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Exploiting effectively massively parallel architectures is a major challenge that stream programming can
help to face. We investigate the problem of generating energy-optimal code for a collection of streaming
tasks that include parallelizable or moldable tasks on a generic manycore processor with dynamic discrete
frequency scaling. Streaming task collections differ from classical task sets in that all tasks are running
concurrently, so that cores typically run several tasks that are scheduled round-robin at user level in a
data-driven way. A stream of data flows through the tasks and intermediate results may be forwarded to
other tasks like in a pipelined task graph. In this paper we consider crown scheduling, a novel technique
for the combined optimization of resource allocation, mapping and discrete voltage/frequency scaling for
moldable streaming task collections in order to optimize energy efficiency given a throughput constraint.
We first present optimal off-line algorithms for separate and integrated crown scheduling based on integer
linear programming (ILP). We make no restricting assumption about speedup behavior. We introduce the
fast heuristic Longest Task, Lowest Group (LTLG) as a generalization of the Longest Processing Time (LPT)
algorithm to achieve a load-balanced mapping of parallel tasks, and the Height heuristic for crown frequency
scaling. We use them in feedback loop heuristics based on binary search and simulated annealing to optimize
crown allocation.

Our experimental evaluation of the ILP models for a generic manycore architecture shows that at least for
small and medium sized streaming task collections even the integrated variant of crown scheduling can be
solved to optimality by a state-of-the-art ILP solver within a few seconds. Our heuristics produce makespan
and energy consumption close to optimality within the limits of the phase-separated crown scheduling tech-
nique and the crown structure. Their optimization time is longer than the one of other algorithms we test,
but our heuristics consistently produce better solutions.
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1. INTRODUCTION
The increasing attention given to multi- and manycores architectures yields the need
for programming models able to take easily profit of their power. Among many solu-
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tions to the general parallel programming problem, the streaming approach is par-
ticularly adapted to coarse architectures and give opportunities toward the design of
highly scalable parallel algorithms [Gordon et al. 2006; Lee and Messerschmitt 1987].
Examples include image processing and video encoding/decoding pipelines, and other
applications operating on large data volumes, e.g. streamed mergesort or mapreduce.
We consider the steady state of a software pipelined streaming task application where
all streaming tasks are active simultaneously. Each task repeatedly consumes some
amount of input, does some computation, and produces output that is forwarded to
another task (or to memory if it is a final result).

A streaming task application can be modeled by a static streaming task graph (or a
Kahn Process Network [Kahn 1974]) where the nodes represent the tasks, that are not
annotated with runtimes but with average computational rates. In the steady state,
an edge between tasks u and v does not indicate a precedence constraint but denotes a
communication of outputs from producer task u to become inputs of consumer task v,
and is annotated with an average bandwidth requirement.

As the workloads of different tasks may vary around the given averages and as there
are normally more tasks than cores on the underlying machine, dynamic round-robin
scheduling enables several tasks to run concurrently on the same core. In this case,
a scheduling point is assumed to occur after the production of a packet, and a round-
robin non-preemptive user-level scheduler normally is sufficient to ensure that each
task gets its share of processor time, provided the core has enough processing power,
i.e. is run at a frequency high enough to handle the total load from all tasks mapped
to this core.

Here we consider streaming task collections, i.e., we model the tasks’ computational
loads only. Our results can still be applied to streaming task graphs if we assume that
the latencies of producer-consumer task communications can be hidden by pipelining
with multi-buffering from one scheduling round to the next, and that on-chip network
links are not oversubscribed1.

We assume that our underlying machine consists of p identical processors, which can
be frequency-scaled independently. We consider discrete frequency levels. We do not
consider voltage scaling explicitly, but as most processors auto-scale the voltage to the
minimum possible for a given frequency, this is covered as well. We allow for arbitrary
core power models, which might comprise static and dynamic power consumption, and
can be modeled analytically or based on measurements on real hardware. Beyond an-
alytic power models like fα, other models (e.g. derived from measurements) are also
possible by replacing the corresponding terms in ILP formulations and heuristics.

A task instance produces a packet of output data from packets of input data. Its
granularity depends both on the data packet size and on the complexity of the com-
putation performed on it. In practice, we assume task instances (i.e., per packet) to
take a time in the milliseconds range. This is coarse enough that the per-task user-
level scheduling overhead, buffer management and frequency switching overhead can
be considered reasonably low compared to task execution time. We allow for moldable
(multithreaded, aka. parallelizable) tasks that can internally use a parallel algorithm
involving multiple processors (possibly using communication and synchronization via
shared memory or message passing) in order to achieve parallel speedup. We do not
schedule tasks in a malleable way, i.e. a task cannot increase or decrease its number
of allocated cores while running. Such task collections can still be scheduled by consid-
ering them as moldable tasks. We make no assumptions about the parallel efficiency
functions of moldable tasks; these are parameters of our model. Moldable, partly mold-
able and sequential tasks might be mixed.

1Scheduling tasks under bandwidth constraints and optimizing latency is a matter of future work
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We are interested in statically (1) allocating processing resources to tasks and (2)
mapping the tasks to processors in such a way that, after (3) suitable task-wise fre-
quency scaling given a throughput constraint and overall energy consumption during
one full round of the round-robin scheduler is minimized. We refer to this combined
optimization problem (1–3) shortly as energy-efficient scheduling. With this respect,
we make the following contributions:

— We introduce the crown structure as a constraint on resource allocation, which re-
duces the complexity of allocation, mapping and discrete frequency scaling consider-
ably, namely from p to O(log p) possible task sizes for allocation and from 2p to O(p)
possible processor subsets for mapping. We show that this constraint makes the ex-
act solution of the still considered NP-hard optimization problem feasible even for
medium problem sizes. We argue that the resulting schedules are efficient and also
flexible for dynamic rescaling to adapt to fluctuations in streaming task load at run-
time, in order to save further energy e.g. in situations where a task may not be data-
ready in a schedule round and has to be skipped. We present crown scheduling, a
novel method for energy-efficiency scheduling under the crown structure constraint.

— We show how to apply discrete frequency scaling of the tasks in a given crown
schedule to optimize its energy efficiency for a given throughput constraint.

— We give implementations of crown scheduling as Integer Linear Programming
(ILP) models and evaluate them for a generic manycore architecture, showing that
it can be solved to optimality (with regards to the crown structure) for small and
most medium sized streaming task collections within a few seconds.

— We present efficient heuristics for crown allocation, mapping and discrete frequency
scaling phases for large streaming task collections. We give a time complexity anal-
ysis for each of them and we show that the quality of their solution competes with
optimal crown schedules for a much lower optimization time.

The remainder of this paper is organized as follows: Section 2 introduces the general
concepts and central notation. Section 3 considers the separate optimization of crown
resource allocation/mapping and subsequent frequency/voltage scaling, while Section 4
provides the integrated solution of crown resource allocation, mapping and scaling in
the form of an integer linear programming model that can provide an optimal solution
for small and medium sized problems. Section 5 addresses dynamic schedule rescal-
ing. Section 6 presents experimental results. Section 7 discusses related work, and
Section 8 concludes the paper and proposes some future work.

2. CROWN SCHEDULING
A crown2 is a recursive b-ary decomposition of the set of cores into subgroups down
to singletons. These subgroups are to become the only possible mapping target for
tasks. The base of a crown represents the full core set to run very parallel tasks. This
inter-dependency decreases with the parallel degree of tasks and the increasing height
in the crown. The crown structure aims to guarantee that cores belonging to a higher
region of the crown (running less parallel tasks) can perform their work independently
of cores belonging to another branch.

