
Optimized On-Chip Pipelining of Memory-Intensive Computations
on the Cell BE

Christoph W. Kessler
Linköpings Universitet

Dept. of Computer and Inf. Science
58183 Link̈oping, Sweden

chrke@ida.liu.se

Jörg Keller
FernUniversiẗat in Hagen

Dept. of Mathematics and Computer Science
58084 Hagen, Germany

joerg.keller@fernuni-hagen.de

Abstract

Multiprocessors-on-chip, such as the Cell BE processor,
regularly suffer from restricted bandwidth to off-chip main
memory. We propose to reduce memory bandwidth require-
ments, and thus increase performance, by expressing our
application as a task graph, by running dependent tasks
concurrently and by pipelining results directly from task to
task where possible, instead of buffering in off-chip memory.
To maximize bandwidth savings and balance load simulta-
neously, we solve a mapping problem of tasks to SPEs on
the Cell BE. We present three approaches: an integer linear
programming formulation that allows to compute Pareto-
optimal mappings for smaller task graphs, general heuris-
tics, and a problem specific approximation algorithm. We
validate the mappings for dataparallel computations and
sorting.

1. Introduction

The new generation of multiprocessors-on-chip derives
its raw power from parallelism, and explicit parallel pro-
gramming with platform-specific tuning is needed to turn
this power into performance. A prominent example is the
Cell Broadband Engine with a PowerPC core and 8 parallel
slave processors called SPEs (e.g. cf. [1]). Yet, many ap-
plications use the Cell BE like a dancehall architecture: the
SPEs use their small on-chip local memories (256 KB for
both code and data) as explicitly-managed caches, and they
all load and store data from/to the external (off-chip) main
memory. However, the bandwidth to the external memory
is much smaller than the SPEs’ aggregate bandwidth to the
on-chip interconnect bus (EIB) [1]. For applications that
frequently access off-chip main memory, such as streaming
computations, stream-based sorting, or dataparallel compu-
tations on large vectors, the ratio between computational

work and memory transfer is low, such that the limited
bandwidth to off-chip main memory constitutes the perfor-
mance bottleneck. This problem will become even more
severe with the expected increase in the number of cores
in the future. Consequently, the generation of memory-
efficient code is an important optimization to consider for
such memory-intensive computations.

Scalable parallelization on such architectures should
therefore trade increased communication between the SPEs
over the high-bandwidth EIB for a reduced volume of com-
munication with external memory, and thereby improve
the computation throughput for memory-intensive compu-
tations. This results in anon-chip pipeliningtechnique: The
computations are reorganized such that intermediate results
(temporary vectors) are not written back to main memory
but instead forwarded immediately to a consuming succes-
sor operation. This requires some buffering of intermediate
results in on-chip memory, which is necessary anyway in
processors like Cell in order to overlap computation with
bulk (DMA) communication. It also requires that all tasks
(elementary streaming operations) of the algorithm be ac-
tive simultaneously; tasks assigned to the same SPE will be
scheduled round-robin, each with a SPE time share corre-
sponding to its relative computational load. However, as
we would like to guarantee fast user-level context switch-
ing among the tasks on a SPE, the limited size of Cell’s
local on-chip memory then puts a limit on the number of
tasks that can be mapped to a SPE, or correspondingly a
limit on the size of data packets that can be buffered, which
also affects performance. Moreover, the total volume of in-
termediate data forwarded on-chip should be low and, in
particular, must not exceed the capacity of the on-chip bus.

We formalize the problem by modeling the application as
a weighted acyclic task graph, with node and edge weights
denoting computational load and communication rates, re-
spectively, and the Cell processor by its key architectural
parameters. We assume that only one application is using



the Cell processor at a time. Task graph topologies oc-
curing in practice are, e.g., completeb-ary trees forb-way
merge sort or bitonic sort, butterfly graphs for FFT, and ar-
bitrary tree and DAG structures representing vectorized dat-
aparallel computations. These applications seem to be ma-
jor application areas for Cell BE besides gaming. On-chip
pipelining then becomes a constrained optimization prob-
lem to determine a mapping of the task graph nodes to the
SPEs that is an optimal or near-optimal trade-off between
load balancing, buffer memory consumption, and commu-
nication load on the on-chip bus.

To solve this multi-objective optimization problem, we
propose an integer linear programming (ILP) formulation
that allows to compute Pareto-optimal solutions for the
mapping of small to medium-sized task graphs with a state-
of-the-art ILP solver. For larger general task graphs we
provide a heuristic two-step approach to reduce the prob-
lem size. We exemplify our mapping technique with sev-
eral memory-intensive example problems: with acyclic
pipelined task graphs derived from dataparallel code, with
completeb-ary merger tree pipelines for parallel mergesort,
and with butterfly pipelines for parallel FFT. We validate
the mappings with discrete event simulations. Details are
given in a forthcoming paper [2].

For special task graph topologies such as merge trees,
more problem-tailored solutions can be applied. In previ-
ous work [3] on pipelined parallel mergesort, we described
a tree-specific divide-and-conquer heuristic and an ILP for-
mulation to compute a good or even optimal placement of
the tasks of the resulting tree-shaped pipelined computation.
These results can be used to improve Cell-specific merge
sort or bitonic sort implementations reported in the litera-
ture [4, 5].

