Testing the executability of scenarios in general inhibito nets

Robert Lorenz, Sebastian Mauser, Robin Bergenthum
Department of Applied Computer Science
Catholic University of Eichstatt-Ingolstadt

85072 Eichstatt, Germany
firstname.lasthname @ku-eichstaett.de

Abstract beled stratified order structures (LSOs), a proper general-
ization of LPOs.

In this paper we introduce executions of place/transition
Petri nets with weighted inhibitor arcs (PTI-net) as en-
abled labeled stratified order structures (LSOs) and présen
a polynomial algorithm to decide whether a scenario given
by an LSO is an execution of a given PTI-net.

The algorithm is based on an equivalent characteriza-
tion of enabled LSOs called token flow property. Although
the definition of the token flow property involves exponen-
tial many objects in the size of the LSO, there is a nontrivial
transformation into a flow optimization problem which can
be solved in polynomial time.

BT IRT R

p/t-net Executions
with inhibitor arc (a priori semantics)

Figure 1. PTI-net with executions.

As an example, Figure 1 shows a p/t-net with inhibitor
arc(p, d) having weight2. This inhibitor arc specifies that
d is only enabled to occur ji is not marked by more than
1 Introduction two tokens. Thus the enabledness of a transition depends on
tests via weighted inhibitor arcs whether the number of to-
Specifications of concurrent systems are often formu- kens in places does not exceed the weight of the inhibitor
lated in terms of scenarios expressing causal dependenciearc (beside the classical enabling conditions of p/t-nets)
and concurrency among events. In other words it is of- Throughout the paper, we consider th@riori semantics
ten part of the specification that some scenario should orof PTI-nets (other semantics are briefly discussed in the
should not be an execution of the system. Thus, given aconclusion). According to the a priori semantics the test of
system, a natural question is whether a scenario is an exemarkings of places via inhibitor arcs precedes the executio
cution of the system. In [5] we presented a polynomial al- of transitions. In Figure 1 the behavior of the transitians
gorithm to answer this question when the system is given byb andc is not restricted by inhibitor arcs: In the initial mark-
a place/transition Petri net (p/t-net) and a scenario isrgiv  ing the transitiong andb can be executed concurrently (that
as a labeled partial order (LPO). means in any order and as well at the same time). Then tran-
"Petri nets with inhibitor arcs are intuitively the most di- sition ¢ can be executed twice and for example consumes
rect approach to increase the modeling power of Petri nets’once the tokens produced liyand once the tokens pro-
[9] and have been found appropriate in various application duced byb. That means the transitionsandb are executed
areas [1, 2]. In fact, it is well known that such nets are "earlier than” transitior: (respectively). Consider now tran-
even equivalent to Turing-machines (w.r.t. to their sequen sitiond: Since after the occurrence efandb the placep is
tial behavior) and thus several decision problems such asmarked by four tokens] cannot be executed concurrently
the reachability problem which are decidable for p/t-nets to a andb (since then the occurrence @fis prohibited by
are undecidable for nets with inhibitor arcs. Nevertheless the inhibitor ardp, d)). Butd can be executed concurrently
we can show in this paper that the results from [5] can beto a, if it does not occur later thai(since then the number
generalized to p/t-nets with weighted inhibitor arcs (PTI- of tokens in place does not exceed the inhibitor arc weight
nets), the most general notion of Petri nets with inhibitor 2). In other words, the transitiortsandd, when executed
arcs. For such nets, scenarios can be formally given as laconcurrently toz (independent frona), cannot occur con-



currently or sequentially in ordér— d. But they still can generalization of the respective notion for LPOs and pi&-ne
occur at the same time (because of the occurrence rule "test{Subsection 3.2) and show the equivalence of these two no-
ing before execution”) or sequentially in ordér b — this tions (Subsection 3.3).The polynomial algorithm is then
is exactly the behavior described by fiot later tharb”. developed from the token flow property (Section 4). It is
The described causal relations between transitions of thebased on a nontrivial transformation of the token flow prop-
net are illustrated by the execution shown most left in Fig- €rty into a flow optimization problem. In the Appendix we
ure 1. The solid arcs represent the "earlier than” relation b briefly explain necessary results from flow theory for com-
tween events and the dashed arc depicts the "not later thanpleteness of the presentation to support the reviewing pro-
relation explained above. There are also other possible execedure. In Figure 2 the relationships between the different
cutions of the PTI-net from Figure 1: #fis executed once ~ characterizations of executions are depicted for p/t-fhefts
"not later than”b, then the number of tokens in the plagce  Ppart) and PTI-nets (right part) thus illustrating the ttexos
can't exceed the valuzand thusi can be executed concur-  shown in this paper in relation to analogue results known
rently to the executions af, b and (two times): (see the  for p/t-nets. We start with a short introduction of LSOs and

second execution in Figure 1). Further (with the same argu-PTI-nets in Section 2.

ment), it is possible thatis executed once "earlier thaa”
(see the third execution in Figure 1). olynomial test olynomial test