2The name is inspired by the shape of a crown, whose triangular spikes symbolize a decreasing degree of
connectivity, see Fig. 1(a).
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(b) An (unscaled) crown schedule run-
ning in Round-Robin fashion.

Fig. 1. A group hierarchy and a possible corresponding unscaled crown schedule for 8 processors.

We consider a generic multicore architecture with p identical cores (processors). For
simplicity of presentation, we assume in the following that p = 2L (see 3) is a power of
2 (see 4). All p cores can be individually and dynamically set to run at one frequency
level from a finite set F .

The set of processors P = {P1, ..., Pp} is hierarchically structured into 2p−1 processor
subgroups by recursive binary partitioning as follows: The root group G1 equals P ; it
has the two child subgroups G2 = {P1, ..., Pp/2} and G3 = {Pp/2+1, ..., Pp}, four grand-
children groups G4 = {P1, ..., Pp/4} to G7 = {P3p/4+1, ..., Pp} and so on over all L + 1
tree levels, up to the leaf groups Gp = {P1},..., G2p−1 = {Pp}. Unless otherwise con-
strained, such grouping should also reflect the sharing of hardware resources across
processors, such as on-chip memory shared by processor subgroups. Let Cm denote the
set of all groups that contain processor Pm. For instance, C1 = {G2z : z = 0, . . . , L}. Let
pi = |Gi| denote the number of processors in processor group Gi. Where it is clear from
the context, we also write i for Gi for brevity.

We consider a set T = {t1, ..., tn} of nmoldable, partly moldable or sequential stream-
ing tasks, where each task tj performs work τj and has a maximum width Wj ≥ 1 and
an efficiency function ej(q) > 0 for 1 ≤ q ≤ p that predicts the parallel efficiency
(i.e., parallel speedup over q) with q processors. For moldable tasks, Wj is ∞, i.e., un-
bounded; for partly moldable tasks, Wj can be any fixed value > 1, and for sequential
tasks Wj = 1. For all tasks tj we assume that ej(1) = 1, i.e., no parallelism overhead
when running on a single processor5. Where clear from the context, we also write j as
shorthand for tj .

Resource allocation assigns each task tj a width wj with 1 ≤ wj ≤ min(Wj , p), for
1 ≤ j ≤ n. As additional constraint we require for crown allocation that wj be a power

3We can define p = bL with b > 1 and b ∈ N for generality. However, our method yields more optimization
opportunities as b decreases, for the same complexity. Therefore in this paper, we are only interested in the
case where b = 2.
4A generalization towards (non-prime) p that are not powers of 2, such as p = 48 for Intel SCC, derives from
a recursive decomposition of p into its prime factors a corresponding multi-degree tree structure instead of
the binary tree structure described in the following for organizing processors in processor groups .
5In principle, partial moldability might be also expressed by manipulating the ej functions, but in this
paper we use the upper limits Wj for this purpose. — We may assume that the efficiency functions ej
are monotonically decreasing, although this assumption is not strictly necessary for the techniques of this
article.
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of 2, and thus could be mapped completely to one of the 2p − 1 processor subgroups
introduced above. A crown mapping is a mapping of each task tj with assigned width
wj to one of the processor subgroups in {G1, ..., G2p−1} of a size matching wj . For each
processor group Gi, 1 ≤ i ≤ 2p − 1, let T (i) denote the set of tasks tj ∈ T that are
mapped to Gi. For each processor Pm, 1 ≤ m ≤ p, let Tm denote the set of tasks tj ∈ T
mapped to Pm, i.e., to any Gi ∈ Cm. Conversely, let Rj denote the group to which task
tj is mapped. Crown scaling attributes a running frequency level to each task. If task
j is given frequency level fj ∈ F , and mapped to group i, then all processors Gi must
run at frequency fj from when task j begins until task j finishes.

We define the execution time for tasks, groups and processors as functions of alloca-
tion, mapping and frequency settings given to all tasks. The execution time of a task j
running on w processors at frequency f is defined as follows:

ttj(w, f) =
τj

f · ej(w) · w
(1)

Where clear from the context, we write ttj for the execution time of task j with given
width wj and frequency fj . We conveniently assume here that the running time of
task j is proportional to the frequency inverse 1/f , but the model allows extensions to
sample the tasks’ speedup function of frequency. Similarly, we consider that tasks use
all w cores through all their entire execution time6. The static runtime of a processor
group i, denoted gti, is the sum of execution times of all tasks mapped to this group. If
they all run at frequency f , then we write gti(f) as:

gti(f) =
∑
j∈T (i)

ttj(wj , f) (2)

We write for convenience gti =
∑
j∈T (i) ttj(wj , fj) for the execution time of group i, with

all tasks j running at the frequency fj they have been assigned. A processor m runs as
long as the sum of all execution time of all groups it belongs to, assuming frequency f :

ptm(f) =
∑
i∈Cm

gti(f) (3)

When clear from the context, we also write ptm =
∑
i∈Cm

gti for the execution time
of processor m, where all tasks j that it executes run at the frequency fj that they
are assigned. When we need to compare task j, group i or processor m by unscaled
execution time, i.e. with no bias due to any task frequency settings, for instance to
compute task’s running frequency, we use the constant frequency 1Hz with ttj(wj , 1)
(Eq. 1), gti(1) (Eq. 2) and ptm(1) (Eq. 3), respectively.

For each processor Pm, we order the tasks in Tm in non-increasing order of width,
e.g., by concatenating the elements of all T (i) ∈ Cm in increasing order of group index
i. The relative order of the tasks within each processor group must be kept the same
across all its processors, e.g., in increasing task index order. We call such a p-tuple of
processor schedules a crown schedule.

A crown scheduler is a user-level round-robin scheduler running on each processor
Pm, 1 ≤ m ≤ p, that uses a crown schedule for the (instances of) tasks in Tm to deter-
mine their order of execution. A crown scheduler works in rounds. Each round starts
with a conceptual global barrier synchronization across all p processors7. Thereafter

6If not, then task j’s efficiency function should not be modeled after its work τj , the number of processors w
and a parallelization overhead, but instead derive the parallel time function ttj of each task j from analysis
or measurements.
7There is no need for an explicit barrier to separate rounds. For the prediction of makespan, a conceptual
barrier can be assumed: As the cores involved in a parallel task (e.g., the first full-width parallel task
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the tasks are executed round-robin as specified in the chosen crown schedule of the
tasks in Tm. Tasks that are not data ready are skipped. Then the next round follows.
The stable state of a round in a crown-based streaming computation involves (almost)
all tasks in T as they all have data to process. See Figure 1(b) for an illustration.

The processing of tasks in decreasing order of width is required to make sure that
all processors participating in the same moldable task (instance) start and stop ap-
proximately at the same time, allowing for efficient interprocessor communications
and avoiding idle times, except at the end of a round. Between tasks (even of different
widths) within a round, scheduled idle time (“external fragmentation”) cannot occur
because the processors of the subgroup assigned to the subsequent task automatically
start quasi-simultaneously after finishing the previous task where they also partici-
pated; a moldable task is either data-ready or not, which means it is skipped either by
all or none of the processors in the assigned processor group.

Crown scheduling computes crown allocation, mapping and frequency scaling for
streaming tasks and minimizes energy consumption under a makespan constraint. We
fix a target throughput for an application as the inverse of a time budgetM to execute a
round. Crown scheduling allows any analytic energy consumption model. Let PC(f) be
an arbitrary dynamic power function for the crown scheduler. For a concrete machine,
it is sufficient to use results from power measurements of the target machine at the
available frequencies [Cichowski et al. 2012]. In our experiments, we set PC(f) = fα

with α = 3. We consider the energy spent at idle time as negligible, and also ignore the
time and energy required to switch frequencies, as they are small against the time of
a round. Equation 4 shows our energy consumption model.

energy =

n∑
j=1

ttj · wj · PC(fj) (4)

3. PHASE-SEPARATED ENERGY-EFFICIENT CROWN SCHEDULING
In this section we discuss separate optimization algorithms for each of the subproblems
crown resource allocation, crown mapping and crown scaling. An integrated and more
expensive approach is be discussed in Section 4. An overview of these problems is given
in Figure 2.