In the present paper, we briefly summarize some of our
very recent results [2, 3] in this area. In Sect. 2 we present
optimal mapping results, and in Sect. 3 we summarize
heuristic results for large task graphs. In Sect. 4, we present
a new tree-specific approximation algorithm. In Sect. 5 we
summarize related work, and Sect. 6 concludes.

2. Optimal Mapping of Task Graphs for On-
Chip Pipelining

We start by introducing some basic notation and stating
the general optimization problem to be solved. We then
give an integer linear programming (ILP) formulation for
the problem, which allows to compute optimal solutions for
small and middle-sized pipeline task graphs, and report on
the experimental results obtained for examples taken from
the domain of streaming computations.

Problem definition Given is a setP = {P1, . . . , Pp} of p
processors and a directed acyclic task graphG = (V,E) to

be mapped onto the processors. Input is fed at the sources,
data flows in direction of the edges, output is produced by
the sinks.

Each node (task)v in the graph processes the incom-
ing data streams and combines them into one outgoing data
stream. With each edgee ∈ E we associate the (average)
rateτ(e) of the data stream flowing alonge. In all types
of streaming computations considered in this work, all in-
put streams of a task have the same rate. However, other
scenarios with differentτ rates for incoming edges may be
possible.

The computational load ρ(v) denotes the relative
amount of computational work performed by the taskv,
compared to the overall work

∑
v∈V ρ(V ) in the task graph.

It will be proportional to the processor time that a nodev
places on a processor it is mapped to. In most scenarios,ρ
is proportional to the data rateτ(e) of its (busiest, if sev-
eral) output streame. Reductions are a natural exception
here; their processing rate is proportional to the input data
rate.

In contrast to the averaged valuesρ and τ , the actual
computational load (at a given time) is usually depending on
the current or recent data ratesτ . In cases such as merge-
sort where the input data rates may show higher variation
around the averageτ values, also the computational load
will be varying when the jitter in the operand supply cannot
be compensated for by the limited size buffers.

For presentation purposes, we usually normalize the val-
ues ofρ andτ such that the heaviest loaded taskr obtains
ρ(r) = 1 and the heaviest loaded edgee obtainsτ(e) = 1.
For instance, the rootr of a merge tree will haveρ(r) = 1
and produce a result stream of rate 1. The computational
load and output rate may of course be interpreted as node
and edge weights of the task graph, respectively.

The memory loadβ(v) that a nodev will place on the
(SPE) processor it is mapped to (including packet buffers,
code, stack space) is usually just a fixed value depending on
the computation type ofv, because the node needs a fixed
amount for its code, for buffering transferred data, and for
the internal data structures it uses for processing the data. In
homogeneous task graphs such as merge trees or FFT but-
terflies, allβ(v) are equal. In this case, we also normalize
the memory loads such that each taskv gets memory load
β(v) = 1.

We construct a mappingµ : V → P of nodes to proces-
sors. Under this mappingµ, a processorPi hascomputa-
tional load

Cµ(Pi) =
∑

v∈µ−1(Pi)

ρ(v),

i.e. the sum of the load of all nodes mapped to it, and it has
memory load

Mµ(Pi) =
∑

v∈µ−1(Pi)

β(v)



which is 1 · #µ−1(Pi) for the case of homogeneous task
graphs.

The mappingµ that we seek shall have the following
properties:

1. The maximum computational loadC∗
µ =

maxPi∈P Cµ(Pi) among the processors shall be
minimized. This requirement is obvious, because the
lower the maximum computational load, the more
evenly the load is distributed over the processors. With
a completely balanced load,C∗

µ will be minimized.

2. The maximum memory loadM∗
µ = maxPi∈P Mµ(Pi)

among the processors shall be minimized. The maxi-
mum memory load is proportional to the number of
the buffers. As the memory per processor is fixed, the
maximum memory load determines the buffer size. If
the buffers are too small, communication performance
will suffer.

3. Thecommunication load
Lµ =

∑
(u,v)∈E,µ(u) 6=µ(v) τ(u), i.e. the sum of the

edge weights between processors, should be low.

ILP Formulation We are given a task graph withn nodes
(tasks) andm edges, node weightsρ, node buffer require-
mentsβ, and edge weightsτ . The ILP model for mapping
the task graph to a setP of SPEs is summarized in Figure 1;
for more details see [2].

For a Cell withp SPEs and a general task graph withn
nodes andm edges, our ILP model usesnp+mp = O(np)
boolean variables, 1 integer variable, 2 linear variables, and
2mp + 2p + 2 = O(np) constraints. We implemented the
ILP model in CPLEX 10.2 [6], a commercial ILP solver.

By choosing the ratio ofεM to εC , we can only find two
extremal Pareto-optimal solutions, one with least possible
maxMemoryLoadand one with least possiblecommLoad.
In order to enforce finding further Pareto-optimal solu-
tions that may exist in between, one can use any fixed ra-
tio εM/εC , e.g. at 1, and instead set a given minimum
memory load to spend (which is integer) on optimizing for
commLoadonly:

maxMemoryLoad≥ givenMinMemoryLoad

For modeling task graphs of mergesort as introduced
above, we generated binary merge trees withk levels (and
thus2k−1 nodes) intended for mapping top = k processors
[3]. Table 1 shows all Pareto-optimal solutions that CPLEX
found for k = p = 5, 6, 7. While most optimizations for
k = 5, 6, 7 took just a few seconds, CPLEX hit a timeout
after 24 hours fork = 8 and only produced approximate
solutions with a memory load of at least37. Figure 2 shows
one Pareto-optimal mapping fork = 5.