Of course also symmetric "not later than” relations are in e ] Thispaer
general possible between events, in which case these events \ Ltoken flow property* \ \ ,token flow property* \
can only occur at the same time, but not sequentially in any
order. Such events are callegnchronousWith partial or- @l 5] This paper
ders one can only model "earlier than” relations between
events but it is not possible to describe relationships rethe ‘ _enabled" H _executable® ‘ ‘ _enabled"” F"# _executable”
synchronous occurrence is possible but concurrency is not (611 Not valid
existent. In [7] causal semantics based on LSOs like the e ot
executions in Figure 1 consisting of a combination of "ear- Definition (7]

lier than” and "not later than” relations between eventsaver

proposed to cover such cases. Thus, we consider scenarios

to be formally given through LSOs. Figure 2. Theorems in this paper.
In this paper we present a polynomial algorithm running

in O(|P|n*) time to test whether a given LSO is an exe- 2 Preliminaries

cution of a given PTI-net, where is the number of nodes

p/t-nets PTI-nets

of the LSO andP| is the number of places of the PTI-net. |, yhis section we recall the basic definitionsstiatified
Since up to now for PTl-nets there is no formal definition o qer structuresandpit-nets with weighted inhibitor arcs
of executions, it is thereto first necessary to lift this aoti We useN to denote the nonnegative integers. Given a

for p/t-nets to the PTI-net level. There are three equiva- function f from A to B and a subsef’ of A we write f|c

lent characterizations (definitions) of executions OffEts, (4 genote the restriction gf to the seC. Given a finite set
namely (i) LPOsenabledw.r.t. a p/t-net, (i) LPOsexe- 4 the symbol A| denotes the cardinality of. The set of
cutablein a p/t-net, and (iii) LPOs fulfilling theéoken flow all multi-sets over a sefl is denoted byN+. Finally, we
propertyw.r.t. a p/t-net. The first two characterizations do yenote the identity relation ovet by id.4.

not lead to efficient tests. Their equivalence was shown

in [6, 11]. In [5] we introduced the token flow property o {  Gtratified order structures

of LPOs, showed its equivalence to the other two char-
acterizations and developed an efficient algorithm to test

Whgther a given LPO satisfies the t‘?k?” flovy property W.-t. nition of stratified order structuregso-structures A di-
a given marked p/'g—ne_t. Of course, it is desirable to eXte”drected graphis a pair (V, —), whereV is a finite set of
all three characterizations to LSOs and PTI-nets and prove
their equivalence also on the PTI-net level. 1The definition ofexecutabldPOs is strongly related to the definition

L. of process nets of p/t-nets. Since the most general noti@noafess nets
We propose a definition afSOs enabled w.r.t. a PTl-net existent for PTl-nets ([7]) does not define minimal causgletelencies

which is a proper generalization of the definition of LPOSs between transition occurrences, there are enabled LSQ@#ahé not ex-

enabled w.r.t. a p/t-net and allows the representation of ex ecutable when lifting this notion to the PTI-net level. Téfere, we do

ecutions with minimal causal dependencies between tranot consider executable LSOs here. The exact relationsttipelen the
generalizations of the characterizations (i) and (ii) te Bil'l-net level is

Sitiqn occurrences of PTI-nets (Subsection 3.1). We alSOgyamined in another paper we submitted to the InternatiGualference
define thetoken flow propertyf LSOs w.r.t. PTI-nets as a  onApplication and Theory of Petri Nets (ATPR)07.

We start with some basic notions preparative to the def-




nodesand —C V x V is a binary relation over V called
the set of arcs As usual, given a binary relatior:, we
write a — b to denote(a, b) €—. Two nodesy,b € V are
calledindependentv.r.t. the binary relation— if a 4 b
andb 4 a. We denote the set of all pairs of nodes inde-
pendent w.r.t.— by co ., C V x V. A partial orderis a
directed graptpo = (V, <), where< is an irreflexive and
transitive binary relation oy’ If co . = idy then(V, <)
is calledtotal. Given two partial orderpo, = (V, <;) and
po, = (V, <2), we say thapo, is asequentializatior{or
extensiofof po, if <;C<. Figure 3 shows four total linear so-structures with la-
So-structures are, loosely speaking, combinations of twopeled nodes (LSOs), where the first and second LSOs are
binary relations on a set of events where one is a partialextensions of the second execution shown in Figure 3 and
order representing an "earlier than” relation and the otherthe third and fourth LSOs are extensions of the first exe-
represents a "not later than” relation. Thus so-structurescution shown in Figure 3 (using the results from [7] about

(C \ <)Uidy. The set of alkotal linear extensiongor
linearization$ of an so-structures is denoted byin(S).

o | ,b\md al /bﬁd

C Cc C C

Figure 3. Total linear so-structures.

describe finer causalities than partial orders. Formatly, s
structures areelational structuressatisfying certain prop-
erties. Arelational structure(rel-structure) is a triple&s =
(V,=<,C), whereV is a set (ofevent}, and<C V x V
andC C V x V are binary relations of. A rel-structure
S’ = (V,=<’,) is said to be amxtensiorof another rel-
structureS = (V,<,C), writen S C &', if <C<’ and
CCr’.

Definition 1 (Stratified order structure [7])A rel-structure
S = (V,=,C) is called stratified order structurgso-
structure) if the following conditions are satisfied for all
u,v,w € V:

(CHu £ u.

(Cu<v = urCw.

CHuCvCwAu#w = ul w.
CHuCv<wVu<vCw = u<w.

In figures< is graphically expressed by solid arcs and

augmenting so-structures one can conclude that every so-
structure is extendable to a total linear so-structure).

For the definition of the token flow property for LSOs
we need the notion of prefixes (of nodes) of so-structures.
These are defined by subsets of nodes which are downward
closed w.r.t. the_-relation:

Definition 3 (Prefix (of a node)) LetS = (V, <, C) be an
so-structure and leV” C V be such thatu’ € V' Au C

u) = ue V. ThenS = (V',< |vixv/,C |lvxv) IS
called prefix of S. We say that the prefig’ is defined by
V’. If additionally {v" € V | v' < v} C V' and{v' € V|

v=v Vv v}nV = (forsomev € V, thenS' is

calledprefix of v (w.r.t. S).