We can reduce the overall energy usage by scheduling tasks to run at a frequency
as low and uniform as possible through a pipeline stage [Li 2008]. Also, early phases
of the phase-separated approach are unaware of their influence on the efficiency of
subsequent phases. However the more idle time processors have between the target
makespan and the execution of their last task, the lower frequency can run their task
and the lower energy a pipeline stage consumes. Therefore, the allocation and map-
ping phases aim at optimizing for unscaled execution time and load-balancing. The
frequency scaling phase scales frequencies as low as possible under the makespan
constraint.

In this section, we call crown-optimal an optimal solution of the allocation, mapping
or frequency scaling phases in a separate manner. Because they are solved separately,
they do not participate in an optimal solution to the general scheduling problem stud-
ied in this article.

running on the root group at the beginning of a round) will task-internally communicate and synchronize
with each other, the resulting waiting times that would occur if cores start the task at different times can
conceptually be moved to the end of the preceding round, thus having the same effect as a zero-latency
barrier separating the rounds.
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Fig. 2. Overview of phase-separated vs. integrated crown scheduling. The methods shown by solid boxes
are detailed in this paper.

3.1. Crown-optimal Crown Resource Allocation
Let Qz, where z = 0, ..., log2 p, be the set of indexes of all the tasks which are assigned
width wj = 2z. Then task tj (j ∈ Qz) has unscaled runtime τ̂j = ttj(wj , 1) assuming
that its processors run at fixed frequency 1. If we assume as a simplification that all
tasks with the same width 2z can be distributed over the p/2z processor groups in a
balanced fashion, the runtime of these tasks on p processors is

Rz =
∑
j∈Qz

τ̂j
p/2z

(5)

Optimal resource allocation chooses the Qz in a way to minimize
log p∑
z=0

Rz

i.e., we minimize the total runtime assuming that the processors run at a fixed fre-
quency and the tasks of one width can be distributed optimally. To do this by linear
optimization, we introduce binary variables vj,z with vj,z = 1 iff task j gets width
wj = 2z. Then Eq. 5 transforms to

Rz =
∑
j

τ̂jvj,z
p/2z

and we need the constraint

∀j :
∑
z

vj,z = 1 .

It is simple to find an allocation that minimizes the total runtime, under the assump-
tion that the tasks can be distributed optimally, i.e., the total runtime is given by Eq. 5.
Equation 5 is minimized iff all τ̂jvj,z/(p/2z) are minimized. Therefore, we compute for
each task j the speedup gj(q) = ej(2

q) · 2q for each q ∈ [0..L] and select one q that
maximizes gj , from all L = log p possible allocations. Since we have n tasks, this takes
at most O(n · log p) time steps in total. Because all terms in the sum of Eq. 5 are inde-
pendent and because we minimize each, the computed allocation is optimal. Because it
computes an allocation such that each task runs individually for the shortest possible
time, we refer to this algorithm as fast allocation.

3.2. Crown-optimal Task Mapping
For an optimal crown mapping given an allocation, we treat all widths separately, i.e.,
we solve log2 p smaller optimization problems. For the tasks j of a given width wj =
2z, we try to distribute them over the p/wj processor groups available such that the
maximum load over any processor is minimized.

In order to formulate the mapping of the tasks of a given width 2z as an integer
linear program, we minimize a variable maxload (note that the target function here is
simple) under some constraints. To express the constraints, we use binary variables
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yj,i where j runs (in consecutive numbering) over all tasks with width 2z and i runs
over all considered p/2z processor groups Gp/wj

, . . . , G2p/wj−1. Hence, yj,i = 1 iff task
j is mapped to processor group i. The constraints are as follows. Task j is mapped to
exactly one processor group among those that have the right width wj :

∀j with width wj = 2z :

2p/wj−1∑
i=p/wj

yj,i = 1

We define Ti as the load mapped to processor i, that is the sum of the load of each group
i is part of

∀i ∈ 1..p : Ti =
∑
q∈Ci

n∑
j=1

τ̂j · yj,q

And maxload as the maximal Ti, i.e., the makespan:

maxload ≥ max
i∈1..p

(Ti)

3.3. Heuristic Task Mapping with Load Balancing
We describe the Longest Task, Lowest Group (LTLG) mapping heuristic for the load
balancing problem modeled in Sec. 2. We consider the height of a processor group i as
shown in Eq. 6 and illustrated in Fig. 3(a). The height of a group i is the maximum
running time maxm∈Gi

ptm(f) of all its processors running at frequency f . We call for
convenience heighti the height of group i where all tasks j run at frequency fj (Eq. 7).
The LTLG heuristic discards all tasks of group 1 from the height of any group because
group 1 cannot participate in any load imbalance (heighti=1 = 0). As no frequency
scaling is performed yet at the mapping stage (Fig. 2), LTLG computes the height of a
group i for a constant frequency c (heighti(c)). Note that this is not a limitation of our
LTLG heuristic as scaled tasks would only result in different a running time for each
task to map.

heighti∈[1,2p−1](f) = gti(f) +

blog2 ic∑
i′=2

gtb i

2i
′ c(f) + max(height2i(f), height2i+1(f)) (6)

heighti∈[1,2p−1] = gti +

blog2 ic∑
i′=2

gtb i

2i
′ c + max(height2i, height2i+1) (7)

LTLG is based on three principles to produce better load-balanced mappings:

(1) The assignment of each task j to the group i of least heighti among groups of size
wj limits load imbalance while building a schedule.

(2) The insertion of tasks of highest parallel running time first (with wj processors)
lowers the risk of creating load imbalance when adding the last tasks to a schedule.

(3) If tasks have the same parallel running time, inserting tasks of highest width first
keeps lowest width tasks available to later fill in the schedule’s holes.

The algorithm maintains log2 p priority queues, one per group size. The priority of
groups is defined by their least height, or their group number if both groups have the
same current height (Eq. 8). Since tasks of size wj = p do not create load imbalance
and as the root group is the only group of size p, we don’t use a priority queue for it. The
algorithm first sorts the tasks using Eq. 9 to compare them, with both their parallel
running time and their width. Considering tasks in this order, we assign task j to the
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makespan evolution during binary search.
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Fig. 4. Running example of 7 tasks mapped with LTLG yielding a makespan of 7. Tasks are sorted and
numbered after their parallel running time and degree as described by principles 2 and 3. Tasks 1 to 7 with
their current allocation run for 5, 4, 4, 3, 2, 2 and 1 time units. The reader may build schedules without
principles 2 and 3 (or using their complement instead) to experience their contribution.

highest priority group i of size wj as given by the priority queue for size wj . Then we
recompute the runtime gti of group i and its height, as well as for all its children groups
recursively. If the new height of group i is the maximum height among all children of
group i′ = bi/2c, then the height of i′ is also updated, and this is repeated for i′ until
the root group (excluded) is reached.