Solution variables:
Binary variablesx, z with
xv,q = 1 iff nodev is mapped on processorq, and
z(u,v),q = 1 iff both sourceu and targetv of edge(u, v)
are mapped to processorq.
The integer variablemaxMemoryLoadwill hold the maxi-
mum memory load assigned to any SPE inP .
The linear variablemaxComputLoadyields the maximum
accumulated load mapped to a SPE.
Constraints:
Each node must be mapped to exactly one processor:

∀v ∈ V :
∑
q∈P

xv,q = 1

The maximum load mapped to a processor is computed as

∀q ∈ P :
∑
v∈V

xv,q · ρ(v) ≤ maxComputLoad

The memory load should be balanced:

∀q ∈ P :
∑
v∈V

xv,q · β(v) ≤ maxMemoryLoad

Communication cost occurs whenever an edge is not inter-
nal, i.e. its endpoints are mapped to different SPEs.

∀(u, v) ∈ E, q ∈ P : z(u,v),q ≤ xv,q

z(u,v),q ≤ xu,q

and in order to enforce that az(u,v),q will be 1 wherever it
could be, we have to take up the (weighted) sum over allz
in the objective function. This means, of course, that only
optimal solutions to the ILP are guaranteed to be correct
with respect to minimizing communication cost. We ac-
cept this to avoid quadratic optimization, and because we
also want to minimize the maximum communication load.
The communication load is the communication volume
over all edges minus the volume over the internal edges:

commLoad=
∑
e∈E

τ(e)−
∑
e∈E

∑
q∈P

ze,q · τ(e)

Objective function: Minimize

Λ ·maxComputLoad+ εM ·maxMemoryLoad

+ εC · commLoad

with Λ chosen large enough to prioritize computational
load balancing over all other optimization goals; the pos-
itive weights0 ≤ εM < 1 and0 < εC < 1 are chosen
to give preference tomaxMemoryLoador commLoadas
secondary optimization goal.

Figure 1. ILP model for mapping task graphs.



Table 1. The Pareto-optimal solutions for
mapping b-ary merge trees, found with ILP,
for b = 2, k = p = 5, 6, 7.

k binary con- max. mem- commLoad
variables straints ory load

k = 5 305 341 8 2.5
9 2.375

10 1.75
k = 6 750 826 13 2.625

14 2.4375
15 1.9375
20 1.875

k = 7 1771 1906 21 2.375
29 2.3125
30 2

Figure 2. A Pareto-optimal solution for map-
ping a 5-level merge tree onto 5 processors
with maximum memory load 8 (merger tasks
on an SPE) and communication load 2.5 (ac-
cumulated rate of all inter-SPE edges), com-
puted by the ILP solver.

To test the performance of our merger tree mappings
with respect to load balancing, we implemented a discrete
event simulation of the pipelined parallel mergesort. The
simulation is quite accurate, as the variation in runtime for
merger nodes is almost zero, and communication and com-
putation can be overlapped perfectly by mapping several

nodes to one SPE. We have investigated several mappings
resulting from our mapping algorithm. The 5-level tree of
Fig. 2 realizes a 32-to-1 merge. The maximum memory
load of 8 merger tasks (needing 5 buffers each) on a SPE
still yields a reasonable buffer size of 4 KB, accumulating
to a maximum of 160 KB for buffers per SPE. With 32 input
blocks of220 sorted random integers, the pipeline efficiency
was 93%. In comparison to the corresponding merge phase
in [5], memory bandwidth requirements decreased by a fac-
tor of 2.5, but as now 5 instead of 4 SPEs are utilized, this
translates to a factor 1.86 in estimated performance gain.
For further results for mapped merge trees, see [3].

In order to test the ILP model with dataparallel task
graphs, we used several hand-vectorized fragments from the
Livermore Loops and synthetic kernels, see Table 2. Such
task graphs are usually of very moderate size, and comput-
ing an optimal ILP solution for a small number of SPEs
takes only a few seconds in most of the cases. For two com-
mon Cell configurations (p = 6 as in PS3, andp = 8),
the generated ILP model sizes (after preprocessing) and the
times for optimization with memory load preference are
given in Table 2. A discrete event simulation of the LL9
mapping on 6 SPEs achieved a pipeline efficiency of close
to 100%. Further results and discussion can be found in [2],
where we also propose an alternative, more detailed buffer
allocation model for dataparallel task graphs which however
requires about 50% more binary variables on average.

3. Heuristic Algorithms for Large Task Graphs

The ILP solver works well for small task graph and ma-
chine sizes. However, for future generations of Cell with
many more SPEs and for larger task graph sizes, comput-
ing optimal mappings with the ILP approach will no longer
be computationally feasible. For the case of general task
graphs, we developed a divide-and-conquer based heuristic
[2] where the divide step uses the ILP model forp = 2. An
example mapping is given in Fig. 3 for Livermore Loop 9.