This definition of prefixes is compatible with the set of
linearizations of an so-structure in the following sense:

Lemma 4. LetS = (V, <, C) be an so-structurey’ C V
andv € V. ThenV’ defines a prefix af w.r.t. S if and only

by dashed arcs. According to (C2) a dashed arc is omitted ifif tnere is a linearizations’ lin(S) such thatl’’ defines
there is already a solid arc. Moreover, we omit arcs which 4 prefix ofv w.rt. S

can be deduced by (C3) and (C4). It is shown in [7] that

(V, <) is a partial order. Therefore so-structures are a gen-Proof. if: LetS" = (V, </, ') € lin(S) and letV’ C V

eralization of partial orders which turned out to be adeguat

define a prefix ob» w.r.t. §’. Consider nodes’ € V' and

to model the causal relations between events of PTl-netstu € V with v T «/. SinceS’ is an extension of this

under the a priori semantics. In this contextrepresents
the ordinary "earlier than” relation (as for p/t-nets) vehil
C models a "not later than” relation. According to [7] for
nodesu,v € V there is an extensiaf’ = (V, </,C’) of S
with <’ v if and only if v 7 v andu # v. In particular,
there holds: < v = v IZ u. These properties justify the
described causal interpretation-efand_. The executions
shown in Figure 1 are so-structures with labeled nodes.

impliesu " v/. Becausd/’ defines a prefix o6’ we get
u € V’'. ThusV’ also defines a prefix of. Let further
v’ < v. Again, sinceS’ is an extension o8 this implies
v’ <" v and therefore we hav€ € V’. Finally, if v C v’
thenv C’ v" and therefore’ ¢ V’. Thus,V’ defines in fact
a prefix ofv.

only if: Let V' define a prefix of w.r.t. S. We construct
a linearizationS’ = (V, <’,C’) of § such thati’”’ also de-

We introduce a subclass of so-structures which turns outfines a prefix ofv w.r.t. . For this denotd, € V” the
to be associated to sequences of (synchronous) transitioget of all nodes which are minimal w.r& in S. Then con-

steps of PTl-nets.

Definition 2 (Total linear so-structures)etS = (V, <, C)
be an so-structure, thef is calledtotal linearif co . =

sider the restriction of onto the node sét \ 1, and denote

V1 C V' the set of all nodes which are minimal w.r.in

this new so-structure. Following this technique, we define
inductivelyV,, C V' as the set of nodes which are minimal



w.r.t. the restriction of< onto the node sét’ \ (U?:_O1 Vi),
aslong as/’ \ (g Vi) # 0. 1f V/\ (U, Vi) = 0
andV \ (Uf:ol Vi) # () for someN, then further define
VN C V as the set of nodes which are minimal w.r.t. the
restriction of< onto the node sét \ (Uf\i’o1 V;) and so on
(note thatv € Vy becausé’’ defines a prefix of).

We now can defing’ through<'= UKJ. Vi x V; and
C'= ((U; Vi x Vi) \idy, )U <'. By constructiorS’ is a total
linear so-structure. It remains to show that <’, CC/,
eV |v<vpCVand{v eV |v=v Vo
vINV =0.

Letu,v € V with u < v: SinceV’ defines a prefix of
S, it is not possible that € V' andu ¢ V'. Suppose
u,v € Viu,v € V\ V' oru e V' andv ¢ V': Then by
construction there must be< j with v € V; andv € V}.
This givesu <’ v.

Letu,v € V with u C wv: SinceV’ defines a prefix
of S, it is not possible that € V' andu ¢ V’. Suppose
u,v € V'oru,v € V\V’: Letu € V; andv € V;. Assume
thatv is minimal w.r.t. < in an earlier step than. Then in
this step there is’ < u butw’ £ v. This contradicts (C4).
Therefore either, andv are minimal in the same step or
u is minimal in a step earlier than This givesu ' v.
Suppose;, € V' andv ¢ V’: Then by construction there
must bei < j with v € V; andv € V;. This givesu <’ v.

Letv’ € V with v’ <’ v: Since by construction € Vy
there isn < N with v’ € V,, C V. Iffinally v =’ v/, then
v’ € V, forsomen > N,ie.v' € V', O

We will often uselabeled so-structure$LSOs) in the
following. These are so-structur&s= (V, <, C) together
with a set of labelsl” and alabeling functionl : V' — T.

{y € PUT | (z,y) € F'}. GivenaselX C PUT, this no-
tation is extended by X = (J, .y ez andXe = J _ xe.
For technical reasons, we consider only nets in which every
transition has a nonempty pre-set and post-set.

A place/transition ne{shortly p/t-ne) N is a quadruple
(P, T,F,W), where(P,T,F)isanetandV : F — NT
is aweight function We extend the weight functio to
pairs of netelements:, y) € (P xT)U (T x P) satisfying
(z,y) & F by W((z,y)) = 0.

Definition 5 (PTl-net) A PTl-net N is a quadruple
(P, T,F,W,I), where (P, T, F,W) is a p/t-net andl :

P x T — NU {w} is theweighted inhibitor relation If

I(p,t) # w, then(p,t) € P x T is called(weighted) in-
hibitor arcandp is aninhibitor place oft.

In the following we denote < w for n € N. A marking
ofa PTl-netN = (P, T, F, W, I) is afunctionm : P — N,

i.e. a multi-set oveP. A marked PTI-neis a pair(V, my),
whereN is a PTI-net andng is a marking of N calledini-

tial marking A transitiont can only be executed if carries

at most/((p,t)) tokens. In particular, if ((p,t)) = 0 then

p must be empty/((p,t)) = w means that can never be
prevented from occurring by the presence of tokens iim
diagrams, inhibitor arcs have small circles as arrowheads.
Just as normal arcs, inhibitor arcs are annotated with their
weights. Now however, the weightis not shown. Figure 1
shows a marked PTl-net.