At each insertion of task j to a group i, we recompute the group’s runtime gti. This
takes constant time as we can add τj to an existing gti value, initialized to 0. Then,
we need to update the height of all O(p) descendants groups of i as well as all O(log p)
ancestor groups of i. Each group update requires a constant time update of the group
starting time for descendant groups and of the maximum child height for ancestor
groups. Finally, for each height recomputed, the group list for the corresponding level
must be sorted to reflect the new height. This can take O(log p) time by removing and
inserting again the group in the list. Each task insertion takes therefore O(p log p +
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φ(i1, i2) =

{
heighti1 > heighti2 if heighti1 6= heighti2
i1 > i2 otherwise.

(8)

φ(j1, j2) =


ttj1(wj1 , 1) > ttj2(wj2 , 1) if ttj1(wj1 , 1) 6= ttj2(wj2 , 1)

wj1 > wj2 if ttj1(wj1 , 1) = ttj2(wj2 , 1) and wj1 6= wj2
j1 > j2 otherwise.

(9)

log2 p) time steps. As we insert n tasks, the time complexity of the LTLG heuristic is
O(n(p log p+ log2 p)) = O(np log p).

3.4. Crown-optimal Voltage/Frequency Scaling of Schedules
We assume that when running all cores at maximum speed Fmax all the time, the
resulting makespan is M̂ ≤ M . The gap M − M̂ and any processor-specific idle times
at the “upper end” of the crown can then be leveraged for voltage/frequency scaling to
obtain better energy efficiency. We call this “scaling the schedule”.

For a given crown, energy efficiency can be optimized by each processor running
each of its tasks tj requiring work τj at a frequency fj chosen from a given set
F = {F1, ..., Fs} of s discrete (voltage and) frequency levels, such that it still meets
the throughput constraint. We require

∀m = 1, . . . , p : ptm ≤ M

and the overall energy usage as defined by Eq. 4 is minimized, subject to the additional
constraint that all processors of a group must use the same frequency level for a task.

3.5. Height Heuristic for Voltage/Frequency Scaling
The Height frequency scaling heuristic reduces individual tasks’ frequencies so that
the final schedule satisfies the throughput constraint M and tries to minimize energy
consumption. In general, energy consumption is lower when all tasks run with the
same frequency compared to running them at different frequencies for performing the
same work in the same time interval [Li 2008], therefore we decrease moderately the
frequency of all tasks together instead of decreasing aggressively the frequency for
some of the tasks while greatly increasing the frequency of other tasks in order to
satisfy the makespan constraint M . Our heuristic is an implementation of the Best-
Fit heuristic for the bin packing problem, where each group is a bin and each bin’s free
space is the difference between the group’s height and the target makespan.

The algorithm begins by assigning all tasks the maximum frequency Fmax and com-
puting the initial height heighti(Fmax) of all groups i. All tasks j are queued after their
decreasing running time ttj at frequency fj (initially ∀j : fj = Fmax). We call fj,cur any
frequency assigned to task j at any point in the algorithm. We call Fnext the frequency
variable that iterates over the set of frequencies F sorted decreasingly. For all tasks j
in the task priority queue, if fnext < fj,cur and the time penalty resulting in running
task j at frequency fnext < fj,cur is lower than, or equals the gap between the height
heightij of the group ij (to which task j is mapped) and the target makespanM (that is,
if ttj(wj , fnext)− ttj(wj , fj,cur) ≤M −heightij ), then we can assign task j the frequency
fnext, update the height of group ij as described in Sec. 3.3, and insert the newly scaled
task into a new task priority queue for the next frequency iteration.

The initial frequency assignment to tasks takes O(n) steps, the computation of the
initial height for each group takes O(n) for each O(p) groups, hence O(pn). Tasks and
frequencies are sorted decreasingly in O(n log n) and O(|F | log |F |) time steps, respec-
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M

2
1 3

(a) Initial schedule:
all tasks run at f =
max({1, 2, 3}) = 3.

M

2

1
3

(b) Scale tasks 1, 2
and 3 at fnext = 2.

21 3

decreasing priority
from left to right

(c) Task priority
queue before states
of Fig 5(a) and after
Fig. 5(b).

M

2

1 3

(d) Only tasks 2
and 3 can scale fur-
ther at fnext = 1.

2 1 3

(e) Final task prior-
ity queue .

Fig. 5. Running example of 3 tasks scaled with the Height heuristic for 2 processors of 3 frequency levels.

tively. In each nested loops iterations, taking the longest running time from the sorted
task queue takes O(1) time steps. Checking if running task j at frequency fnext doesn’t
make the schedule to cross the target makespan M takes O(1) time steps if the height
of group ij is already computed. Updating the height of group ij takes O(p) time steps
and adding the task in the new priority queue takes O(log n) time. Since we have |F |
frequency levels and n tasks, we run n · |F | iterations. Therefore the Height heuristic
runs in O(n+ pn+ n log n+ |F | log |F |+ pn · |F | log n) = O(|F | · pn log n) time steps.

3.6. Binary Search Allocation Heuristic
The methods described above for the allocation, mapping and frequency scaling phases
rely on the mapping phase capability to compute task distribution close to optimal and
produce a schedule whose runtime is the average load that each core receives (Eq. 5).
However, we target the minimization of energy consumption under makespan con-
straint instead of runtime. As parallelization usually induces additional processing
cost due to a task j’s non-perfect efficiency function ej(q) ≤ 1, a too high paralleliza-
tion consumes more energy. This suggests to give tasks as little parallelism as possi-
ble [Belkhale and Banerjee 1990].

We set a minimal acceptable efficiency value emin for allocations of processors to all
tasks, in order to limit parallelization and reduce its cost. We run the fast allocation,
with the additional constraint that no task j should be allocated a number of cores
that yields ej < emin. The constraint is implemented as a O(1) condition to discard
any allotment q for a task j if ej(q) < emin in the search for q that minimizes ttj(q, 1).
Then, we use the fast heuristics described in Sections 3.3 and 3.5 to check if the limited
parallelization still allows our heuristics to compute a valid schedule. If so, we increase
the minimal efficiency threshold by ∆ and compute a new schedule. Otherwise we
decrease the minimal efficiency by ∆. Finally, we update ∆ to its half. We implement
a binary search on emin to maximize the minimal efficiency in the search space (0, 1),
with an initial threshold 0.5 and ∆ = 0.25 (Fig. 3(b)). The binary search stops when
the minimal efficiency is higher than any possible value for ej,wj

(Wj > 1) for all tasks
j (Fig. 3(b) case 1) or when ∆ becomes lower than the minimal efficiency difference
between two allocations, for any task.

The binary search sequentializes tasks as far as task mapping and frequency scaling
allow the production of valid schedules. However, more sequential tasks take longer
time to execute. This can result in the frequency scaling phase to increase the task’s
frequency, which can replace the parallelization overhead by a much higher frequency
cost, due to the fast increase of PC(f) = fα. During the binary search, we keep track
of the energy consumption of every schedule generated and we keep the best. The best
initial solution is computed with fast allocation (Sec. 3.1) with no efficiency constraint
(emin = 0). Before starting our binary search, we also try an allocation with a perfect
efficiency constraint emin = 1, that is only possible with sequential or perfectly scalable
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tasks. If such an allotment results in a schedule running all tasks at the lowest possible
frequency, then we select this solution and skip the search loop. Otherwise, we compare
it to the initial best solution and begin the binary search iterations.