4. New Approximation Algorithm for Mapping
Merge Trees

We consider the mapping problem for task graphs with
the structure ofb-ary merger trees, as inb-ary merge sort.
In previous work, we presented an approximation algorithm
based on divide-and-conquer [3]. Its approximation guaran-
tee for the maximum memory load mainly depends on the
tree sizek0 considered as base case in the recursive solu-
tion (which is, e.g. solved optimally by the ILP method);
the worst-case maximum memory load is by a factork/k0

larger than a straightforward lower bound (see Lemma 1),
but the quality is much better in practice [3]. As an ex-
ample, fork = p = 5 and b = 2 (i.e., a 32-to-1 binary



Table 2. ILP models for dataparallel task graphs extracted from the Livermore Loops (LL) and from
some synthetic kernels.

Kernel Description #Nodes #Edges ILP model forp = 6 ILP model forp = 8
n m var’s constr. time var’s constr. time

LL9 Integrate predictors 28 27 333 371 2:07s 443 485 —
LL10 Difference predictors 29 28 345 384 0:06s 459 502 1:26:39s
LL14 1D particle in cell, 2nd loop 19 21 243 290 0:03s 323 380 1:05s
LL22 Planckian distribution 10 8 111 125 <0:01s 147 163 <0:01s
FIR8 8-tap FIR filter 16 22 231 299 45:04s 307 393 0:04s
T-8 Binary tree, 16 leaves 31 30 369 410 5:36s 491 536 0:11s
C-6 Cook pyramid, 6 leaves 21 30 309 400 27:56s 411 526 3:22s

Figure 3. ILP solution for partitioning the task graph of Livermore Loop 9 into two (thus p = 2)
subgraphs, each to be mapped separately on a Cell SPE subset of size 4.

merger tree), the resulting mappingµ1 is different from the
Pareto-optimal one shown in Figure 2 but has the same qual-
ity (optimal maximum memory load 8 and communication
load 2.5). The discrete event simulation reported also for
this mapping a pipeline efficiency of 93%.

In the following, we give an alternative approximation
algorithm where the maximum memory load is by a factor
at mostb larger than the lower bound, independent of the
size of the tree, i.e. the number of levels.

We will use the notations from Sect. 2. Our task graph
T is a complete and balancedb-ary k-level merge tree. As
each task has exactly one outgoing edge, we identify the rate
τ of edges with the computational load of their origin node.
Thus τ(v, w) = ρ(v). As taskv merges theb incoming
data streams into one outgoing data stream with rateτ(v),
the incoming data streams on average will have rateτ(v)/b,
if we assume only finite buffering within nodes. With nor-
malization, the tree rootr will haveρ(r) = 1, and thus each
nodev on level i of the tree, where0 ≤ i ≤ k − 1, has
ρ(v) = b−i on average.

We extendρ and τ to subgraphs of the merge tree. A
subgraph’s computational load is the sum its node loads,
and its outgoing data rate is the aggregate rate of all edges
leaving the subgraph. For example, a subtree ofl levels
rooted atv has computational loadl · ρ(v) and data rate
τ(v).

The mappingµ for T that we seek shall have the proper-

ties 1–3 already listed for the general case in Section 2, but
in addition, it shall also fulfill:

4. As often as possible, sibling nodes (nodesu andv with
a common successorw, i.e. where(u, w) ∈ E and
(v, w) ∈ E) should be mapped to the same processor.

Note that a merger should deliver merged data buffers
at an actual output rate that does not significantly fall
short of the average output rate, because otherwise the
preceding and subsequent mergers may be delayed,
too, due to limited buffer capacity. A drop in the output
rate may be caused by phases of unequal distribution
of data in the input sequences, such that a merger pro-
cesses, in such a phase, mainly input data coming from
one subtree only, which effectively stalls the other sub-
tree(s). Short phases can be caught by buffering (if
buffers are sufficiently large) and have thus no effect,
while long phases may lead to idle times on some pro-
cessors. If sibling merger nodes are mapped to the
same processor, such a stall of a sibling node allows to
temporarily give an accordingly larger processor time
share to the busier sibling(s), maintaining a more bal-
anced overall output rate of the siblings towards the
common parent node.

Lemma 1 (Lower bounds) In any mappingµ the maxi-
mum computational load is at leastk/p, and the maximum
memory load is at least(bk − 1)/((b− 1)p).



Proof: As there arebi nodes in leveli, each with com-
putational loadb−i, the computational load in each level
equals1, i.e. the load of thek-level tree equalsk. As this
load is spread overp processors, there will be at least one
processor with computational load at leastk/p.

As there are(bk−1)/(b−1) nodes in ak-level balanced
b-ary tree, each with memory loadc, the memory load of
the tree equalsc · (bk − 1)/(b − 1). As this load is spread
overp processors, there will be at least one processor with
memory load at least(bk − 1)/((b− 1)p).

Note that Lemma 1 can be generalized for arbitrary task
graphs. The computational load of a task graphG = (V,E)
is

∑
v∈V ρ(v), and thus there must be a processor with

a maximum computational load of at least
∑

v∈V ρ(v)/p.
Similarly, the maximum memory load must be at least∑

v∈V β(v)/p.