According to the a priori semantics of PTI-nets, the in-
hibitor test for enabledness of a transition precedes the co
sumption and production of tokens in places. Thus, a multi-
set (a step) of transitions is (synchronously) enabled in a
marking, only if in this marking each transition in the step
obeys the inhibitor constraints before the step is executed

We use the above notations defined for so-structures also

for LSOs. IfT' is a set of labels of, i.e. [ : V' — T, then
for a setU C V, we define the multi-seit/|; € N7 by
Ui(t) ={v eV |veUAIw) =t}

We will consider LSOs only up to isomorphism. As
usual, two LSOSV, <, , 1) and(V', <’, ', 1’) are called
isomorphigif there is a bijective mapping : V' — V' such
thati(v) = I'(¢(v)) forv € V, v < w < ¥(v) <" (w)
andv C w < ¢(v) T’ (w) forv,w € V.

We will use the same notions for LPOs, too (since an
LPO can be understood as an LSO with a not later than

relation that equals the earlier than relation).
2.2 PTI-nets

A netis a triple (P, T, F'), where P is a finite set of
places T is a finite set ofransitions satisfyingP N7 = 0,
andF C (PUT)x (TUP) is aflow relation Let (P, T, F)
be anetand € P UT be an element. Thgresetex is the
set{y € PUT | (y,x) € F}, and thepost-setre is the set

Definition 6 (Occurrencerule)LetN = (P, T, F, W, I) be
a PTl-net A multi-set of transitions (a step) isenabled to
occur in a markingn w.r.t. the a priori semantiagém(p) >
> e T()W((p,t)) for every placep € o7 andm(p) <
I((p,t)) for each place» and each transition € .

The occurrenceof a step (of transitions)y leads to
the new markingm’ defined by m/(p) m(p) —
Yrer TOW((p, 1)) — W((t,p))) for everyp € P. We
write m —— m’ to denote that is enabled to occur im
and that its occurrence leads#@. A finite sequence of
stepsc = 71...7,, n € N, is called astep occurrence
sequence enabled in a marking and leading tom,,, de-
noted bym -2 m,,, if there exists a sequence of markings
ma,...,my such thatm —5 m; — ... =% m,. The
markingm,, is said to bereachable from the markinga.
Moreover each marking is reachable from itself too, by the
occurrence of the empty occurrence sequence. In a marked
p/t-net, markings reachable from the initial marking are
shortly calledreachable markings



A step occurrence sequence can be understood as a po®efinition 7 (enabled LSQ) Let (N,mg), N =
sible singleobservatiorof the behavior of a PTI-net, where (P, T, F, W, I), be a marked PTI-net.
the occurrences of transitions in one step are obsexvibe An LSOS = (V,<,,l)with! : V — T is calleden-
same timeor synchronously abled (to occur) w.r.t.(N, mg) (in the a priori semantics)

We will use the same notions for (marked) p/t-nets, too if the following statement holds: Each finite step sequence
(since a p/t-net can be understood as a PTl-net with an in-c = 71 ...7, with S, € lin(S) is a step occurrence se-
hibitor relation which equals the constasit quence of(N,my). Its occurrence leads to the marking
m/(p) given bym/(p) = m(p) + >_,ev (W((U(v),p)) —
W{((p,U(v))))-

This definition is consistent with and a proper general-
ization of the notion of enabled LPOs: An LR = (V, <
;) with [ : V — T is enabled to occur in a marking:
of a marked p/t-netP, T, I, W, m,) if each step sequence
which extends (sequentializdg)p is a step occurrence se-
guence enabled img. Since in LPOs concurrent and syn-
3.1 Enabled LSOs chronous transition occurrences are not distinguishe®, he

a step is considered as a set of events labeled by transitions

We now introduce LSOs to model executions of PTI- (transition occurrences) which are concurrent.
nets. For this, the two relations of an LSO are interpreted  Beside this there are two general semantical arguments
as "earlier than” resp. "not later than” relations between justifying this definition: First an (enabled) LS®is com-
transition occurrences. If two transition occurrencesimre pletely represented by the set of its linearizatidingS)
not later than relation, that means they can be observed (areonsisting of step occurrence sequences (in the sense that
allowed to be executed) synchronously or sequentially in it can be reconstructed frotin(S) through intersection, as
one specific order. If two transitions are neither in earlier shown in [7]). Second the séin(S) can express arbitrary
than relation nor in not later than relation, they are concur concurrency relations between transition occurrences of a
rent and can be observed (are allowed to be executed) synPTI-net, since concurrency equals the possibility of syn-
chronously or sequentially in any order. In this sense onechronous and sequential occurrence in any order.

LSO "allows” many observations (step sequences). If all
al b[ ]d a b a b
d
CE y CE Ecgd CE iﬂd

these observations are enabled step occurrence sequences
a

3 Executions

In this Section we lift the notions of "enabled LPOs” and
"token flow property” known for LPOs w.r.t. p/t-nets to the
setting of PTI-nets w.r.t. the a priori semantics.

this LSO is callecenabled

Formally, the set of step sequences "allowed” by an LSO
is defined as the set of step sequences extending (sequential
izing) the LSO, where a step sequence can be easily inter-

preted itself as an LSO: Each step is represented by a setof .. P/tnet No Executions
. . f with inhibitor arc (a priori semantics)

events labeled by transitions (transition occurrence#hvh _

are in not later than relation with each other (representing Figure 4. LSOs, not enabled.

synchronous transition occurrences) and transition eccur |t is easy to check that the LSOs from Figure 1 are in-
rences in different steps are ordered in appropriate earlie deed enabled LSOs w.r.t. the shown PTI-net. As a further
than relation. Formally, for a sequence of transition steps example consider the three LSOs shown in Figure 4: In all
o= ...7, define the LSGS, = (V, <, , ) underlying three cases, the step sequefice b)(c+ d)c is a lineariza-

oby:V =, Viandl : V — T with [V;[;(t) = 7:(t), tion of the LSO, but it is not an enabled step occurrence
<=U,; Vi x VjandC= (U, Vi x V;)U <) \ idy . sequence. This is because after the executiofuof b)