Figure 3(b) illustrates four possible search scenarios. In scenario 1, a progressive in-
crement makes the final schedule’s makespan to approach M , but it never reaches or
crosses it. All allocations are valid but the best one can be any of them (bottom curve,
plain black squares). In scenario 2, the initial emin doesn’t allow subsequent heuristics
to compute a valid schedule. emin is drastically reduced by initial ∆, and the resulting
schedule’s makespan is much lower than the target. The binary search method contin-
ues to halve ∆ and increasing and decreasing emin by ∆ until ∆ is too small and the
allocation that yields the best schedule is kept (mid-dark green rounds). In scenario 3,
the binary search increments emin so the final schedule approaches M as in scenario
1 but as emin increases, the heuristics begins to fail at computing a valid schedule. Bi-
nary search behaves then as in scenario 2, until ∆ is too small (dark red diamonds).
Finally in scenario 4, the binary search may always decrease emin but still fails to pro-
duce any allocation that the heuristics could use to compute any valid schedule (top
light blue triangles). In this case, we use the initial best solution computed with the
fast allocation strategy (Sec. 3.1) and rely on LTLG and Height heuristics to compute
a valid schedule, if possible.

The binary search algorithm explores the search space (0, 1) for ∆. Each round runs
the LTLG (O(np log p)) and Height (O(|F | · pn log n)) heuristics and run therefore in
O(np(log p + |F | · log n)) time steps. We define the stop condition as ∆ being smaller
than the efficiency gap between two allocations for all tasks, which we calculate be-
fore beginning the binary search. The minimal allocation gap takes time O(n log p)
to compute (see Sec.3.1 on allocation), where allocations that exhibit too low effi-
ciency are pruned during search. If g is the minimal efficiency gap between two pos-
sible allocations for any task (a large value of g means that all tasks scale badly),
then γ = dlog2(∆/g)e is the number of rounds in our binary search. We also com-
pute twice a fast allocation (time O(n log p)) as an initial solution and attempt with a
perfect efficiency constraint. The overall complexity of our binary search is therefore
O(n log p + 2(n log p + np log p + |F | · pn log n) + dlog2(∆/g)e · np(log p + |F | · log n)) =
O(dlog2(∆/g)e · np(log p+ |F | · log n)).

3.7. Simulated Annealing
The binary search method described in Sec. 3.6 limits the allocation space exploration
to solutions where all tasks share a common efficiency constraint. In particular, it does
not permit any fine tuning through individual tasks’ allotment adjustment. We use
the fast LTLG mapping and height frequency scaling heuristics within a simulated-
annealing meta-heuristic that optimizes the core allocation for each individual task.
Our simulated annealing thus optimizes allocation for a task collection.

We define the neighborhood of an allocation as other allocations within a fixed dis-
tance. The distance between two allocations is a real in the interval [0, 1], that defines
a proportional amount of the n tasks, whose number of cores allotted differs between
both allocations. The distance also defines the proportional variation of number of
cores, as a power of 2, that run the same task in both solutions. Searching in the
neighborhood of an allocation within a distance 0, is searching in the set of all alloca-
tions whose exactly one task is allocated the next higher or lower power-of-2 number
of cores, compared to the allocation of origin. Searching in the neighborhood of an allo-
cation within a distance 1 is searching in all possible allocations. A search within the
neighborhood of an allocation always excludes the allocation of origin.

We begin with a schedule computed with binary search (Sec. 3.6). The LTLG map-
ping and height frequency scaling heuristics compute a schedule for this allocation
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and we use the resulting energy consumption (Eq. 4, PC(f) = fα, α = 3 ) as feedback
to the simulated annealing allocation phase. In our experiment, we search a new so-
lution within the neighborhood of the current allocation at a maximal distance 0.5 at
each simulated annealing iteration. We allow at most 2 iterations before we decrease
the simulated annealing temperature (starting at 8) by multiplying it by our cooling
factor 0.6. For each temperature level, we accept at most 2 improving solutions. The
simulated annealing stops when the simulated temperature reaches 0.9, or whenever
it finds a correct solution where all tasks are sequential and run at the minimal fre-
quency.

We have dlog(8/0.9)/ log(1/0.6)e = 5 iterations until the final temperature is reached.
We allow at most 2 transformations per iteration, resulting in at most 10 = O(1) runs
of the task mapping and frequency scaling phases. Because we use binary search as an
initial solution, the overall time complexity is O(np(log p + |F | · log n + dlog2(∆/g)e) +
10(pn(log n+ log p)) = O(np(log p+ |F | · log n+ dlog2(∆/g)e)).

4. INTEGRATED ENERGY-EFFICIENT CROWN SCHEDULING
Separate crown allocation, crown mapping and a-posteriori scaling of the resulting
crown schedule may lead to suboptimal results compared to co-optimizing resource
allocation, mapping and discrete scaling from the beginning. See Fig. 6 for an example.

The integration of crown allocation, mapping and scaling is modeled as follows: We
construct an integer linear program that uses (2p−1) ·s ·n binary variables xi,k,j where
xi,k,j = 1 denotes that task j has been assigned to group i and should run at frequency
level Fk. We require that each task be allocated and mapped to exactly one group and
frequency level:

∀j = 1, . . . , n :

2p−1∑
i=max(p/Wj ,1)

s∑
k=1

xi,k,j = 1 .

and forbid the mapping of a task with width limit Wj to an oversized group:

∀j = 1, . . . , n :

max(p/Wj ,1)−1∑
i=1

s∑
k=1

xi,k,j = 0 .

Another constraint asserts that no processor is overloaded

∀m′ = 1, ..., p : timem :=
∑
i∈Cm

s∑
k=1

n∑
j=1

xi,k,j ·
τj

piej(pi)Fk
≤M

Then we minimize the target energy function (as derived from Eq. 4)
2p−1∑
i=1

s∑
k=1

PC(Fk) ·
n∑
j=1

xi,k,j ·
τj

ej(pi)

Note that the coefficients τj , pi and ej(pi) are constants in the linear program. Note
also that the time and energy penalty for frequency switching is not modeled. One sees
that (2p− 1) · s ·n variables and p+n constraints are needed to allocate, map and scale
n tasks onto p cores with s frequency levels.

5. DYNAMIC CROWN RESCALING
The above methods for crown resource allocation, mapping and scaling optimize for
the steady state of the pipeline and in particular for the (“worst”) case that all tasks
are data ready and execute in each round. In practice, however, there might be cases
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(a) Optimal phase-separated crown schedule (b) Optimal integrated crown schedule

Fig. 6. Phase-separated and integrated solutions; the lighter the tasks, the lower their running frequency.
Optimal allocation used in the phase-separated approach restricts the quality of the final solution. Frequen-
cies are represented by colors and darkness: dark red is high frequency (5) and lighter yellow represents low
frequency (1).

where individual tasks are not yet data ready at the issue time and thus are to be
skipped for the current round by the crown scheduler, or where tasks are delayed due
to cache misses, branch mispredictions or unexpected I/O latency.

If the skipped or delayed task j was mapped to a group (even a singleton group)
Gi, for instance the black hashed task in Fig. 3(a), we call β the additional execution
time of group i due to variable delays or tasks skipped. If task j is skipped, then the
additional execution time is the negative opposite of ttj (β = −ttj < 0).

If β < 0 we can save more energy or if β > 0, the schedule may not meet the target
makespan M . We can rescale “down-crown” all n′ ≤ n remaining tasks of the proces-
sors in Gi that follow j in the crown schedule (gray hashed area in Fig. 3(a)). Note
that such rescaling must be consistent across all processors sharing a moldable task,
and hence the concurrent search for candidates to rescale must be deterministic. The
crown structure can be leveraged for this purpose. Note that if a task of the root group
is skipped or delayed, then the entire schedule needs to be rescaled.

Dynamic rescaling of the current round is an on-line optimization problem that
should be solved quickly such that its expected overhead remains small in relation
to the saved amount of time. Hence, simple heuristics should be appropriate here. Let
Ri be the set of tasks in group i already executed (j /∈ Ri). We can apply the Height
heuristic (Sec. 3.5) with the subgroup Gi running tasks in Ri as the root group and
target the makespan

M ′ = M − ttj − β −
blog2 ic∑
x=1

gtbi/2xc −
∑
j′∈Ri

ttj′

for p′ = |Gi| processors (p′ ≤ p) and n′ < n tasks, taking O(|F |p′n′ log n′) time steps.