Construction Consider as a first try the casep = k and
the mappingµ0 that maps all nodes of leveli onto pro-
cessorPi. Obviously, this mapping fulfils properties 1
and 3, as the computational load of each level equals 1
(see Lemma 1), and as siblings in the tree are always on
the same level and hence mapped to the same processor.
However,bk−1 nodes of levelk − 1 are mapped to proces-
sor Pk−1, and henceM∗

µ0
= c · bk−1 and thus a factor of

aboutk/2 ≤ k(b − 1)/b ≤ k away from the lower bound
of Lemma 1. This restriction is serious, as each processor
only contains a fixed amount of local memory, so that ei-
ther, when we consider the memory load of each task to be
fixed, the maximum numberk to which this mapping scales
is severely limited. If we do not fix the memory load of
the task, the memory available for each node is—at least
on levelk − 1, i.e. for at least half of all nodes because of
b ≥ 2—shrinking by a factor ofk faster with growingk
than necessary, i.e. buffer size will soon become very small,
which also affects performance of data transfer.

We therefore devise a mappingµ1 that is constructed in
several steps, and in each stepi mapsli levels of the tree
onto li processors. Letk0 = k be the number of levels and
processors in step0. In stepi, if ki ≥ 2, we mapli ≤ ki−1
of theki levels, starting from the leaves, onto a respective
number of processors, so thatki+1 = ki − li levels and
processors remain. Ifki = 1, we map the tree root onto the
last processor, and the mapping is complete. As each level
of the tree has a computational load of1, the mapping must
be such that each processor receives a load of1 to minimize
C∗

µ1
.

We chooseli to be the largest power ofb less than or
equal toki − 1. Theli levels then consist ofbki+1 balanced
b-ary trees ofli levels each. Ifli ≤ bki+1 , thenli divides
bki+1 because it is also a power ofb, and we mapbki+1/li
trees on each of the processors. This balances both maxi-
mum computational and maximum memory load.

Figure 4. Step i of the construction of µ1.

The caseli > bki+1 is illustrated in Fig. 4. In this case,
we can writeli = bx · bki+1 , wherex ≥ 1 is an integral
number. In this case, we definel′i = li − bx and first
map thel′i levels starting from the leaves. Those levels
consist ofbki+1+bx

balancedb-ary trees ofl′i levels each.
As bx ≥ x because ofb ≥ 2 andx ≥ 1, it follows that
bki+1+bx ≥ bki+1+x = li and that this number is even an
integral multiple ofli becauseli is also a power ofb. Thus,
we can map the trees of the lastl′i levels evenly onto theli
processors. For the remainingbx levels to be mapped in this
step, we map those levels starting with the level closest to
the root havingbki+1 nodes: we map each node onto one
processor, usingbki+1 processors. For the next level having
b ·bki+1 nodes, we mapb nodes on each processor, using an-
otherbki+1 processors. When we have finished with those
bx levels, we have usedbx · bki+1 = li processors. Note
that this straightforward placement corresponds to applying
mappingµ0 for thebki+1 trees ofk = bx levels each, with
the processor capacity scaled down tob−ki+1 . We might
also apply mappingµ1 recursively to further balance the
load.

On each processor, we have placed a load ofl′i/li =
1 − b−ki+1 by mappingl′i levels, andb−ki+1 by mapping
the firstbx levels. It follows that the computational load on
each processor is 1. The maximum memory load is deter-
mined in stepi = 0, because the majority of the nodes is
mapped there. In this step(bk − bk−l0)/(b − 1) nodes are
mapped ontol0 processors, so that each processor receives
a memory load of

bk − bk−l0

(b− 1)l0
< b · bk − 1

(b− 1)k

becausel0 ≥ k/b. Thus, the memory load is larger than the
lower bound by a factor less thanb. Note that this is not
completely exact because thebx levels — if they are used



in the first step — are not mapped with a completely even
memory load. However, the imbalance is only very slight,
as our simulations will show.

In each step, there are at most two levels (the first one
of the bx and the first one of thel′i) where siblings are not
placed on the same processor.

As in each stepi the largest power ofb less thanki is
chosen as the numberli of levels mapped, the numberr of
steps made by the mapping algorithm is one plus the cross
sum ofk− 1 in b-ary representation, and thusr ≤ 1 + (b−
1) · logb(k − 1).

We summarize the properties of mappingµ1:

Lemma 2 The maximum computational load of mapping
µ1 is C∗

µ1
= 1, which is optimal.

The maximum memory load of mappingµ1 is about
M∗

µ1
= bk−bk−l0

(b−1)l0
, which is larger than the lower bound by

a factor of less thanb.
In at leastk−2r levels, siblings are mapped to the same

processor, wherer ≤ 1 + (b− 1) logb(k− 1) is the number
of the steps in the construction of the mapping.

