
Hybrid Parallel Sort on the Cell Processor

Jörg Keller1, Christoph Kessler2, Kalle König3 and Wolfgang Heenes3

1FernUniversität in Hagen, Fak. Math. und Informatik, 58084 Hagen, Germany
joerg.keller@FernUni-Hagen.de

2Linköpings Universitet, Dept. of Computer and Inf. Science, 58183 Linköping, Sweden
chrke@ida.liu.se

3Technische Universität Darmstadt, FB Informatik, 64289 Darmstadt, Germany
kalle koenig@gmx.de

heenes@ra.informatik.tu-darmstadt.de

Abstract: Sorting large data sets has always been an important application, and hence
has been one of the benchmark applications on new parallel architectures. We present
a parallel sorting algorithm for the Cell processor that combines elements of bitonic
sort and merge sort, and reduces the bandwidth to main memory by pipelining. We
present runtime results of a partial prototype implementation and simulation results
for the complete sorting algorithm, that promise performance advantages over previ-
ous implementations.

Key words: Parallel Sort, Merge Sort, Cell Processor, Hybrid Sort

1 Introduction

Sorting is an important subroutine in many high performance computing applications, and
parallel sorting algorithms have therefore attracted considerable interest continuously for
the last 20 years, see e.g. [Akl85]. As efficient parallel sorting depends on the underly-
ing architecture [AISW96], there has been a rush to devise efficient parallel sorting algo-
rithms for every new parallel architecture on the market. The Cell BE processor (see e.g.
[GEMN07] and the references therein) presents a challenge in this respect as it combines
several types of parallelism within a single chip: each of its 8 parallel processing units
(called SPEs) is an SIMD processor with a small local memory of 256 KBytes. The SPEs
communicate via one-sided message-passing over a high-speed ring network with each
other and with the off-chip main memory, that is shared among the SPEs, but not kept
consistent. The chip also contains a multi-threaded Power processor core, which however
is not of particular interest for our work. Although the majority of applications for Cell
seem to be numerical algorithms, there have been several attempts to efficiently imple-
ment sorting on that architecture. We present a sorting algorithm that incorporates those
attempts by combining bitonic sort, merge sort, and pipelining to reduce the bandwidth
to main memory, which is seen as one of the major bottlenecks in Cell. We report on
the performance of a partial prototype implementation, and on simulation results for the



Figure 1: Cell BE Processor Architecture

full sorting algorithm. The combined results indicate that our algorithm outperforms all
previous approaches.

The remainder of this article is organized as follows. In Section 2 we provide all technical
information necessary to attack the problem at hand, and discuss related work. In Section
3 we detail our solution, report on the performance results for our pipelined merger com-
ponents of the overall sorting algorithm on a Play Station 3, and extrapolate from these
data for the analysis of the expected performance of the overall sorting algorithm. Section
4 concludes and gives an outlook on further developments.

2 Cell Processor and Parallel Sorting

The Cell BE processor [GEMN07] is a multi-core processor consisting of 8 SIMD proces-
sors called SPE and a dual-threaded Power core (PPE), cf. Fig. 1. Each SPE has a small
local memory of 256 KBytes that contains code and data. There is no cache, no virtual
memory, and no operating system on the SPE. The SPE has datapaths and registers 128
bits wide, and instructions to operate on them as on vector registers, e.g. perform paral-
lel comparisons between two registers, each seen as holding four 32-bit values. Hence,
control flow instructions tremendously slow down data throughput of an SPE. The main
memory is off-chip, and can be accessed by all SPEs and the Power core, i.e. it is a shared
memory. Yet, there is no protocol to automatically ensure coherency between local mem-
ories and main memory. Data transfer between an SPE and another SPE or the main
memory is performed by DMA. Thus, data transfer and computation can be overlapped,
but communications must be programmed at a very low level. The SPEs, the PPE core
and the memory interface are interconnected by the Element Interconnect Bus (EIB). The
EIB is implemented via four uni-directional rings with an aggregate bandwidth of 306.4
GByte/s. The bandwidth of each unit on the ring to send data over or receive data from the
ring is only 25.6 GByte/s. Hence, the off-chip memory tends to become the performance



bottleneck. Programming the Cell processor is challenging. The programmer has to strive
to use the SPE’s SIMD architecture efficiently, and has to take care for messaging and
coherency, taking into account the rather small local memories.

The Cell processor seems to have two major application fields: gaming1 and numerical
algorithms. To our knowledge, there are only a few investigations about parallel sorting
algorithms for the Cell processor, most notably [GBY07, IMKN07] that use bitonic sort
and merge sort, respectively. There is also an implementation of radix sort [RB07], but
only with a 4 bit radix, because for an 8 bit radix the array of counters would not fit into
the SPE’s local store. Also [GBY07] reports to have investigated radix sort but that it
“involve(s) extensive scalar updates using indirection arrays that are difficult to SIMDize
and thus, degrade the overall performance.”

