sets. For each combination of task set
and pressure levels the best case, 2nd best case and worst
case energy scenarios were compared against the mathematical
model.

Figure 7 shows results for 10k jobs. Both the best case
model and data show a high energy consumption for low
pressure and for high pressure; the lowest energy consumption
is achieved at a pressure level P = 1.5 for both data and
model. This is a result of low pressure levels pushing the

Fig. 7. Energy consumption for model and data running 10k jobs with
different pressure settings

Fig. 8. Energy consumption for model and data running 100k jobs with
different pressure settings

deadline very close and the CPU is hence forced to execute
on a high clock frequency to meet the deadline. Even though
the execution time is short, the dynamic power dissipated
when executing on the highest frequency results in high
energy consumption. Large values for pressure also result in
high energy consumption since deadline and the execution
time becomes very long and the ever present static power
significantly increases the energy consumed even though the
clock frequency is low.

Figure 8 shows the results of the benchmarks with 100k
jobs. The relation between data and model are rather similar
to Figure 7 with the exception of pressure level P = 1.1. This
case has a higher prediction than the actual measured data. As
previously explained, a low pressure level forces a high clock
frequency – and running the CPU on the maximum frequency
for a long time activates the thermal throttling of the CPU as
it reaches a critical temperature. The CPU is then temporarily
stalled resulting in lower power dissipation, which leads to
low energy consumption. Naturally by using CPU throttling,
fewer operations are executed in the benchmark which causes
poor performance. The situation is avoided by adding active
cooling, but we chose to acknowledge this anomaly in the
mathematical power model of a thermally limited chip.

Figure 9 shows the results from the longest running experi-
ments, i.e. 1M jobs. Similarly to Figure 8 the thermal throttling
of the CPU causes a misprediction of the model.

The mean squared error between data and model is finally
shown in Figure 10 for all previously mentioned experi-
ments. The figure shows the largest misprediction in cases
with P=1.1 and for long running jobs (1M and 100k). As
previously concluded, the misprediction is mostly caused by
the CPU thermal throttling activated when running the CPU
on maximum frequency for a long time (in range 10s of
seconds). Furthermore, the thermal throttling is occasionally



Fig. 9. Energy consumption for model and data running 1M jobs with
different pressure settings

Fig. 10. Error squared between model and data for all task sets and pressures

also activated when running the CPU on the second highest
frequency for a very long time (several minutes) as can be seen
in 1M case with P=1.3. Hence, the model remains accurate as
long as the CPU remains within its thermal bounds.

C. Dependence of Model on Benchmark

In order to evaluate the level of dependency between
different types of workload, a completely separate benchmark
was used to compare the power dissipation to the stress
benchmark used to train the model. All configurations similar
in Table V was used together with a second benchmark i.e.
the best, second best and worst case execution given by
the simulator. Whetstone [4], which primarily measures
floating-point arithmetic performance, was used in the second
round of experiments. The benchmark was chosen since this
has been a traditional metric of determining floating-point
performance in computer systems.

The results in form of squared error from the second
benchmark is shown in Figure 11. Similarly to the previous
cases shown in Figure 10, the scenario with many jobs and
low pressure values forces the CPU to execute at a high clock
frequency for a long time. This increases the temperature on
the chip beyond the safety limit, and the chip is finally stalled
as a safety precaution. For medium size work (100k jobs) the
data aligns even better with the model than using the stress
benchmark, and the short size work (10k jobs) are within a
few percentages margin to the model.

The influence of changing the workload was hence not
considered to significant strive from the model except for
in the extreme cases with many jobs and a low pressure
value. The model was hence accepted as a common use-case
representation of workload execution. We conclude that the
forecasting capability of the model is only weakly dependent

Fig. 11. Error squared between model and data for all task sets and pressures
using the whetstone benchmark

on the concrete workload used to compute the best scenarios.