We illustrate the mapping algorithm for the caseb = 2
andk = 5. The resulting mapping is identical to the one in
Fig. 2, i.e. the approximation algorithm produces an optimal
result. In stepi = 0, we havel0 = 4 as this is the largest
power of 2 less thank0 = k = 5. Hence,k1 = 1. The
levels to be mapped consist of2k1 = 2 trees of 4 levels, and
thus cannot be mapped directly. It follows thatx = 1 as
l0 = 4 = 21 · 21 = 2k1 · 2x, and thusl′0 = l0− 2x = 2. The
last two levels of the 5-level tree consist of 8 trees, so that
two of them are mapped onto each processor. Then we place
the remaining2x = 2 levels, of which the first consists of
two nodes, that are mapped onto two processors, one node
on each processor. The last level consists of 4 nodes, of
which 2 are mapped on each of two processors. Finally, in
stepi = 1, we havek1 = 1 and map the root onto the last
processor. The maximum memory load of the mapping is
8 which is optimal (see previous section) although it is a
factor of1.29 away from the lower bound.

As a second example we considerk = 8 andb = 2. In
this examplebki+1 ≥ li for all stepsi. In step 0, we map
l0 = 4 levels of the tree onto 4 processors, in step 1 we
map l1 = 2 levels, and in steps 2 and 3 we map 1 level,
respectively. The resulting mapping is depicted in Fig. 5.
The maximum computational load on each processor is 1,
which is optimal, and the maximum memory load is60, on
processors 0 to 3, which is a factor of1.9 away from the
lower bound.

Both examples were chosen in part because they repre-
sent two extremes:k = 5 = 22 + 1 is a power of two plus
one, and thusl0 can be chosen the maximum value so that
k1 = 1, and the mapping can be constructed in two steps.
The closerl0 is to k, also the closer the maximum memory

Figure 5. Mapping a 8-level binary tree onto 8
processors.

load is to the lower bound. In contrast, fork = 8, we must
choosel0 = 4 which is only half ofk, and thus the worst
value possible. As a consequence the maximum memory
load is by a factor of1.88 larger than the lower bound.

In general, the ratio between maximum memory load and
lower bound increases with increasingk in intervals[bj +
1, . . . , bj+1] from 1 to b. We have illustrated this fork =
4, . . . , 32 andb = 2, 4, 6, 8 in Fig. 6.

Several cases remain to be considered. In the case that
p < k, there are several possibilities. Ifk is a multiple of
p, then we could first construct a mapping ontok pseudo-
processors, and then mapk/p of those pseudo-processors
onto one processor. Alternatively, one could split thek-level
tree intop-level sub-trees that can be mapped as before, and
have the system work in a scheduled way, e.g. round-robin,
on the sub-trees. Ifk is not a multiple ofp, then we again
split the tree intop-level sub-trees starting from the leaves.
The sub-tree containing the root will contain onlyk mod
p < p levels, a case which is treated below.

Note thatk is an input parameter of our problem as the
sorting algorithm in principle is free to choosek as seems
suitable. Thereforek should be chosen such it fits well with
the available number of processors, i.e. in most cases one
will try to choosek = p.

In the case thatp > k, there are again several possi-
bilities. If p is a multiple ofk, then one could first con-
struct a mapping ontok pseudo-processors, and then dis-



Figure 6. Ratio between max. memory load
and lower bound depending on k and b.

Figure 7. Mapping a 4-level
tree onto 6 SPEs.

tribute the work of each pseudo-processor evenly ontop/k
processors. Note that distributing the work of the pseudo-
processor to which the root node is mapped consists of par-
allelizing a single merge node. However, there are algo-
rithms known in the literature for that problem, see e.g.
Chapter 4.2 of [7] that presents a parallel merge onn pro-
cessors withO(n log n) work.

In case thatp is only slightly larger thank, one may also
think of distributing the work of processors to which the
leaves are mapped, onto several processors. The reduction
of the computational load for these processors takes into
account that the computational load is anaverageover the
time, and can compensate variations too large to be taken
care of by buffering. An example is depicted in Fig. 7 for
k = 4 andp = 6. The mapping fork = p = 4 usesl0 = 2
in the first step, but distributes the load for two processors
now onto four processors.

So far, we have only considered the memory load, and
not the load on the ring network. The processorPp−1 hold-
ing solely the root node will have an output rate of1, which

is transported over the ring to the external memory. Each set
of processors maps a number of levels. The rate of the com-
munication leaving those processors sums up to1 as well,
as this is the load on each level. Hence, no part of the ring
will have a higher network load, so that also the network
load scales well with the algorithm.

5. Related Work

Partitioning and mapping of task graphs is, in general, a
NP-complete problem and has been discussed a lot in the
literature.

One application area is, as in our case, the paralleliza-
tion of programs with given dependence graph for execu-
tion on a (mostly, shared memory) parallel computer, with
the objective to balance the work load of the partitions, min-
imize the number of partitions (aka.processor minimiza-
tion), and/or minimize the overall weight of all edges cut
by the partitioning, as all these are supposed to correspond
to expensive shared memory accesses (aka.bandwidth min-
imization).

Another related area is the (spatial) clustering of logic
circuits into partitions each matching a maximum chip
size constraint, while the communication between partitions
must fit an upper limit on the number of pins per chip. Here,
one is (as in our case) mainly interested in reducing the ac-
cumulated weight of all edges cut between any two adjacent
partitions (aka.bottleneck minimization).

There is a wealth of literature on mapping and schedul-
ing acyclic task graphs of streaming computations to multi-
processors. Some methods are designed for special topolo-
gies, such as linear chains and trees, while others address
general task graphs.

