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ABSTRACT
We present a taxonomy and an algebra for attack patterns
on component-based operating systems. In a multilevel se-
curity scenario, where isolation of partitions containing data
at different security classifications is the primary security
goal and security breaches are mainly defined as undesired
disclosure or modification of classified data, strict control of
information flows is the ultimate goal. In order to prevent
undesired information flows, we provide a classification of
information flow types in a component-based operating sys-
tem and, by this, possible patterns to attack the system.
The systematic consideration of informations flows reveals a
specific type of operating system covert channel, the covert
physical channel, which connects two former isolated parti-
tions by emitting physical signals into the computer’s envi-
ronment and receiving them at another interface.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Information flow controls—
Mandatory Access Control

General Terms
Design, Security

Keywords
micro kernel, separation kernel, MILS, covert channels, side
channels, multilevel security

1. INTRODUCTION
Operating systems for trustworthy computing systems of-

ten consist of a verifiable (micro) kernel and individual ser-
vice components. Jaeger describes this type of operating
system as a component-based operating system [16].
Rushby’s separation kernel provides isolated regimes for

components, with the goal “to create an environment which
is indistinguishable from that provided by a physically dis-
tributed system” [33]. The MILS architectural approach
places “traditional kernel-level security functionalities into
external modular components that are small enough for rig-
orous security evaluation using formal methods”as described
by Robinson et al. [32].
In a multilevel security scenario, where different parti-

tions have different levels of classification and must be iso-
lated to prevent information leakage, attacks on component-
based operating systems might be successful that are based
on exploiting shared resources, on colluding components or

on exploiting the physical characteristics of the computing
system. In this paper, we aim to identify and classify the
attack patterns on component-based operating systems by
analyzing all information flows in the model of a component-
based operating system. An algebra for information flows is
presented that could easily be adapted for the analysis of
extended models of operating systems. As part of our anal-
ysis, the security goals of confidentiality and integrity are
targeted, while other security goals such as availability are
not included.
Our contribution includes a taxonomy of attack patterns

on information flows in component-based operating systems
based on the performed analysis. As a further result of the
analysis, a specific type of operating system covert channel,
namely the covert physical channel, is identified, which has
not been extensively discussed to our knowledge and might
demand increased awareness in the future.
The remainder of this paper is structured as follows. In

Section 2, we present the basic scenario used in our work.
In Section 3, we identify all legitimate and illegitimate in-
formation flows possible in the basic scenario. In Section
4, we map the identified illegitimate information flows to
attack patterns, which represent methods for establishing
and exploiting illegitimate information flows. In Section 5,
we describe how our work is connected to related work. In
Section 6, we draw our conclusions.

2. BASIC SCENARIO
The basic scenario used for the attack patterns described

in this paper is shown in Fig. 1.
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Hardware (H)
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= Illegitimate Information Flow

(direct or indirect)

p... pn-1

Kernel (K)

Figure 1: Scenario for attacks on a component-based
operating system
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We assume to have n ≥ 2 isolated application partitions
running on top of the (micro) kernel using shared hardware
resources. These partitions could contain virtual machines
or individual applications that are directly accessible to a
user of the computing system.
Micro kernels providing isolation mechanisms for multi-

level security can roughly be differentiated into sharing hy-
pervisors and pure isolation hypervisors, where sharing hy-
pervisors do allow communication between application par-
titions under certain circumstances and pure isolation hy-
pervisors do not allow any communication between these
partitions at all [18]. In this paper, only attack patterns
on pure isolation hypervisors are considered, leaving attack
patterns on the sharing mechanisms between partitions as a
subject for further research.
Although a multilevel security scenario is technically not

necessary to describe attack patterns on the isolation mech-
anisms of a component-based operating system, it can serve
the purpose to back up the theory with possible applications
and examples.
The micro kernel is implementing the reference monitor

concept, which states that “the reference validation mecha-
nism must always be invoked” [2]. In other words: any in-
formation flow has to be governed by the reference monitor
respectively the micro kernel, in this scenario. Still, micro
kernels are usually unable to really govern any information
flow, as there may be undesired channels left in the sys-
tem. Lampson [22] differentiated between three basic types
of channels: legitimate channels, storage channels and covert
channels. As only the legitimate channels are governed by
the kernel, storage channels as well as covert channels can
be used to establish additional undesired information flows.
We discuss each of these channel types in the course of this
paper and analyze their very different subcategories.
We will start with a study of information flows in the basic

scenario.