It is easy to see that LSOs underlying a sequence ofthe placep carries four tokens disabling the following step
transition steps are total linear. This is because; = (¢ +d). Therefore, all three LSOs are not enabled w.r.t. the

Ui, Vi x V; (see Definition 2). For example, the LSOs shown marked PTI-net.

shown in Figure 3 are associated to the sequences of transi- Observe that there is no efficient test of definition 7 since
tion steps (from left to right)a(b+ c+d)c, (a+d)(b+c)c, there may be exponential many sequences of transition steps
(a + b+ d)(2¢) and (b + d)a(2c). Of course, also the re-  in the number of nodes linearizing the LSO.

verse is valid, i.e. for each total linear LSO= (V, <, C, 1)

there is a step sequengesuch thatS andS, are isomor- 3.2 Token flow property

phic. Thus, for LSOs which have transition names as labels

we can identify total linear LSOs with sequences of transi-  In this subsection we extend the notions of token flow
tion steps. function and token flow property known for LPOs and p/t-



nets to the setting of PTI-nets. In [5] it is shown that LPOs is denoted and defined yut(v,z) = >, .., z((v,w)).
are enabled if and only if they fulfill the token flow property The overall number of tokens consumed by an eveat
w.r.t. a p/t-net. Our aim is to show the same for LSOs and Ipo* is called theintoken flow ofv w.r.t. = and is denoted
PTl-nets. and defined byn(v,z) = >, ., z((w,v)).
Fix a marked PTI-netN,mo), N = (P, T, F, W.1), a Definition 10 (Token flow function of LPOs) Let lpo =
placep of N and an LSCS = (V, <, C, ) with : V — T. x % 1%
Assume thatS is enabled to occur w.r.t{ NV in the a (V. <,1) be an LPO andpo™ = (V*,<",1") be ax
>sU | . oceur w. & ] mo) | extension ofpo. A functionz :<*— N is calledtoken
priori semantics. Since the inhibitor relatidrof (N, mg) fl : . .
. . . , ow functionoflpo, if equally labeled nodes have equal in-
restricts the behavior of the underlying p/t-iét’, mg) = ) 7
. , token and outtoken flogw) Yo, w € V : [(v) = l(vw) =
(P, T,F,W,myg), S is then also enabled w.rtN’, my). In In(v, 2) = In(w, ) A Out(v, x) = Out(w, ).
a p/t-net transitions which can be executed as one step alscg ’ ’ ’ ’
can be executed in arbitrary order. Therefore, also the LPO An LPOlpo = (V, <, 1) satisfies theoken flow property
Ipog = (V, <,1) underlyingS is enabled w.r.t. the p/t-net w.r.t. a marked p/t-neft for each place of this net there is
(N',mg). Altogether we get that the enabledness of the atoken flow functiorz,, compatible withy in the sense that
LPO underlyingS w.r.t. the p/t-net underlyingN, my) is a its intoken and outtoken flows respect the weight function
necessary condition for the enablednesS vfr.t. (IV, my). and the initial marking of the net as follows:

Lemma 8. LetS = (V, <, C, 1) be an LSO enabled w.rt. a Definition 11 (Token flow property of LPOSs) Let

/ !
marked PTI-ne{N,mg), N = (P, T, F,W, I), according (N',mg), N' = (P, T, F,W), be a marked p/t-net and
to the a priori semantics. Then the LR, <, ) is enabled €t Ipo = (V;<,1) be an LPO withi(V) = T and let

w.rt. the marked p/t-netP, T, F, W, my). lpo* = (V*,<*,1*) be ax*-extension oflpo. Denote
W ((I(vo),p)) = mo(p) for each placep. We say thatpo
That means the token flow property f8mw.r.t. (IV, my) fulfills thetoken flow property w.r.t( N, my) if the follow-
should include the token flow property fdpogs W.r.t. ing statement holds: For every plagec P there exists a

(N',mg). The token flow property for LPOs w.r.t. p/t-nets token flow functior,, :<*— N such that
is based on the notion d@bken flow functions For every  (IN) Vv € V : In(v,z,) = W((p,1(v)))
placep a token flow functionz;, assigns non-negative in-  (OUT)Vv € V U {vg} : Out(v,z,) = W((l(v),p)).
tegers to the edges of an LPO. The valyé(v,v’)) of an )
edge(v,v’) is interpreted as the number of tokens which In [5] we showed that an LP.O futfills the_ tc_)ken flow
are produced by the transitidfw) and consumed by the property w.r.t. a marked p/t-net if and only if it is enabled
transitionl(v’) in the placep. By this construction we still W.ri/t\./ethrli)vr:,efhan e back to the considerationSof Since
cannot specify the number of tokens which are consumed 9 ) .

. o : the not later than relation of does not describe the flow
by a transition from the initial marking of a place, and the . .
number of tokens which are produced by some transition of tokens (since token flow always produces an earlier than
: - relation between events), the token flowSfv.r.t. a place
in a placep, but not consumed by further transitions (and can be given by a token flow function bfog. Clearly (as

thus remain in the final marking). Therefore, we extend a
considered LPO by amitial eventwhich is interpreted as argugd abo.ve),- for each place the_re.must be a token flow
function satisfying (IN) and (OUT), i is enabled.

the oecurrence ofgtra}ns_ltlon producing the initial magkin The other way round the existence of such token flow
and afinal eventwhich is interpreted as the occurrence of a . T :
transition consuming the final marking functionsz,, satisfying (IN) and (OUT) is not enough to en-