The paper [IMKN07] is quite close to our work and appeared only a few months before
this article was written. Both [GBY07] and [IMKN07] work in two phases to sort a data
set of size n, with local memories of size m. In the first phase, blocks of data of size 8m
that fit into the combined local memories of the SPEs are sorted. In the second phase,
those sorted blocks of data are combined to a fully sorted data set.

In [GBY07], the first phase is realized in two stages: in the first stage, each SPE sorts
data in its local memory sequentially by a variant of Batcher’s bitonic sort, then the SPEs
perform Batcher’s bitonic sort on the sorted data in their local memories. The combined
content of their local memories is then written to main memory as a sorted block of data.
This is repeated n/(8m) times until the complete data set is turned into a collection of
sorted blocks of data. The second phase performs Batcher’s bitonic sort on those blocks.
Batcher’s sort is chosen because it needs no data dependent control flow and thus fully
supports the SPE’s SIMD architecture. The disadvantage is that O(n log2 n) data have to
be read from and written to main memory, which makes the main memory link the limiting
speed factor, and the reason why the reported speedups are very small.

In [IMKN07], the first phase is also realized in two stages: in the first stage, each SPE per-
forms a variant of combsort that exploits the SIMD capability of the SPE, then the SPEs
perform a mergesort on the sorted data in their local memories. As in the first approach,
this is repeated n/(8m) times. The second phase is mergesort, that uses a so-called vec-
torized merge to exploit the SIMD instructions of the SPEs, and employs a 4-to-1-merge
to reduce memory bandwidth. Yet, each merge procedure reads from main memory and
writes to main memory, so that n log4(n/(8m)) data are read from and written to main
memory during the second phase.

Our approach focuses on the second phase, as the first phase only reads and writes n data
from and to the main memory, and thus is not as critical to the overall performance as the
second phase. Also, there are known approaches for the first phase. We also implemented
a vectorized merge routine, similar to that of [IMKN07] (then unknown to us), only that
we perform 2-to-1 merges. The vectorization uses a variant of Batcher’s bitonic sort to
merge chunks of four successive 32-bit integers, as those will fit into one Cell register.
However, there is a notable difference between our approach and that of [IMKN07]. We
run mergers of several layers of the merge tree concurrently to form a pipeline, so that

1In a variant with 6 SPEs, Cell is deployed in the Play Station 3.



output from one merger is not written to main memory but sent to the SPE running the
follow-up merger. Thus, we can realize 16-to-1 or 32-to-1 mergers between accesses to
main memory, and reduce the memory bandwidth by a factor of 2 and 2.5, respectively,
in relation to [IMKN07]. In order to exploit this advantage we have to ensure that our
pipeline runs close to the maximum possible speed, which requires consideration of load
balancing. More concretely, if a merger M must provide an output rate of k words per time
unit, then the two mergers M1, M2 feeding its inputs must provide a rate of k/2 words per
time unit on average. However, if the values in M2 are much larger than in M1, the merger
M will only take values from the output of M1 for some time, so that the merger M1 must
be able to run at a rate of k words for some time, or the output rate of M will reduce!

In principle, we could have mapped each layer of a binary merge tree onto one SPE, each
SPE working the mergers of its layer in a time-slot fashion. A time slot is the time that
a merger needs to produce one buffer full of output data, provided that its input buffers
contain enough data. Thus, with k SPEs, we realize a 2k-to-1 merge. This will balance
load between the layers as the combined rate from one layer to the next is the same for all
layers. Also, because of finite size buffers between the mergers, if M only draws from M1,
M2 will not be able to work further and thus M1 will get more time slots and be able to
deliver faster. The disadvantage of this model is that the larger i, the more mergers SPE i
has to host, which severely restricts the buffer size, because there must be one output buffer
and two input buffers for each merger, that all must fit into about half the local memory
of an SPE (the other half is for code and variables). Therefore, we devised mappings that
minimize the maximum amount of mergers that one SPE has to host, and thus maximize
the buffer size. We present two such mappings in the next section.

3 Experiments and Simulations

We have implemented the prototype core of a merger routine on a Cell processor from
a Play Station 3. Despite including only 6 SPEs, it corresponds to the processor sold in
blades by IBM. Our routine provides a bandwidth of 1.5 GByte/s. This indicates that
with 8 SPEs concurrently reading and writing data as in [IMKN07], a bandwidth to main
memory of 2× 8× 1.5 = 24 GByte/s would be needed which would saturate the memory
link. Assuming that the fully developed merger in [IMKN07] is more efficient than our
prototype, we see that the bandwidth to main memory is the limiting performance factor
in their design. Conversely, if we can reduce the memory bandwidth needed, we gain a
corresponding factor in performance.

In order to get an impression of the performance of our full algorithm, we implemented a
discrete event simulation2 of the sorting algorithm. As the runtime of the merger core is
only dependent on the size of the output buffer, it is more or less constant. As furthermore
communication and computation are overlapped, we believe the simulation to accurately
reflect the runtime of the full algorithm.