3. INFORMATION FLOWS

3.1 Basic Information Flows
Let P = {p0, . . . , pn−1} represent the set of isolated ap-

plication partitions running on top of the kernel. Let K
represent the operating system kernel and let H represent
the underlying hardware. Finally, let A be the attacker,
seeking to read or modify data without the proper autho-
rization. With these variables, we can construct a complete
graph (Fig. 2) representing all possible information flows in
our scenario as edges or sequences of incident edges in the
graph.
To define the legitimate information flows from the set

of all possible information flows, we start a walk at pi. As
any information flow between pi and pj(i �= j) is declared
illegitimate in a pure isolation hypervisor, we cannot walk
to pj . Furthermore, pi is not allowed to communicate with
the attacker and direct access to the hardware is illegiti-
mate, as any information flow has to be governed by the
always-invoked reference monitor, which is K in this sce-
nario. Therefore, pi is only able to directly communicate to
K, and H may only be accessed over K. After walking to
K, we can walk further to H or we could walk back to pi,
as any information flow can be implemented bidirectionally.
It should be noted that walking from K to pj is illegitimate
when starting at pi, although information flows between K

pi pj

K

H

A

= Legitimate Information Flow

Figure 2: Graph of information flows in a
component-based operating system

and pj are generally legitimate.
To demonstrate the identified information flows, we define
⇐⇒ as a bidirectional direct information flow between two
vertices. Likewise, =⇒ is defined as a unidirectional direct
information flow from left to right between two vertices. As
explained above, the only legitimate information flows in our
scenario (starting from pi) are:

1. pi ⇐⇒ K

2. K ⇐⇒ H

While we are walking forth from a specific starting posi-
tion (e.g. pi), we can concatenate these information flows.
Therefore, the following information flow is also legitimate:

3. pi ⇐⇒ K ⇐⇒ H

We can identify any illegitimate information flow in the
model with a recursive walk algorithm as shown in Listing 1
(pseudocode).
In Listing 1, line 1, the function and its arguments are

declared where start refers to the position in the graph where
a local walk is started and walk refers to the complete walk
that has been performed before calling the function. In the
loop between lines 3 and 15, any possible walk to a neighbor
is tested (line 6) if it conforms to the legitimate walks (i.e.
information flows). If a walk to a neighbor is legitimate,
the function is recursively called again (line 10), while the
id of the neighbor and the previously performed walk (line
5) are given as the new arguments. If a walk is found to
be illegitimate (line 12), the illegitimate information flow is
stored and the algorithm continues with the next neighbor
that is addressed in the loop.
By calling the algorithm with pi as the start position and

an empty walk, we can catch any shortest form of an ille-
gitimate information flow from pi to other vertices. As the
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Listing 1: Recursive walk algorithm
1 function walk -to-neighbors (start , walk)
2

3 for all neighbors of start do
4

5 local -walk := concatenate(walk , neighbor)
6 walk -legitimate := test -walk(start , neighbor)
7

8 if (walk -legitimate = true)
9 then

10 walk -to-neighbors(neighbor , local -walk)
11 else
12 store local -walk
13 end -if
14

15 end -for
16

17 end -function

algorithm stops as soon as an information flow turns out
as illegitimate, one could produce even longer information
flows by walking forth from the last vertex, but the result-
ing information flows would just be extended variants of the
hereby identified information flows. So, if any of these iden-
tified illegitimate information flows is part of an even longer
information flow, this information flow is also considered an
illegitimate information flow. Therefore, for demonstrating
a channel between pi and pj , one can always append⇐⇒ pj
to the illegitimate information flow, if not already present.
Likewise, for demonstrating an attack, ⇐⇒ A can be ap-
pended, and to show a unidirectional information flow, ⇐⇒
might be replaced by =⇒ in every information flow. We
verified the resulting illegitimate information flows by imple-
menting the algorithm in the programming language Perl.
The resulting illegitimate information flows for the basic sce-
nario are listed below.