6. EXPERIMENTAL EVALUATION
We implemented the ILP models in AMPL [?], the LTLG mapping, the height frequency
scaling, binary search and simulated annealing allocation heuristics in C++. We sub-
stitute the ILP-based mapping and frequency scaling phases of the phase-separated
variant [Kessler et al. 2013b] with an optimal load-balanced ILP-formulated mapping
phase, the LTLG mapping, and with the Height mapping heuristics, respectively. We
obtain and compare 7 different crown schedulers:
(1) ILP allocation, ILP load-balanced mapping, ILP frequency scaling

(Fast,Bal.ILP,ILP)
(2) ILP allocation, LTLG mapping heuristic, ILP frequency scaling (Fast,LTLG,ILP)
(3) ILP allocation, ILP load-balanced mapping, Height heuristic frequency scaling

(Fast,Bal.ILP,Height)
(4) ILP allocation, LTLG mapping heuristic, Height frequency scaling heuristic

(Fast,LTLG,Height)
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(5) Binary search with LTLG mapping and Height frequency scaling heuristics
(Bin,LTLG,Height)

(6) Simulated annealing allocation with initial binary search, LTLG mapping and
Height frequency scaling heuristics (Bin,LTLG,Height Ann.)

(7) ILP integrated (Integ.)
We also implemented an ILP formulation from Xu et al. [2012], whose scheduler ar-
ranges tasks in levels of strips spanning across cores. Each level’s height is defined by
a key tasks, that is the first task mapped to its level. The rectangle of cores unused by
the key task of a level is 2D-packed using some of the tasks not scheduled yet. Fre-
quency scaling is performed through the rescaling of entire levels, that is the rescaling
of all tasks mapped to this level, as a bin packing problem. Finally, we adapted and im-
plemented the NLP (Non-Linear Programming) formulation from Pruhs et al. [2008]
in AMPL and their heuristic in C++. Their technique schedules sequential tasks only
(and therefore it never parallelizes any task j regardless of its maximal parallel de-
gree Wj) and scales tasks’ frequency with a continuous and unbounded frequency do-
main. For the NLP implementation, we perform frequency scaling using our ILP-based
method (Sec. 3.4). For the heuristic, we use best-fit to assign discrete and bounded fre-
quency levels to tasks.

For small and medium problems and machine sizes, we generate synthetic task
collections as follows: we group synthetic task collections in different categories de-
fined by the number of cores (p ∈ {1, 2, 4, 8, 16, 32}), the number of tasks (10, 20, 40
and 80 tasks), and tasks’ maximum widths Wt: sequential (Wt = 1 for all t), low
(1 ≤ Wt ≤ p/2), average (p/4 ≤ Wt ≤ 3p/4), high (p/2 ≤ Wt ≤ p) and random
(1 ≤ Wt ≤ p). Tasks’ maximum width are distributed uniformly. The target makespan
of each synthetic task collection is the mean value between the runtime of an ideally
load balanced task collection running at lowest frequency and at highest frequency

Msyn =

n∑
j=1

3 · ttj(1, 1)

8 min(Wj , p)Fmin
+
ttj(min(Wj , p), 1)

8 · Fmin
+

3 · ttj(1, 1)

8 min(Wj , p)Fmax
+
ttj(min(Wj , p), 1)

8 · Fmax

(10)
We use the same scheme to generate large problems and machine sizes, ranging from
500 to 2000 tasks and from 256 to 1024 processors for tasks of a random maximum
width.

We also provide task collections of classic streaming algorithms: parallel FFT,
parallel-reduction and parallel mergesort. FFT is characterized by 2 · p − 1 parallel
tasks of a balanced binary tree. In level l ∈ [0; log2 p] of the tree, there are 2l data-
parallel tasks of width p/2l and work p/2l so all tasks could run in constant time. The
mergesort task collection is similar to FFT, but all its tasks are sequential. Parallel re-
duction involves log2 p+ 1 tasks of maximum width 2l and work 2l for l ∈ [1; log2 p+ 1];
they can also run in constant time. Because these task collections yield perfectly bal-
anced task work and maximum widths, they are easy to schedule with a loose target
makespan as defined for the synthetic task collections. We use a more constraining
target makespan for concrete task collections. The makespan for FFT is

MFFT =

n∑
j=2

ttj(1, Fmin)

2 · p
+

n∑
j=2

ttj(1, Fmax)

2 · p
(11)

that is, the makespan of a synthetic task collection, ignoring task 1. The makespan for
parallel mergesort

Mmsort =
max∀j(τj)

maxF
(12)
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takes the root merging task and divide its work by the maximal frequency available.
The makespan for parallel reduction task collections

Mpreduce =

n∑
j=1

τj
2 ·min(p,Wj) · Fmin

+

n∑
j=1

τj
2 ·min(p,Wj) · Fmax

(13)

is the same as for synthetic collections, but we assume perfect scalability. All our syn-
thetic and classic task collections have a minimal efficiency gap of g = 0.023438, yield-
ing a complexity factor of γ = dlog2(0.5/0.023438)e = 5 for our binary search method.

Finally, we use the technique of Gordon et al. [2006] to extract tasks’ workload and
parallel efficiency from the Streamit benchmark suite. We schedule all variants of the
applications audiobeam, beamformer, channelvocoder, fir, nokia, vocoder, BubbleSort,
filterbank, perftest and tconvolve from the streamit compile source package8. We use
their compiler to obtain for each task j the task’s estimated workload τj , the task’s
parallel degree Wj (either 1 or +∞) and the task’s communication rate we call ψj . We
use ψj to compute tasks j’s parallel efficiency ej(q) (Eq. 14).

ej(q) =


1 if q = 1

τj/(τj + q · ψj) if q > 1 and q ≤Wj

10−6 otherwise
(14)

and we use Eq. 10 to compute a target makespan.
We run both the ILP solver and heuristics on a quad-core i7 Sandy Bridge proces-

sor at 3GHz and 8GB of main memory. We use Gurobi 5.10 and ILOG AMPL 10.100
with 5 minutes timeout to solve the ILP models and we compile our C++ implementa-
tions with gcc 4.6.3 and -O3 optimization switch, on Ubuntu 12.04. Gurobi exploits 8
hardware threads and our heuristics are implemented as sequential programs.

We measure the overall scheduling quality (energy consumption) of all 7 crown
schedulers as well as schedulers from Xu et al. [2012] and Pruhs et al. [2008]. Fig-
ures 7(a) and 7(b) show mean values for 10, 20, 40 and 80 tasks and across all
width classes {Random, Serial, Low,Average,High} for the synthetic task collection.
Figures 8(b) and 9(b) show the average energy consumption by task collection classes
for the classic streaming algorithms and the streamit benchmark, respectively. We can
see that the integrated crown scheduler as well as scheduler heuristics based on binary
search, LTLG, Height and simulated annealing combined produce consistently the best
schedules. NLP and heuristics from Pruhs et al. [2008]’ perform well on larger archi-
tectures and with sequential task sets (Figs.7(b) and 8(b)), but its solutions’ quality
drop when tasks’ parallel degree increase (Figs. 7(a), and 8(b)). The level-packing solu-
tion from Xu et al. [2012] performs mostly poorly, except for small amount of tasks, or
for sequential tasks. An exception is parallel reduction (Fig. 8(b)) for which it performs
at least as good as our integrated, ILP-based crown scheduler. We scheduled a subset of
our synthetic task collection set with random workload variations within 1% for each
tasks and found no significant energy variations in schedules. Finally, we show for the
classic streaming task collection and the streamit benchmark suite, the schedulers’
ability to compute a valid schedule in Figs. 8(a) and 9(a). These figures show that
Pruhs’ techniques fail at scheduling parallel tasks under the makespan constraints
we impose, while Xu’s succeeds as much as our crown schedulers. For sequential task
collections such as for mergesort, our crown scheduler has the same success rate as
Pruhs’, whereas Xu’s approach fails more often.