' sure thatS is enabled. This is because the execution of a
Definition 9 (x-extension of LPOs)Letlpo = (V, <,1) be prefix of S still might produce too many tokens in a place

an LPO. Then an LPQpo* = (V*, <*,1*), whereV* = p (according tar,) disabling a subsequent transition which
(VU{v0, Vmax })» V0, Umax & V, <*=< U({vo} x V)U(V x tests this place via an inhibitor arc. Thus, we now require
{Vmax }) U{(v0, Umax) }, *(v0), * (Vmax) & L(V), [*(vo) # that token flow functions fulfill an additional property. Bhi
I*(vmax) @ndl*|y = 1, is calledx-extension ofpo. property should only allow token flow functiong accord-

ing to which for each event the execution of one of its pre-

By assigning natural numbers to the arcs efextension  fixes does not put too many tokens intoln other words,
of an LPO we define a so called token flow functiorf each marking which is reachable through the execution of
this LPO (withv, as its only smallest element ang,x a prefix of some event should respect the inhibitor relations

as its only maximal element). It is clear that equally (with of the corresponding transition to all places.
the same transition) labeled events should produce and con
2|n particular, we showed that a token flow function satisfy§tN) and

sume the same overall number of tokens in a place. The(OUT) w.r.t. a place abstracts from the individuality of d@ons of a

*
overall numper of tokens produced by an eveof Ipo™ = process of the net and encodes the flow relation of this psdwgsatural
(V*,<*,1*) is called theouttoken flow ofv w.rt. = and numbers.




Assume that we have given a token flow functignon

p. Here, we omitted to draw the initial and maximal event

the edges ofpoy satisfying (IN) and (OUT) for some place and corresponding arcs, because there are no tokenis in
p. We have to compute the number of tokens in this place the initial marking and in the final marking after the exe-

after the execution of some prefix 6f Let the prefix be
defined by the set of event§'. On the one hand, by con-
struction, the value of, on edges between events f{

cution of the LSO. The node labeled hbyhas intoken flow
0 = W((p,a)) and outtoken flon2 = W((a,p)). The
same holds for the node labeled by The nodes labeled

correspond to tokens which are produced and consumed byy ¢ have intoken flon2 = W ((p,c)) and outtoken flow

events in this prefix. On the other hand, the value pbn
edges from events ifY’ to events inV” \ V' corresponds
to tokens which are produced by eventsiihand remain

0 = W((e,p)). Finally the node labeled by has into-
ken flow0 = W ((p, d)) and outtoken flow) = W ((d, p)).
Thereforex, satisfies (IN) and (OUT) w.r.tp. To exam-

in p after the execution of the prefix. Thus, the marking of ine condition (FIN) we must only consider the node labeled
the place after the execution of the prefix is given by the by d (node filled by black color): The execution is depicted
sum of the values af,, on such edges. We define this sum four times showing all prefixes (nodes filled by grey color)

for arbitrary token flow functions and call its value tfeal
marking of the prefix w.r.t. the token flow function. For-
mally, the initial event ofpo’s belongs to each prefix.

Definition 12 (Final marking) LetS = (V, <,Z,1) be an
LSO and lets’ = (V/, </, ', I') be a prefix ofS. Let fur-
therz : V* — N be a token flow function ¢, <, 1) and
let vy be the initial event of V*, <*,1*). Thefinal mark-
ing of S’ (w.r.t. x) is denoted and defined bys: () =

2uevr, vgvr uxro LW 0)) + 32, gy 2((v0,v)-

of this node. The arcs which count for the final marking
of a prefix are highlighted: The first and third prefix have a
final marking of2 < 2 = I((p, d)), the second and fourth
prefix have a final marking @f < 2 = I((p, d)). Thus, also
(FIN) is satisfied. The maximum over all final markings of
prefixes of thel-labelled node is displayed inside this node.
Observe that also the definition of the token flow prop-
erty is inherent exponential in the size of the LSO since it
involves in general exponential many prefixes of the LSO
(condition (FIN)). Nonetheless, as will be explained inSec

We are now ready to state the token flow property for tion 4, the test of condition (FIN) can be transformed into a

LSOs w.r.t. PTI-nets: For each event the final marking of flow Optimization prob|em which can be solved in p0|yn0-
every of its prefixes must not exceed the weight of the in- mial time.

hibitor arc between the corresponding transition and place

Formally we also lift the notions of-extension and token
flow function to LSOs.

a[] A |oBEld a[] 4 JbBd a[] A JoBld a[] , Hd
2 2 2 2 2 2 2 2
[ V[ e ¥ [ [ [ e [} e

An execution
(a priori semantics)

Figure 5. LSO with token flow function.

p/t-net
with inhibitor arc

Definition 13 (Token flow property of LSOs)Let S =
(V,<,,1) be an LSO. An LSG* = (V*,<*,C*,1%),
where (V*, <* 1*) is a x-extension of the LPQV, <, 1)
andC*=C U <*, is calledx-extension ofS. A function
x :<*— Nis calledtoken flow function ofS, if it is a token
flow function of(V, <, 1).

Let further(N,mg), N = (P, T, F,W, I), be a marked
PTI-net and let/(V) = T. We say thatS fulfills the to-
ken flow property w.r.t(N,my) if the following statement
holds: For every place € P there exists a token flow func-
tion z,, :<*— N satisfying (IN), (OUT) and
(FIN) For all nodesv € V and all prefixesS’ of v there
holds: ms: (zp) < I((p,1(v))).

3.3 Enabledness vs. token flow property

In this Subsection we will prove the first main result of
this paper given by the following Theorem. In the subse-
guent Subsection we will finally present a polynomial test
of the token flow property as the second main result.

Theorem 14. Let (N,mg), N = (P,T,F,W,I), be a
marked PTl-net and le§ = (V,<,C,1) be an LSO with
[(V)=T. ThenS is enabled w.r.t(N, my) if and only if it
fulfills the token flow property w.r.{V, my).