1. pi ⇐⇒ A

2. pi ⇐⇒ pj

3. pi ⇐⇒ H

4. pi ⇐⇒ K ⇐⇒ A

5. pi ⇐⇒ K ⇐⇒ pj

6. pi ⇐⇒ K ⇐⇒ H ⇐⇒ pj

7. pi ⇐⇒ K ⇐⇒ H ⇐⇒ A

As discussed in the last section, a kernel implementing the
reference monitor concept must always be invoked. There-
fore, any communication in the form of pi ⇐⇒ pj should be
impossible by definition, as the kernel would not be invoked
in this information flow. Still, attacks using the pi ⇐⇒ pj
approach have to be considered, as there may be imple-
mentation flaws in the kernel or in the hardware or the
system may be misconfigured by a system administrator.
These types of attack can only be consequently circumvented
by formal verification of hardware, software and the imple-
mented mandatory access control (MAC) policy, describing
a policy that “enforces systemwide security invariants re-
gardless of user preference” [37] (e.g. non-interference as
described by Goguen and Meseguer [9]) in contrast to a dis-
cretionary access control (DAC) policy.

It should also be obvious that the hardware is involved in
any physical information flow within the operating system.
In contrast to this, we are only specifying logical information
flows that only include the components which are actually
behaving contrary to the defined policy. So, as in pi ⇐⇒
K ⇐⇒ pj , K may be malfunctioning, while H is running
just as expected and, therefore, K is defined as the cause of
the information leak. Likewise, in pi ⇐⇒ K ⇐⇒ H ⇐⇒ A,
H is defined as the cause of the information leak, while K
may be running perfectly fine.

3.2 Using operating system guards
Even in a pure isolation hypervisor, there must be some

kind of communication between the partitions of system
components and the application partitions. Service compo-
nents provide services, maybe a file system implementation
or a network service, which are not integrated into the (mi-
cro) kernel. These service components can be categorized
into two different types: untrusted (i.e. non-trustworthy)
components and trusted (i.e. trustworthy) components.
Trustworthy components perform security-critical tasks in
a component-based operating system, for instance, multi-
plexing of shared resources, cryptographic operations and
integrity checks. Trustworthy components have to be small
enough in code size to be subject to evaluation or formal
verification. We shall refer to trustworthy components that
provide services to other components as guards, with the
set of guards defined as: G = {g0, . . . , gm−1}. The set of
non-guard-components, defined as C = {c0, . . . , cq−1}, may
be guarded (i.e protected) by those guards. An untrusted
component c ∈ C could, for instance, be a driver component,
reutilizing existing (untrusted) code to access a shared hard-
ware device.
Extending the scenario to guards and guarded compo-

nents (i.e. untrusted components that are protected by a
guard) leads to a more complex version of the graph (Fig. 3).
The information flows in the extended scenario can be de-
scribed as follows:
A shared hardware resource H may only be accessed via a

guarded component ck or via a guard gk. The guard gk pro-
vides isolated resource access to pi. All of these information
flows have to be governed by K.
This description leads us to the following legitimate infor-

mation flows:

1. ck ⇐⇒ K ⇐⇒ H

2. gk ⇐⇒ K ⇐⇒ ck

3. pi ⇐⇒ K ⇐⇒ gk

4. gk ⇐⇒ K ⇐⇒ H

As described in Section 3.1, we are able to concatenate the
legitimate information flows to even longer legitimate infor-
mation flows. The resulting legitimate information flows of
components and guards can be formalized as:

5. pi ⇐⇒ K ⇐⇒ gk ⇐⇒ K ⇐⇒ ck ⇐⇒ K ⇐⇒ H

6. pi ⇐⇒ K ⇐⇒ gk ⇐⇒ K ⇐⇒ H

For better visualization of the legitimate information flow,
we introduce interfaces (IF) to K in Fig. 3. Only those
vertices connected to the same interface of K may actually
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Figure 3: Using operating system guards

exchange information over the kernel. So, while information
flows accessing the shared hardware resources via a guard
component and thereby isolating the application partitions
are legitimate, any other information flows are illegitimate
in this example.
Illegitimate information flows for an extended scenario

(using operating system guards) can be retrieved with the
same algorithm as used in Section 3.1. We will have a further
look at one of these illegitimate information flows that de-
scribes a new type of attack pattern (as listed in Section 4).

1. pi ⇐⇒ K ⇐⇒ ck ⇐⇒ K ⇐⇒ pj

Due to shared access to the untrusted component ck, pi and
pj may be able to exchange information among each other
and, therefore, violate the MAC policy.
Now, with the illegitimate information flows identified, we

are able to identify the very different attack patterns to a
component-based operating system. The next section will
describe these attack patterns and the process of identifying
them.

4. ATTACK PATTERNS
We can map the information flows identified in the previ-

ous section to attack patterns. Attack patterns are defined
as methods for establishing or exploiting illegitimate infor-
mation flows.
The relation between information flows and attack pat-

terns can be described as a many-to-many relation: Multi-
ple attack patterns can be mapped to a single information
flow, as there may be very different methods for establish-

ing or exploiting an illegitimate information flow. Likewise,
multiple information flows can be mapped to a single at-
tack pattern, as one method for exploiting or establishing
illegitimate information flows could be used for multiple in-
formation flows. A mapping between information flows and
basic attack patterns is established in Tab. 1.
Additionally, it should be noted that the attack pattern

of exploiting implementation flaws is associated with any of
these information flows, as flaws might always be present
in hardware or software that has not been subject to for-
mal verification. The basic attack patterns presented can
be further differentiated along the specific methods used in
an attack in order to generate more precise (extended) at-
tack patterns (see Tab. 2).
The difference between basic and extended attack patterns

is that extended attack patterns utilize the same informa-
tion flows as their associated basic attack pattern, but they
each describe a distinct method to establish the information
flow. It should further be noted that in order to describe
side channels and covert physical channels, ⇐⇒ should be
replaced by =⇒ as the information flow is only unidirec-
tional in most cases. Finally, the identified attack patterns
are described in Tab. 3. Where extended attack patterns
have been identified, only the extended attack patterns are
listed. A discussion of the provided references is included in
Section 5 (related work).
We also introduce the concept of a covert physical chan-

nel, which uses physical signals that were not meant for
communication in the first place, to transmit covert mes-
sages between isolated application partitions. Preliminary
work on physical communication has been performed by
Madhavapeddy et al. [26], who present a study on audio
networking, by Loughry and Umphress [25], who describe
information leakage from optical emanations, by Hasan et
al. [14], who study different physical means for command-
and-control communication between mobile devices and by
Raguram et al. [30], who present a setup where typed key-
strokes are extracted by optical reflections of the environ-
ment. In contrast to these authors, we are not just looking
at physical means for communication or information extrac-
tion, but we identify a covert channel between two applica-
tion partitions that is established by sending physical (e.g.
optical or acoustical) signals into the computer’s environ-
ment and receiving them at another interface of the com-
puting system.
Karger and Wray [17] present a covert storage channel

based on disk arm optimization. This covert channel would
not qualify as a covert physical channel, because the physical
environment (shared by different partitions) would not be
used for the covert channel and the covert channel only takes
place at the hardware level. This difference can be made
visible by introducing a variable E (describing the shared
physical environment) to the model.
Where the disk arm channel might be described by:

pi ⇐⇒ K ⇐⇒ H ⇐⇒ K ⇐⇒ pj ,
The covert physical channel would be better described by:
pi ⇐⇒ K ⇐⇒ H ⇐⇒ E ⇐⇒ H ⇐⇒ K ⇐⇒ pj .
The variable E might be used in future analyses to identify

a covert channel as a type of covert physical channel.
Murdoch [27] presents a covert channel based on clock

skew manipulations as a result of different heat output levels.
This type of covert channel would also not qualify as a covert
physical channel according to our terminology, because the
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No. Information Flow Basic Attack Patterns
1 pi ⇐⇒ A Use insider attack
2 pi ⇐⇒ pj Exploit flaws in the system policy
3 pi ⇐⇒ H Use physical attacks, Exploit covert channels, Exploit storage channels
4 pi ⇐⇒ K ⇐⇒ A Exploit flaws in the system policy
5 pi ⇐⇒ K ⇐⇒ pj Exploit covert channels, Exploit flaws in the system policy
6 pi ⇐⇒ K ⇐⇒ H ⇐⇒ pj Use physical attacks, Exploit covert channels
7 pi ⇐⇒ K ⇐⇒ H ⇐⇒ A Use physical attacks
8 pi ⇐⇒ K ⇐⇒ ck ⇐⇒ K ⇐⇒ pj Exploit flaws in the system policy

Table 1: Illegitimate information flows mapped to basic attack patterns

No. Basic Attack Pattern Extended Attack Patterns
1 Use insider attack N/A
2 Use physical attacks Exploit physical access, Exploit side channels
3 Exploit implementation flaws N/A
4 Exploit covert channels Exploit covert storage channels, Exploit covert timing channels, Exploit

covert physical channels
5 Exploit storage channels N/A
6 Exploit flaws in the system policy Exploit corrupt policy channels, Exploit illegitimate access to compo-

nents

Table 2: Basic attack patterns mapped to extended attack patterns

No. Attack Pattern Description References
1 Use insider attack A is granted direct access to extract information from

pi.
Baracaldo and Joshi [4],
Liu et al. [24], Yu and
Chiueh [40].

2 Exploit physical access A has physical access to the computing system and can
directly extract information, which has been stored at
H, from pi.

Halderman et al. [10].

3 Exploit side channel A uses side channel attacks to extract information from
pi over H.

van Eck [36],
Dürmuth [7], Backes et
al. [3], LeMay and
Tan [23], Shamir and
Tromer [35], Halevi and
Saxena [11].

4 Exploit implementation
flaws

A uses implementation flaws of pi, K or H to extract
information from pi

Klein et al. [20],
Boettcher et al. [5],
Robinson et al. [32]

5 Exploit covert storage
channel

A covert channel is established between pi and pj by
storing a hidden message within shared resources.

Lampson [22], National
Computer Security
Center [28].

6 Exploit covert timing
channel

A covert channel is established between pi and pj by
encoding a message via the timing behavior of shared
resources.

Lampson [22], National
Computer Security
Center [28].

7 Exploit covert physical
channel

A covert physical channel is established between pi and
pj by encoding a message, sending it out into the
physical environment via H and receiving it at a
different interface of H.

N/A.

8 Exploit storage channels Information can be exchanged between pi and pj via
shared storage resources.

Lampson [22]

9 Exploit corrupt policy
channel

Information can be exchanged directly between pi and
pj due to a flawed MAC policy.

Agreiter [1], Zhai et
al. [41].

10 Exploit illegitimate access
to components

Information can be exchanged between pi and pj by
exploiting illegitimate access to a component.