8At the time of writing, the latest version was pushed to github on Aug 3, 2013. See
groups.csail.mit.edu/cag/streamit/restricted/files.shtml and the source package for information about these
applications.
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(a) Energy prediction by task collection class. (b) Energy prediction by number of tasks.

(c) Mapping makespan by task collection class. (d) Frequency scaling energy by task collection class.

Fig. 7. Projected energy per number of cores and tasks and efficiency of LTLG and Height heuristics for the
synthetic task collection.

We also compare the makespan produced by our LTLG mapping heuristic to our
crown-optimal load-balanced ILP mapping formulations (variant 1 above) as well as
our binary search and simulated annealing heuristics and our implementations of Xu’s
and Pruhs’s techniques (Fig 7(c)). Similarly, we compare in Fig 7(d) the efficiency of the
frequency scaling ILP formulation and Height heuristic to optimize energy through
frequency scaling. In order to ensure fairness, we use our crown-optimal ILP formu-
lation to compute both mappings the frequency scaling implementations we compare
need to scale. Figure 7(c) shows that our LTLG heuristic is very competitive with our
crown-optimal ILP load-balancing formulation. The same figure suggests that the ini-
tial allocation influences greatly the mapping makespan. Our ILP and LTLG heuristic
use the fast allocation (Sec. 3.1), that is allocating as many processors as possible to
tasks. In contrast, Pruhs’ NLP formulation and heuristic schedule sequential tasks. As
a consequence, Pruhs’ makespan are much lower for tasks that cannot run on many
processors (but can run on a few) while the situation is more balanced with highly
parallel tasks. The binary search always finds another allocation that allows lower
makespan than either our crown heuristic with fast allocation or Pruhs’ solutions.
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(a) Scheduling success rate per task collection class. (b) Energy prediction by task collection class.

Fig. 8. Scheduling success rate and projected energy for FFT, mergesort and parallel-reduction

(a) Scheduling success rate per task collection class. (b) Energy prediction by task collection
class (logarithmic scale).

Fig. 9. Scheduling success rate and projected energy for FFT, mergesort and parallel-reduction

Again, the approach from Xu et al. [2012] yields much higher makespans. Figure 7(d)
demonstrates the efficiency of our Height heuristic, compared to our crown-optimal,
ILP-based frequency scaling method.

We provide the measured overall optimization time for all scheduler variants for
the synthetic task collection set by number of tasks and number of cores (Figs. 10(c)
and 10(f)), as well as the optimization time for both mapping and frequency scaling
phases (Figs. 10(a), 10(d), 10(b) and 10(e)). We compare the measured optimization
time of our heuristics and their time complexity by number of tasks and number of
cores in Figs. 11 and 12 for small, medium and large problems of the synthetic task
set. We can see that Pruhs, Xu’s and our crown integrated ILP and NLP formula-
tions largely dominate the overall optimization time. Phase-separated, crown-optimal
ILP crown schedulers yield a much lower optimization time and none of the heuris-
tics is visible in Figs. 10(c) and 10(f). The 6 figures in Fig. 10 demonstrate the LTLG
and Height heuristics run much faster than their crown-optimal ILP counterparts,
and that the phase-separated crown schedulers’ optimization time is dominated by
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(a) Mapping phase runtime by number of tasks. (b) Frequency scaling phase runtime by number of
tasks.

(c) Overall optimization time by number of tasks. (d) Mapping phase runtime by number
of cores.

(e) Frequency scaling phase runtime by
number of cores.

(f) Overall optimization time by number of cores.

Fig. 10. Share of mapping and frequency scaling phases over overall optimization time.
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(a) Overall optimization time per number of
tasks.

(b) Overall optimization time per number of
cores.

(c) Overall complexity per number of tasks. (d) Overall complexity per number of cores.

Fig. 11. Measured optimization time and time complexity of schedulers

the mapping phase. Figures 11(a), 11(b), 12(a) and 12(b) demonstrate that the opti-
mization time for heuristics are dominated by the simulated annealing and our binary
search crown schedulers. The phase-separated LTLG and Height crown heuristic as
well as Pruhs’ heuristic perform much faster. This can be explained by their lack of an
elaborate allocation phase that our binary search and simulated annealing implement
as a feedback loop. However, such simplistic allocation strategy makes them to produce
worse solution, or to fail at producing any valid one. Finally, Figs. 11(a), 11(b), 11(c)
and 11(d) show that our heuristics’s optimization time follow the optimization time
predicted by our complexity analysis. However, this is not true for our simulated an-
nealing and binary search with the large synthetic task collection and target architec-
tures (Figs. 12(a), 12(b), 12(c) and 12(d)). This can be due to the search interruption
when a valid schedule is found where all tasks run sequentially at the lowest frequency
available.

The crown constraints exhibits no restrictions to map sequential tasks to processors,
but it allows the mapping of some parallel tasks. Hence, the solution space of Pruhs’
mapping technique is strictly included in our crown mapping’s solution space. Also,
since we implemented the same ILP frequency scaling method for both schedulers, the
overall solution space of crown schedulers includes the one of our implementation of
Pruhs’. Therefore, when both formulations can be solved to optimality, the integrated
crown scheduler will always find a solution at least as good as Pruhs’. Similarly, our
LTLG heuristic for sequential tasks is reducible to LPT. Since we use LPT in our imple-
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(a) Overall optimization time by number of
tasks.

(b) Overall optimization time by number of
cores.

(c) Overall complexity by number of tasks. (d) Overall complexity by number of cores.

Fig. 12. Overall scheduling time and energy consumption of the resulting crown schedules for large task
collections and massively parallel architectures

mentation of Pruhs’ heuristic, its solutions cannot be better than LTLG’s. Again, the
Height heuristic is an implementation of Best-fit for the crown structure; therefore
it has the same solution space as Pruhs’ frequency scaling method. Since our LTLG
and Height heuristics are reducible to Pruhs’ mapping and frequency scaling methods,
they can always find a solution at least as good.

We inspected schedules of the synthetic task sets produced by our best crown sched-
uler heuristic as well as the technique described by Pruhs et al. [2008]. We assume that
tasks in our synthetic task set run sequentially and at the lower frequency available
for between 1ms and 19ms, that is, 8µs with 32 cores at frequency 5. We assume further
that switching frequency takes 50µs [Mazouz et al. 2014] and 5 · 10−6 energy units. Fi-
nally, we assume that frequency switching can take place asynchronously, while a task
is running[Mazouz et al. 2014]. We found that all frequency transitions can be hidden
when tasks are processed or when processors are idle. In the case of a task running
for a too short time to hide a necessary frequency transition, no significant additional
time and energy was found.

7. RELATED WORK
Energy-aware allocation, mapping and scheduling problems are being researched in-
tensively in scheduling theory. For instance, Edmonds and Pruhs [2012] consider an
on-line scheduling algorithm for jobs arriving over time, minimize overall response
time (the sum of distances between arrival and completion of each job). Jobs are paral-
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lelizable with arbitrary speedup curves, but frequency scaling or energy does not play
a role. Chan et al. [2011] use an analytic power model and continuous frequencies.
Their algorithm does not statically know the work of a job, nor its speedup curve.