2While the merge algorithm is not very complex, implementing the DMA transfers is cumbersome and low-
level, thus we decided to postpone the full implementation.



(a) (b)

Figure 2: Mapping of merger nodes to SPEs

In each step, each SPE runs one merger with enough input data until it has produced one
output buffer full of data. As buffer size, we use 4 KByte for the output buffer (holding
1,024 32-bit integers), and 2 × 4 KByte for the input buffers, in order to allow concurrent
working of a merger and filling of its input with the output of a previous merger. Each
merger receives a share of the SPE’s processing time at least according to its position in
the merge tree. For example, in Fig. 2(b), the merger left in SPE1 receives one half of the
processing power, because it is placed in depth 1 of the merge tree, while the other mergers
receive 1/8 and 1/16 of the processing power, respectively, because they are in depths 3
and 4, respectively. We use a simple round robin scheduling policy in each SPE, where a
merger not ready to run because of insufficient input data or full output buffer is left out.

We have investigated two mappings, depicted in Fig. 2. Both try to place neighboring
mergers in one SPE as often as possible, in order to exploit the load balancing discussed in
the previous section. In mapping (a), the mergers of SPE0 and SPE1 (similarly SPE2 and
SPE3) could have been placed in one SPE, but we decided to give them twice the processor
share to be on the safe side and avoid load balancing and pipeline stall problems. We have
simulated this mapping with 16 input blocks of 220 sorted integers each. The blocks were
randomly chosen and then sorted. In all experiments, the pipeline ran with 100% efficiency
as soon as it was filled. As we realize a 16-to-1 merge, we gain a factor of 2 on the memory
bandwidth in relation to [IMKN07]. Yet, as we need 6 instead of 4 SPEs to do this, our
real improvement is only 2 · 4/6 = 4/3 in this case.

In mapping (b), we have implemented a 32-to-1 merge, with the restriction that no more
than 8 mergers are to be mapped to one SPE. With 20 KByte of buffers for each merger,
this seems to be upper limit. Here each merger has a processing share according to its



position in the merge tree. We used 32 input blocks of 220 sorted integers each, chosen as
before. The pipeline ran with an efficiency of 93%, meaning that in 93% of the time steps,
the merger on SPE4 could be run and produced output. In comparison to [IMKN07], our
memory bandwidth decreased by a factor of 2.5. Combined with a pipeline efficiency of
93%, we still gain a factor of 1.86 in performance.

4 Conclusion and Future Work

We have provided a new sorting algorithm for the Cell Processor Architecture that uses a
vectorized merge sort in a pipelined variant to reduce memory bandwidth. Our simulation
results indicate that the performance of a full implementation of our algorithm will show
better performance than previous algorithms. Future work will consist of obtaining this
implementation.

Note that our algorithm is also able to run on multiple Cell processors, as does [IMKN07].
At the beginning, there will be many blocks, and hence many 16-to-1 or 32-to-1 mergers
can be employed. In the end, when nearing the root, we are able to employ a method
already known and mentioned in [IMKN07]: we partition the very large data blocks and
perform merges on the partitions in parallel.

References

[AISW96] Nancy M. Amato, Ravishankar Iyer, Sharad Sundaresan, and Yan Wu. A Comparison
of Parallel Sorting Algorithms on Different Architectures. Technical Report 98-029,
Texas A&M University, January 1996.

[Akl85] Selim G. Akl. Parallel Sorting Algorithms. Academic Press, 1985.

[GBY07] Bugra Gedik, Rajesh Bordawekar, and Philip S. Yu. CellSort: High Performance Sort-
ing on the Cell Processor. In Christoph Koch, Johannes Gehrke, Minos N. Garofalakis,
Divesh Srivastava, Karl Aberer, Anand Deshpande, Daniela Florescu, Chee Yong Chan,
Venkatesh Ganti, Carl-Christian Kanne, Wolfgang Klas, and Erich J. Neuhold, editors,
VLDB, pages 1286–1207. ACM, 2007.

[GEMN07] Michael Gschwind, David Erb, Sid Manning, and Mark Nutter. An Open Source Envi-
ronment for Cell Broadband Engine System Software. Computer, 40(6):37–47, 2007.

[IMKN07] Hiroshi Inoue, Takao Moriyama, Hideaki Komatsu, and Toshio Nakatani. AA-Sort: A
New Parallel Sorting Algorithm for Multi-Core SIMD Processors. In Proc. 16th Int.l
Conf. on Parallel Architecture and Compilation Techniques (PACT), pages 189–198.
IEEE Computer Society, 2007.

[RB07] N. Ramprasad and Pallav Kumar Baruah. Radix Sort on the Cell Broadband Engine. In
Int.l Conf. High Perf. Comuting (HiPC) – Posters, 2007.