N/A

Table 3: Description and references regarding to attack patterns
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signal is not directly transferred between sender and receiver
over a shared physical environment, but indirectly by clock
skew manipulations and analysis.
The covert physical channel is used to illegitimately ex-

change messages between application partitions of a
component-based operating system. By reutilizing devices
that have not been designed for communication at all, the
security policy of a pure isolation hypervisor might be cir-
cumvented. In order to establish a covert physical channel,
both pi and pj must be able to access a device that either
transmits physical signals into the computer’s environment
or receives signals from the computer’s physical environ-
ment. Our implementation of a covert physical channel is
built upon acoustical signal modulation (utilizing speakers
and microphones) but other types of physical signals might
also be utilized. One challenge is to design a covert phys-
ical channel with stealthiness in mind in order to prevent
early detection. For this purpose we utilize inaudible acous-
tical signals (e.g. ultrasound). Two different physical attack
patterns are shown in Fig. 4.

Shared Physical Environment

Network Covert Channel

Operating System
Covert Channel

Next Hop

Figure 4: Physical Attack Patterns

First, it is possible to break the domain separation of a
pure isolation hypervisor with a covert physical channel built
upon ultrasonic signal modulation. More specific implemen-
tation details on this type of covert physical channel with
a bandwidth of up to 600 bit/s and the associated counter-
measures will be provided in a future paper.
Secondly, Hanspach and Goetz [12] describe an approach

where a component-based operating system participates in a
covert acoustical mesh network of infected nodes and where
the communication range can be extended by transmissions
over multiple hops.
Based on the attack patterns in Tab. 3, we present a tax-

onomy of attack patterns on information flows in component-
based operating systems (modeled after an attack tree [34]),
visualizing the different measures an attacker could imple-
ment in order to break the system (Fig. 5). Each leaf of the
tree represents a single attack pattern. An attacker seeking
to compromise data confidentiality or integrity could be an
insider or he could exploit physical means of access, directly
accessing the hardware or gathering information from side
channels. Implementation flaws in the hardware or software
can affect the operating system’s functions, leading to infor-
mation leaks and violations of the MAC policy of separation
in a pure isolation hypervisor. Moreover, the attacker could

create a covert channel, accessing information from parti-
tions, without having a proper clearance for the associated
classification level. Finally, one could attack the operating
system by exploiting storage channels, by establishing a pol-
icy based channel or by exploiting a flawed system policy to
illegitimately get access to system components.
Having defined the possible attack patterns in our sce-

nario, we will now discuss preliminary studies.

5. RELATEDWORK
Lampson [22] made a basic distinction between legitimate

channels, storage channels and covert channels in operating
systems, which is considerably extended in our work.
Insider attacks in access control systems and countermea-

sures are described by Baracaldo and Joshi [4], Liu et al. [24],
and by Yu and Chiueh [40]. Physical access to a computing
system could be exploited to read out unencrypted data af-
ter power-down and encrypted data while the system is run-
ning. As Halderman et al. [10] pointed out, data could even
be restored from DRAM for a short time after power-down.
Side channels are presented by van Eck [36], who describes
the threat of electromagnetic emanations, by Frankland [8],
who describes optical, acoustical and electromagnetic side
channels, and by LeMay, Tan, Shamir and Tromer [23, 35],
who study acoustical emanations from computer internal de-
vices (e.g. supply capacitors), while software cache-based
side channels are described by Kong et al. [21]. Implemen-
tation flaws could be used to exploit the computing system
by circumventing the MAC policy. To counter implementa-
tion bugs, code-size reduction and formal verification might
be applied. For the kernel level, a formal verified micro ker-
nel has been presented by Klein et al. [20], while the MILS
architectural approach (see Boettcher et al. [5] and Robin-
son et al. [32]) aims at providing a trustworthy middleware
between the kernel and application partitions, consisting of
components that are small enough for evaluation and formal
verification.
Lampson [22] introduces covert channels in 1973, which