Mapping of special topologies For tree-shaped task
graphs, various partitioning algorithms have been proposed.

Bokhari [8] considers partitioning of trees for master-
slave (there called host-satellite) systems where the parti-
tion containing the root is mapped to the master (host) pro-
cessor while the slaves (satellites) are each assigned exactly
one complete subtree that is connected directly to the master
partition.

Ray and Jiang [9] show that the bandwidth minimiza-
tion problem is NP-complete even for trees, and give a fast
heuristic algorithm for it. In a follow-up paper [10], the
same authors give polynomial-time greedy algorithms for
bottleneck minimization and processor minimization of tree
task graphs.

Most approaches for tree partitioning are for non-
pipelined trees and therefore assume that the tree partitions
should be connected components (i.e., contiguous subtrees)
and exactly one partition be mapped to one processor. This
does not apply in our case, where partitions can consist of



multiple disconnected subtrees, so that processors could be
better “filled up” to their computational capacity with resid-
ual tree fragments if this improves system throughput. Also,
in our scenario theb-ary tree is always complete, thus we
can exploit symmetry properties that are not given in the
more general case.

Lüling et al. [11] consider the problem of mapping a tree
that evolves in a search problem onto a distributed memory
parallel computer in such a way that computation and com-
munication times both are minimized. They focus on trees
that evolve dynamically, i.e. are not known beforehand as
in our case. The work associated with each tree node seems
to be constant while the computational load in our case de-
pends on the tree level of the node. As the tree is not kept
completely, memory load plays a minor role. In contrast, we
map a tree to be kept completely in memory. Finally, the
trees considered in search problems typically are far from
balanced and their degree is irregular, while we consider
balancedb-ary trees.

Middendorf et al. [12] consider non-pipelined, tree-like
task graph structures such as reduction trees, task graphs
for parallel prefix computations andButterfly graphs, under
the LogP cost model that accounts for transfer latency and
limited communication bandwidth in message passing sys-
tems. They give polynomial-time algorithms for comput-
ing optimal schedules for special cases. However, memory
constraints or pipelined versions of these task graphs are not
considered.

Mapping of general task graphs The approaches for
mapping general task graphs can be roughly divided into
two classes: Non-overlapping scheduling and overlapping
scheduling. Our approach belongs to the latter.

Non-overlapping schedulingschedules a single execu-
tion of the program (and repeats this for further input sets
if necessary); it aims at minimizing the makespan (execu-
tion time for one input set) of the schedule, which depends
strongly on task and communication latencies, while mem-
ory constraints are usually a non-issue here. A typical result
is that all tasks on a critical path are mapped to the same pro-
cessing unit. The mapping and scheduling can thus be done
by classical list-scheduling based approaches for task graph
clustering that attempt to minimize the critical path length
for a given number of processors. Usually, partitions are
contiguous subgraphs. The problem complexity can be re-
duced heuristically by a task merging pre-pass that coarsens
the task granularity. See [13] for a recent survey and com-
parison.

Szymanek and Kuchcinski [14] propose a heuristic
method for memory-aware assignment and scheduling of
a task graph to a bus- or link-connected set of processing
units. Tasks are parametrized in their code and data mem-
ory needs, and edges between tasks by the buffer space re-

quirements on sender and receiver side during the whole
communication period that results if an edge is selected
as communication edge between partitions. Based on ini-
tial estimations for maximum data memory use, this itera-
tive optimization method toggles between two strategies for
assignment and scheduling, namely critical path schedul-
ing (which optimizes for the makespan) and scheduling for
minimization of memory usage, trying to balance execution
time and memory utilization of the resulting solution.

For Cell BE, Beniniet al. [15] propose a constraint pro-
gramming approach for combined mapping, scheduling and
buffer allocation of non-pipelined task graphs to minimize
the makespan.

Overlapping scheduling, which is closely related tosoft-
ware pipeliningand tosystolic parallel algorithms[16], in-
stead overlaps executions for different input sets in time and
attempts to maximize the throughput in the steady state,
even if the makespan for a single input set may be long.
Mapping methods for such pipelined task graphs, especially
for signal processing applications in the embedded systems
domain, have been described e.g. by Hoang and Rabaey
[17] and Ruggieroet al. [18]. Our method also belongs
to this second category.

Hoang and Rabaey [17] work on a hierarchical task
graph such that task granularity can be refined by expanding
function calls or loops into subtasks as appropriate. They
provide a heuristic algorithm based on greedy list schedul-
ing for simultaneous pipelining, parallel execution and re-
timing to maximize throughput. The resulting mapped
pipeline is a linear graph where each pipeline stage is as-
signed one or several processors. Buffer memory require-
ments are considered only when checking feasibility of a
solution, but are not really minimized for. The method only
allows contiguous subDAGs to be mapped to a processor.

Ruggieroet al. [18] decompose the problem into map-
ping (resource allocation) and scheduling. The mapping
problem, which is close to ours, is solved by an integer lin-
ear programming formulation, too, and is thus, in general,
not constrained to partitions consisting of contiguous sub-
DAGs as in most other methods. Their framework targets
MPSoC platforms where the mapped partitions form linear
pipelines. Their objective function for mapping optimiza-
tion is minimizing the communication cost for forwarding
intermediate results on the internal bus. Buffer memory re-
quirements are not considered.