Energy efficient static scheduling of task collections with parallelizable tasks onto
multiprocessors with frequency scaling has been considered by Li [Li 2012]. Their
power model is defined as polynomially-reducible to fα where α ≥ 3 and therefore
comparable to the one we use in this paper. However, the number of processors allo-
cated to each task is fixed and given as part of the problem scenario, and continuous
(not discrete) frequency scaling is used.

Xu et al. [2012] use a level-packing approach, which means that they might need as
many conceptual barrier synchronizations as they have levels, i.e. up to the number of
jobs. They use also discrete frequency levels, arbitrary power profiles of cores, mold-
able tasks with individual, arbitrary speedup curves and ILP. As their ILP approach
needs many more variables than ours, they do not use a solver but only evaluate their
heuristics.

Sanders and Speck [Sanders and Speck 2012] consider the related problem of
energy-optimal allocation and mapping of n independent continuously malleable tasks
with monotonic and concave speedup functions to m processors with continuous fre-
quency scaling, given a deadline M and a continuous convex energy usage function
Ej for each task j. Continuous malleability means that also a fractional number of
processors (e.g., using an extra processor only during part of the execution time of a
task) can be allocated for a task; this is not allowed in our task model where alloca-
tions, speedup and energy functions are discrete. They propose an almost-linear work
algorithm for an optimal solution in the case of unlimited frequency scaling and an ap-
proximation algorithm for the case where frequencies must be chosen between a given
minimum and maximum frequency. It is interesting to observe that the assumptions of
continuous malleability and continuous frequency selection make the integrated prob-
lem much easier to solve. Pruhs et al. [2008] solve the problem optimally for sequential
tasks with continuous frequencies and power model fα.

Related approaches for throughput or energy efficient (or multi-objective) map-
ping of complex pipelines have been developed mainly by the MPSoC community for
HW/SW synthesis, e.g. by using genetic optimization heuristics [Nedjah et al. 2011].
Kessler et al. [2013a] elaborate on the relation between throughput requirements of
streaming applications and deadline-based scheduling of independent jobs. They also
show that for discrete frequency levels, already the optimality criterion of Pruhs et al.
[2008] for sequential tasks does not hold anymore. Keller et al. [2012] and Avdic et al.
[2011] have considered mapping of streaming task applications onto processors with
fixed frequency with the goal of maximizing the throughput. First investigations of
energy-efficient frequency scaling in such applications have been done by Cichowski
et al. [2012]. Zahedi and Lee [2014] investigate the fair sharing of a computer resources
to run independent tasks. Fairness is defined after a model derived from game theory
to ensure each task receives enough resources to be computed fast without impact-
ing the performance of other tasks. This work integrates better in a resource sharing
context, than optimizing energy usage of a particular task-based parallel application
under makespan constraints as Crown scheduling does.

Static scheduling of task collections with parallelizable tasks for makespan opti-
mization has been discussed e.g. by Blasewicz et al. [2004]. Dynamic scheduling of
task collections with parallelizable tasks for flow time optimization has been investi-
gated by Gupta et al. [2010]. In both settings, frequencies were fixed.

Our LTLG heuristic relates to NPTS (Non-Malleable Parallel Tasks) scheduling,
where the number of cores for each task is known and fixed. Fan et al. [2012] describe
many previous research, including a 2-approximation [Garey and Graham 1975] and
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a fully polynomial approximation [Amoura et al. 1997]. More approaches restrict par-
allel tasks to be mapped to contiguous cores [Baker et al. 1980] such as the NFDH
(Next-Fit Deceasing Height) heuristic [Coffman et al. 1980], FFDH (First-Fit Decreas-
ing Height) [Coffman et al. 1980] and BFDH (Best-Fit Decreasing height) [Lodi et al.
2002]. However, they don’t capture the crown structure that further restricts the map-
ping of tasks to all cores within exactly one predefined group of cores. The LTLG heuris-
tic is inspired from the LPT (Longest Processing Time) algorithm [Graham 1969],
which is a 4/3-approximation algorithm to optimize the makespan of a collection of
sequential tasks for multiprocessors.

8. CONCLUSION AND FUTURE WORK
We have presented crown scheduling, a new technique for static resource allocation,
mapping and discrete frequency scaling that supports data-driven scheduling of a set
of moldable, partly moldable and sequential streaming tasks onto manycore proces-
sors in order to support energy-efficient execution of on-chip pipelined task graphs.
Arbitrary power profiles for cores, analytic like fα or from measurements, can be used.

We have presented heuristics and integer linear programming models for the vari-
ous subproblems and also for an integrated approach that considers all subproblems
together, and evaluated these with synthetic benchmarks. Our experimental results
show that the complexity reduction imposed by the crown structure constraint, re-
ducing the number of allocatable processor group sizes from p to O(log p) and of map-
pable processor groups from 2p to O(p), allows for the solution of even medium-sized
instances of the integrated optimization problem within a few seconds, using a state-
of-the-art integer linear programming solver. The crown structure also minimizes the
number of conceptual barrier synchronizations necessary, and thus external fragmen-
tation of scheduled idle time, thus improving opportunities for energy savings by volt-
age/frequency scaling.

We presented the Longest Task, Lowest Group (LTLG) heuristic, a generalization
of the LPT algorithm, to produce load-balanced mappings of moldable tasks, and the
Height frequency scaling heuristic to minimize energy consumption under a through-
put constraint. We demonstrated that using these heuristics lowers the overall opti-
mization time of phase-separated crown scheduling, and showed that both LTLG and
Height heuristics produce solutions of quality near to that generated by crown-optimal
ILP formulations with a much faster scheduling time. We also presented a method
based on binary search to compute a good initial allocation and a simulated anneal-
ing meta-heuristic to further improve solutions toward the quality by an integrated
optimal crown scheduler. Our best heuristic runs in near-linear time in the number
of cores and tasks with a factor γ depending on properties of the task collection. We
observe that a good processor allocation improves the energy efficiency of schedules,
but that a good allocation comes at a high price in optimization time.

Our technique could be used in a compiler, as we consider off-line scheduling. The in-
puts would be a description of the taskgraph with workload and efficiency parameters
for tasks (and in future work even communication load for edges) and a description of
the target architecture. When considering a different target architecture, the applica-
tion needs to be re-optimized. The crown structure could be relaxed to groups having
non-power-of-2 number of cores, as long as all groups in a level have the same amount
of cores, and all cores of a higher level group, belong to a unique ancestor group for each
lower levels. If used to schedule tasks for a multiple many-core chips system, higher
communication penalty to transmit messages from chip to chip, as opposed to commu-
nications from core to core, could be reflected in tasks’ efficiency function. Future work
will also consider on-line crown rescaling to additionally reduce energy consumption at
runtime in a round where one or several tasks are not data-ready, and communication-
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aware crown scheduling to consider bandwidth requirements of on-chip network links
to better adapt to many-core network-on-chip modern architectures.

Also, additional constraints on scaling might be considered, such as power domains
comprising whole processor subsets as in the case of Intel SCC where possible frequen-
cies are constrained by the current voltage, voltage scaling is slow and can only be set
for groups of 8 processors, and frequency scaling is constrained to tiles of two cores.
Frequency and sleeping state switching time need to be taken into account to better
model architectural constraints. The energy cost of communication between tasks also
needs to be taken up in the mapping problem. Finally, we plan to validate energy sav-
ing by crown scheduling for a benchmark set on concrete many-core platforms such as
the Intel SCC or Kalray MPPA, and compare the performance of our crown scheduler
heuristics to other crown and non-crown schedulers for moldable tasks.
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