Proof. only if: Let S be enabled w.r.t.(N,mg). Then,
by Lemma 8(V, <,1) is enabled w.r.t. (P, T, F, W, my),
that means for each € P there is a token flow function
xp :<*— Nof (V, <, 1) satisfying (IN) and (OUT).

We claim, that each:, also fulfills (FIN). For this let
v € V andS’ be a prefix ofv defined byV’. By Lemma
4 there is a linearizatiosy;;,, of S such thafl’’ also defines
a prefixs;,, of v w.r.t. Sj;,. There is a step occurrence
sequence = 7 ... 7, of (N, mg) whose underlying LSO
S, equalsS;;,. Since prefixes are downward-closed a
prefixe’ = 71 ... 7 (m < n) of o with [(v) € 7,1 Must
exist which corresponds i§,,,. In other words, the LSO
So+ underlyinge’ equalsS;,,,. It is enough to show now
thatm(p) = ms/(z,) for the markingn reached after the

Figure 5 shows one of the executions from Figure 1 (four execution ot”’, sincem(p) < I((p,t)) for each place and

times) with annotated token flow functiap) w.r.t. the place

each transition € 7,11 by Definition 6.



We finally compute: =
Z;il Zten T(t)(W((p, t)) W((tvp)))
Out(vo, xp) ZUEV’ (In(v,zp) — Out(v,zp))
S veviguor(Dusew To((0:0)) = 3oy 2p((w,0)))
ms:(xp), since the values on edges witHiff cancel each
other out.

if: Let S fulfill the token flow property w.r.t.(N, mg)
and letx,, be a token flow function satisfying (IN), (OUT)
and (FIN) w.r.t. the place. Consider a sequence of tran-
sition stepsr = 71 ... 7,, whose underlying LS®,, is a
linearization ofS. We have to show that is a step occur-
rence sequence ¢fV, my). For this, we show inductively
that if o, = 7 ...7; iS a step occurrence sequence then
Tr+1 1S @ transition step enabled in the markimgreached
after the execution of, for0 < k < n — 1.

First observe that is a step occurrence sequence of
(P, T,F,W,myg), since(V,<,1) satisfies the token flow
property on the p/t-net level and thé”?O underlying o
clearly sequentialize@/, <, ). That means the first condi-
tion of Definition 6 thatn(p) = >, . T+ ()W ((p, 1))
for every placey € o7 is always satisfied. We still have
to verify the condition of Definition 6 that(p) < I((p, t))
for each placep and each transition € 7;,41. If S, is
the LSO underlying, thensS,, is a prefix ofS,. Denot-
ing Sy, = (Vi, <k, Ck, i), by Lemma 4V}, also defines
a prefixS, of S. Fixt € 7,41 andp € Pandletv € V
with [(v) = t such thatS,, is a prefix ofv. Then also
(Lemma 4)S;, is a prefix ofv. It is enough to show now
thatm(p) = ms, (z,), sincems, (z,) < I((p.1(v)) by
(FIN). The necessary computation is as above. O

m(p) mo(p)

4 Testing the token flow property

In this section we give a polynomial algorithm to test
whether an LSQS = (V, <, C, 1) with [(V)) = T fulfills
the token flow property w.r.t. a marked PTI-ne¥, mo).

In the case thas fulfills the flow property, the algorithm
constructs respective token flow functions for every place
satisfying (IN), (OUT), and (FIN).

From [5] we have a polynomial test whether for each
place there is a token flow function satisfying (IN) and
(OUT). If such token flow functions do not exist, then
clearly the LSO does not fulfill the token flow property. In

the positive case the algorithm from [5] generates such to-

ken flow functions. We claim that either these token flow
functions also satisfy (FIN) or the LSO does not fulfill the
token flow property (i.e. there are no such token flow func-
tions). This observation is based on the following lemma
stating that the final marking of a prefix w.r.t. a token flow
functionz,, satisfying (IN) and (OUT) fop only depends
on the initial makingnq(p) and the arc weight&/ ((p, t))
andW((¢,p)) fort € T, but not on the concrete distribution
of the token flow given by:,,. This follows directly from the

fact that the final marking can be computed as the marking
reached after the execution of the prefix (the corresponding
computation can be found in the proof of Theorem 14).

Lemma 15. Let p be a place and let;, be a token flow
function satisfying (IN) and (OUT). Then it holds for each
prefix S’ (v, < l) of St ms/(x,) = mo(p) +
2aer Vi @W((E,p)) = W(lp,1)))-

Thus, for different token flow functions, andzx;, satis-
fying (IN) and (OUT) for a place the valuesns (x,) and
ms: () coincide and thus either both fulfill (FIN) or both
do not fulfill (FIN). It remains to test property (FIN) for
the computed token flow functions, satisfying (IN) and
(OUT). For this it is enough to compute for each nedbe
maximum of the valuesus: () over all prefixesS’ of v
and to compare this maximum with the valligp, (v))).

Definition 16 (Inhibitor value) The inhibitor value
Inh(v,z) of an evenw w.r.t. a token flow function: is
defined byinh(v,z) = max{ms/(x) | S’ is prefix ofv}.

A straightforward way to compute the inhibitor value of
some nodev is to enumerate all prefixes of this node and
compute the final markings of all these prefixes according
to Lemma 15. Unfortunately this is not efficient since there
may be exponential many prefixes in the number of nodes
(as already stated).