are defined as communication channels “not intended for
information transfer at all”. Both covert storage channels
and covert timing channels have been described by the Na-
tional Computer Security Center [28] in 1993. Wray [39]
presents a study on covert channel terminology where he
questions the differentiation between covert storage chan-
nels and covert timing channels and concludes that “stor-
age nature and timing nature are attributes of the channel,
and a given channel may possess either or both.” A covert
channel of this combined type could be identified as both a
covert storage channel and a covert timing channel in our
taxonomy. In a different approach, Zhai et al. [42] present
a study on automatic identification of covert channels in
Linux. Kemmerer [19] introduced the shared resource ma-
trix that describes a methodology to systematically identify
covert storage channels in a computing system. In contrast
to the work of Kemmerer, our methodology is not targeted at
covert channel identification, but aims to provide a complete
information flow analysis in the model of a component-based
operating system where different types of attack patterns are
identified and described.
Storage channels are also defined by Lampson [22], who

notes that data is “written by the service and read by an
unconfined program, either shortly after it is written or at
some later time”, describing a storage channel between a
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Figure 5: Taxonomy of attack patterns in component-based operating systems

confined and an unconfined program. Corrupt policy chan-
nels that are present due to a misconfigured access control
policy have been addressed by Agreiter [1], proposing au-
tomatic generation of an operating system’s MAC policy,
and Zhai et al. [41], presenting a new method for automatic
analysis of an operating system’s MAC policy. Finally, ex-
ploiting illegitimate access to components would be a special
case of a flawed system policy, where a policy circumvents
an operating system guard gk that protects access to a com-
ponent ck, managing a shared resource, and allows pi and pi
to exchange messages via ck. The use of operating system
guards to handle shared resources to protect applications
from untrusted components has been described by Payne et
al. [29], Robinson et al. [31, 32], Heckman et al. [15], and
Hanspach and Keller [13].

6. CONCLUSIONS
We systematically studied and described information flows

and patterns to attack these information flows the model of
a component-based operating system. For our basic sce-
nario of component-based operating systems, we analyzed
every possible illegitimate information flow, in order to give
operating system designers the tools to detect and possibly
prevent these illegitimate information flows. We found very
different patterns, ranging from an insider attack to prevent-
ing different types of channels and to exploiting implementa-
tion flaws, which are mapped to specific information flows.
Any designer of a component-based operating system can
use these patterns, to propose new subtypes of attack pat-
terns and develop countermeasures against the associated
illegitimate information flows.
The presented algebra might be used in future work to

describe and analyze more extended scenarios for informa-
tion flows in high-assurance setups. For instance, it might
be a good idea to add a variable E for the physical environ-
ment of the computing system in order to describe an in-
formation flow through the physical environment as present

in the covert physical channel and in side channels. While
we analyzed a scenario, where the high-assurance applica-
tion partition pi is not connected to a network, a variable
N = {n0, . . . , nx−1} for the network and connected nodes
in the networks might be introduced in future work, al-
though complex network-based attack patterns involving ≥
3 hosts might be more appropriately analyzed with a simpli-
fied model of the operating system stack. For network-based
attacks, similar attack patterns (e.g. covert channels) could
be utilized as described by Wendzel [38] and many more
authors. As further actors in the scenario, different users
of the computing system U = {u0, . . . , uy−1} might be in-
troduced. Finally, H might be differentiated to generate a
more precise description of attack patterns on information
flows between peripheral devices (such as a DMA attack by
a malicious network interface card as presented by Duflot et
al. [6]). As we target a mandatory access control system that
specifically handles information flows between partitions in
a component-based operating system, objects inside a par-
tition (e.g. sockets and files within a VM) are not target of
the analysis.
As a general attack pattern against domain separation in a

component-based operating system, covert physical channels
are introduced, which can be used to physically exchange
information between isolated partitions, using light, acoustic
wave propagation or any other type of physical signal, which
is not already established as a communication channel in the
computing system.
In summary, the set of attack patterns presented can be

used for a manual for the design and evaluation of a
component-based operating system by addressing each of the
identified attack patterns in the security design and evalua-
tion where the operating system model (or a similar model)
is applicable.
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