6. Conclusion

We have shown how to lower memory bandwidth re-
quirements in code for the Cell BE by on-chip pipelining
of memory-intensive computations. To realize pipelining
with maximum throughput while reducing on-chip memory
load and interprocessor communication, we formulated a



general optimization problem for mapping task graphs. We
have demonstrated our model with case studies from data-
parallel code generation and merge trees in sorting. Small
to medium sized problem instances can be solved optimally
by ILP, larger ones by heuristics and approximation algo-
rithms. We have also presented a new tree-specific approx-
imation algorithm for the mapping problem.

Implementing and evaluating the resulting code on Cell
is an issue of current and future work. The method could
be used e.g. as an optimization in code generation for da-
taparallel code in an optimizing compiler for Cell, such as
[19].

Acknowledgements C. Kessler acknowledges partial
funding by Vetenskapsrådet, SSF, Vinnova, and CUGS.

References

[1] Chen, T., Raghavan, R., Dale, J.N., Iwata, E.:
Cell broadband engine architecture and its first
implementation—a performance view. IBM J. Res.
Devel.51(5) (Sept. 2007) 559–572

[2] Kessler, C.W., Keller, J.: Optimized mapping of
pipelined task graphs on the Cell BE. In: Proc. 14th
Int. Workshop on Compilers for Parallel Computing
(CPC-2009), Z̈urich, Switzerland. (January 2009)

[3] Keller, J., Kessler, C.W.: Optimized pipelined parallel
merge sort on the Cell BE. In: Proc. 2nd Workshop on
Highly Parallel Processing on a Chip (HPPC-2008) at
Euro-Par 2008, Gran Canaria, Spain. (2008)

[4] Gedik, B., Bordawekar, R., Yu, P.S.: Cellsort: High
performance sorting on the Cell processor. In: Proc.
33rd Int.l Conf. on Very Large Data Bases. (2007)
1286–1207

[5] Inoue, H., Moriyama, T., Komatsu, H., Nakatani, T.:
AA-sort: A new parallel sorting algorithm for multi-
core SIMD processors. In: Proc. 16th Int.l Conf.
on Parallel Architecture and Compilation Techniques
(PACT), IEEE Computer Society (2007) 189–198

[6] ILOG Inc.: CPLEX v. 10.2. www.ilog.com (2007)

[7] JáJ́a, J.: An Introduction to Parallel Algorithms.
Addison-Wesley (1992)

[8] Bokhari, S.H.: Partitioning problems in parallel,
pipelined and distributed computing. IEEE Transac-
tions on Computers37(1) (January 1988)

[9] Ray, S., Jiang, I.: Improved algorithms for partition-
ing tree and linear task graphs on shared memory ar-
chitecture. In: Proceedings of the 14th International

Conference on Distributed Computing Systems. (June
1994) 363–370

[10] Ray, S., Jiang, I.: Sequential and parallel algorithms
for partitioning tree task graphs on shared memory ar-
chitecture. In: Proc. International Conference on Par-
allel Processing, Volume 3. (August 1994) 266–269

[11] Lüling, R., Monien, B., Reinefeld, A., Tschöke, S.:
Mapping tree-structured combinatorial optimization
problems onto parallel computers. In: Solving Combi-
natorial Optimization Problems in Parallel - Methods
and Techniques, London, UK, Springer-Verlag (1996)
115–144

[12] Middendorf, M., L̈owe, W., Zimmermann, W.:
Scheduling inverse trees under the communication
model of the LogP-machine. Theoretical Computer
Science215(1999) 137–168

[13] Kianzad, V., Bhattacharyya, S.S.: Efficient techniques
for clustering and scheduling onto embedded multi-
processors. IEEE Trans. on Par. and Distr. Syst.17(7)
(July 2006) 667–680

[14] Szymanek, R., Kuchcinski, K.: A constructive algo-
rithm for memory-aware task assignment and schedul-
ing. In: CODES ’01: Proc. 9th int. symposium on
Hardware/software codesign, New York, NY, USA,
ACM (2001) 147–152

[15] Benini, L., Lombardi, M., Milano, M., Ruggiero,
M.: A constraint programming approach for alloca-
tion and scheduling on the CELL Broadband Engine.
In: Proc. 14th Constraint Programming (CP-2008),
Sydney, Springer LNCS 5202 (September 2008) 21–
35

[16] Kung, H.T.: Why systolic architectures? IEEE Com-
puter15 (January 1982) 37–46

[17] Hoang, P.D., Rabaey, J.M.: Scheduling of DSP pro-
grams onto multiprocessors for maximum throughput.
IEEE Trans. on Signal Processing41(6) (June 1993)
2225–2235

[18] Ruggiero, M., Guerri, A., Bertozzi, D., Milano, M.,
Benini, L.: A fast and accurate technique for map-
ping parallel applications on stream-oriented MPSoC
platforms with communication awareness. Int. J. of
Parallel Programming36(1) (February 2008)

[19] Eichenberger et al., A.E.: Using advanced com-
piler technology to exploit the performance of the Cell
Broadband Engine (TM) architecture. IBM Systems
Journal45(1) (2006)