VI. OPTIMIZING FOR MULTIPLE ROUNDS

We have so far investigated applications comprised of a set
of tasks with a common, single deadline. We call the execution
of all tasks, together with possible power management, a
(schedule) round. Streaming applications consist of a set of
tasks communicating with each other, where each task can be
assumed to be invoked once during one scheduling round, and
the communication between tasks is assumed to occur between
the run of the sending task in one round, and the start of
the receiving task in the next round. Hence, within one round
the tasks may be considered to be independent, and a static
scheduling with deadline per round be applied to achieve (soft)
real-time behaviour of the streaming application. Streaming
applications model a large class of parallel applications, e.g.
in image processing, and static scheduling is regularly used
to schedule them, cf. e.g. [26]. In a simple example, a first
task performs preprocessing on an image, two further tasks
detect horizontal and vertical edges, respectively, and a final
task completes the analysis or transformation of the image. In
each round, the first task will receive a new image to process,
and between successive rounds the tasks will forward their
results to the follow-up tasks. Thus, a streaming application
will execute a long sequence of similar rounds with similar
deadlines, and for a given mapping of the tasks to cores, the
energy model from Section IV can be applied to minimize the
energy consumption of each round.

A. Theoretical framework

The information regarding a large number of similar rounds
can be used to further optimize the energy consumption per
round. The most obvious part is to consider two successive
rounds, see Figure 12 top. In case the idle time or shutdown
time in the second round is moved from the end to the
beginning of the round, we consider the two rounds as a “back
to back” configuration as indicated in Figure 12 middle. In this
case, the overhead of scaling up and down or shutting down
and waking up is only necessary once per two rounds, instead
of twice as before. Note that despite this change, the deadline
D per round is still respected, i.e. there is no change in the
real-time aspects.

Even more can be gained if we allow to relax the real-time
behaviour within a certain limit, e.g. if two rounds must be
processed until deadline 2D, and the first round is allowed
to use more than time D. In this case we can combine



Fig. 12. Schedule for two successive rounds of computation. Top: without further optimization. Middle: with combined idle times. Bottom: combined workload
processing.

the workloads of the two rounds and process them in one
execution, as illustrated in Figure 12 bottom. This optimization
is more general than the previous one, as it can be used also for
k > 2 rounds, in case the application has enough flexibility
in the deadline. It can also be combined with the previous
optimization, i.e. the second k rounds are executed with idle
or sleeping time first, and the idle and sleeping times of the two
sets of k rounds are combined into one. But even for k = 2,
and without combination with the back-to-back optimization,
the latter optimization might bring advantages over the former.
For example, if we imagine an example in which the idle time
in one round is not long enough to shutdown a core, but where
the combined idle times of two rounds are long enough to do
so. The optimization can then increase the number of possible
solutions and thus be used for saving more energy. As the
solutions of the back-to-back optimization are always included
in the solution space of the k = 2-round combination, applying
the latter can never, in theory, lead to a disadvantage.

We have integrated the k-round optimization into our
energy model, and illustrated its potential and limits with
a number of examples. If we process 10 tasks (each task
requiring 250 ms at highest frequency) and a pressure of 5.0,
then for a single round, the lowest energy per round is obtained
by processing the tasks at 1000 MHz with 4 cores. After this,
the cores are scaled down to 200 MHz when idling until they
are scaled back again to 1000 MHz prior to the deadline.
Although the idle time is longer than the processing time, the
round, in this case, is so short that it is not possible to shut
down the cores. If we consider k = 3 rounds together, the
lowest energy per round is obtained by:

1) Processing the tasks from all rounds at 1000 MHz
using 4 cores

2) Shutting down three of the cores
3) Making the remaining core idle
4) Waking up the three other cores again prior to the

deadline

The forecasted reduction of energy per round using our power
model is then about 0.85%. While this reduction seems small,
we have to consider that streaming applications are often long-
running, and in energy-constrained environments (e.g. lack of
active cooling), so that even small improvements help. Further-
more, the combination with the former optimization (consider
two sets of rounds “back to back”) would increase the energy
reduction per round to roughly 2.05%, and combining more
rounds (if possible) decreases the energy consumption more
according to the number of rounds combined.

The limitation of this method can be seen in an example
with 1000 tasks and a pressure of 1.36. In one round, the
lowest energy consumption is achieved by executing 4 cores
at 1200 MHz until the workload is processed. After this, scale
the cores down to 200 MHz and idle until they are scaled up
again to 1200 MHz prior to the deadline. When we consider
k = 2 rounds together, it is possible to shutdown one of the
4 cores after processing the workload at 1200 MHz, but not
enough time is left to scale the remaining 3 cores down, let
alone shutting off another core before the 4th core must be
woken up again prior to the deadline. In this case, the idle
time is very short compared to the processing time, so that
energy savings from optimizing this phase only comprise a
tiny fraction of the total energy consumption: 0.02% in the
reported case.

B. Hardware limitations

The previously mentioned benchmark setup can unfortu-
nately not be replicated on the current platform in practice.
The reason is because the very fine grained timings cannot
be realized on a Linux platform without including scheduling
overhead influencing the reliability of the results.

Firstly, the external INA266 A/D converter used for sam-
pling the power dissipation cannot register enough values
in the very short time span. A higher sampling rate could,



Fig. 13. Energy consumption of executing one two-round execution compared
to executing two one-round execution

however, be selected, but with a consequence of a decrease
in measurement accuracy due to physical limitations. Another
suggestion would be to iterate one benchmark run several
times to increase the measurement time and thus increase the
accuracy of the outcome. The problem with this approach is the
added overhead of creating and killing pthreads under Linux.
Killing the benchmark thread is necessary in cases the pressure
is larger than 1.0 in order for the system to remain idle until
the deadline. With a very fine grained timing, the overhead
with regard to the operating system becomes the same order
of magnitude as the benchmark itself, and the outcome looses
its accuracy. The overhead in thread creation is so high that
for a workload much smaller than 10,000 tasks, it dominates
the time of the round.

We evaluated, however, a system using job sizes of 10k,
100k and 1M and the pressure of 1.5 using the two-round
approach illustrated in Figure 12 (bottom). Even though the
granularity becomes larger, the theoretical framework suggests
that the energy consumption would decrease due to the smaller
amount of frequency scalings and usage of sleep states. The
results shown in Figure 13 (logarithmic scale) shows, on
the contrary, a higher energy consumption for the two-round
approach in each case. The reason for this is by running two
long rounds back to back, the core temperature increases more
compared to running them one by one with idle or sleep phases
in between. The increase in temperature increases the static
power consumption (for the same core frequency), and the
energy savings are diminished.

In order to benefit from multiple-round executions, the
timing granularity should be finer for example by using a
real-time OS with much lower scheduling overhead. The idea
should also be explored on other platforms which employ
active cooling to reduce the influence of increased thermal
dissipation.

VII. CONCLUSIONS

As the hardware becomes more complex and the manufac-
turing techniques shrink, accurate power consumption details
for multi-core systems are difficult to derive from an analytical
mathematical approximation. An alternative is to model the
system top-down based on real experiments and include prac-
tical aspects such as such as power management overhead,
which cannot be ignored for applications with deadlines in
the millisecond range. We have presented an energy model

derived from real-world power measurements of benchmarks
including power management latencies from a general purpose
operating system. The model is used to calculate an energy-
optimal static schedule for applications with a given deadline.
It was validated with experiments on real hardware and we
demonstrated its accuracy and its independence from the
particular benchmark chosen to derive the model. We obtained
the practical timing granularity for DVFS and DPM after
which the latency of power saving techniques cannot longer
be neglected.

Furthermore, we have extended the model towards stream-
ing applications and presented further opportunities for energy
reduction by scheduling several scheduling rounds together.
Optimizing static schedules by merging execution phases can
result in theoretical energy savings for very fine grained
timing granularities. Merging long running executions, on the
other hand, increases the energy consumption because of the
significant increase in working temperature on the chip. We
can conclude that high performance software should preferably
not execute uninterrupted for a long time on passively cooled
systems such as mobile phones. Instead, by dividing the
execution into shorter phases, static power is decreased by the
lower working temperature.

In future work, we would like to extend our model to Intel-
based multi-core platforms with independent core frequencies,
and to heterogeneous platforms such as the big.LITTLE sys-
tems. By using core independent frequency levels the model
must coordinate both the location of the running task and the
clock frequency of the core possibly by defining a dynamic
power model. The heterogeneous platform must further also
define the type of core which leads to both a dynamic power
model and a dynamic performance model of the currently used
core type. Moreover, we would like to extend the model to
multiple applications, and to applications with partly stochastic
behavior.
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