Another possible formalization of the problem is as fol-
lows: The final marking of a prefix is defined as the sum
over the values of the token flow function on edges leaving
the prefix. These edges separate the node set of the prefix
from the subsequent nodes. Formally, this separation can be
seen as a cut through (resp.lpog) partitioning the nodes
of S into two node sets. Such cuts are considered in flow
theory and to avoid confusion we use the tdlomv cutsfor
this kind of cuts from now on. In flow theory one searches
for maximal or minimal flows through flow networks with
upper and/or lower capacities on edges. Thereto, one con-
siders capacities of flow cuts. Interpretifigps as a flow
network and the values of the token flow function as lower
capacity bounds for flows through this network, the final
marking of a prefix is given as the capacity of some flow
cut and the inhibitor value of some node can be seen as
the maximum capacity of flow cuts of the network. This
maximum then can be computed efficiently through its cor-
respondence to minimal flows (see the Appendix).

Definition 17 (Flow network, flow, flow cut, capacity)A
flow network (with lower capacitiesy a tuple(G, ¢, s, t)
whereG = (W, E) is a directed graph¢ : E — Ny is a
capacity functions € W is a node withvv € W : (v, s) &

E called sourceand ¢ € W is a node withvo € W :
(t,v) ¢ E calledsink

The capacity is interpreted as a lower bound for flows,

that means dlow is a functionf : £ — Ny such that



(@ Y(w,v') € E : f((v,v)) = ¢((v,v")) and (b) Proof. Since V! C U for the setU of all nodes oc-
Vo € W 3, mer f((wv) = 3 wer f(0,w)). curring in some prefix ofv we have for eachu €
Thevalue|f| of a flow f is defined as the outgoing flow V' U {ve} andw & V' U {wo} that c¢(([u], [w])) =
of the source (or equivalently the ingoing flow of the sink) >,/ ¢(u), w'efw], w <+ ((¢';w")) . The statement is now

Z(Sw)eE f((s,v)). Aminimal flow is the flow with mini- an easy computation. Just observe fiatx S) N E =

mal value among all flows. sincew Z* uwfor [u] € S, [w] € T. O
Aflow cutis a tuple(S,T) C W x W such thats € S, . . ,

teT,SNT =f0andSUT — W. The capacity of a flow Since flow c_:uts which d_o_ not correspond to prefixes of_

cutis defined by((S, 7)) = e wer. (o)er o((v, w)) do not have bigger capacities than flow cuts corresponding

if (T'xS)NE=0andc((S,T)) =0 else. to such prefixes we get:

in the followi d ibe h he inhibi | ‘ Theorem 20. Letv be a node and be a token flow func-
n the following we describe how the inhibitor value of a tion of an LSQS. Let further(G, c, s, ), G = (W, E), be

nodev can be interpreted as the maximal capacity of SOME o flow network associated toand v ThenInh(v, z) —
flow cut in a flow network. For this we interpret, loosely max{c((S,T)) | (S,T) flow cut of(G 'C 5,1} ’

speakingS as a flow network. Therefore, we first have to
omit the not later than relation. Clearly, we can glue events Proof. Let (S,T) be a flow cut of(G, ¢, s,t) which does
of S which are in a symmetric not later than relation. If not correspond to a prefix efin the sense that # {[u] |

u C v butv 7 u, then there might be prefixes containing « = vy Vu € V'} for each prefixs’ = (V/, </, ', ') of v.

u but notv and there might be prefixes which contain or We first claim that if(S,7") does not correspond to a
do not contain both eventsandv together. Since the same prefix of S = (V, <, C, 1) thenc((S,T)) = 0 since there
holds ifu < v, we replace remaining not later than relations is [u] € S and[w] € T with ([w],[u]) € E. Indeed, in
by earlier than relations. An additional difficulty is thaew  this casé/s = UMGS\[UU] [u] does not define a prefix df.
do not want to consider all flow cuts of this flow network, That means that thereisc Vs andw ¢ Vg with w C u.
but only those corresponding to prefixesofTherefore, we By the definition ofVs it is not possible that alsa = w
only consider (lower) capacity constraints on edges leavin (because thefw] = [u]). Therefore, by the definition ot

some prefix ob. we get([w], [u]) € E.

_ _ Let finally (S,T") correspond to a prefi§’ = (V/, <’
Definition 18 (Associated flow network)LetS = (V, < ', 1') of S = (V, <, T, 1) which is not a prefix ofr. We
,C,1)bean LSOp € V, 8% = (V*, <*,C*, 1) be @x- (jaim that then there is a prefiX’ = (V*, <", ", 1") of
extension of with initial eventvy and maximal event,, . v such thae((S, T)) < ¢((S”, T")) for the flow cutS” =
andz be a token flow function &. Let furtherU be the set (] |u=nvoVucV"}andl” =W\ S".
of all nodes occurring in some prefix of Define theflow Observe that the intersection and the union of two node
network(G, ¢, s, t), G = (W, E), associated ta andv by sets defining two prefixes always defines a prefix again.

This implies that there is a maximal prefix ofwhich is
defined exactly by the séf of all nodes occurring in some
prefix of v and that there is also a minimal prefix ofde-
fined by thesetV' = {u € V | u < v}.

e Foru € V* denotefu] = [ulc = {w e V* | w =
uV(w C* uAu CF w)}. DefineW = {[u] | u € V*},
s = [vo] (= {wo}) andt = [Umax]| (= {Vmax})-

o SetE = {([u],[w]) | u C* w}. In particular, the intersectiolr” = V' N U defines a
prefixS”. LetS” = {[v] | v = vo\Vv € V"}andl” = W\
e Sete(([u], [w]) = 2w e, we], w<w T((W,w)) S" be the corresponding flow cut. Then cleat{ys, 7)) <
ifueUAwA£vande(([ul], [w])) =0 else. e((8”, 1)) sincec(([u], [w])) = 0if u ¢ U and there may

] ] ] be edgeg[u], [w]) € E withu € V” andw € V' \ V"
Observe that the associated flow network is well-defined, yhich only count in the second case. ThusSffis a prefix
that means for’ € [u] andw’ € [w] we haveu C* w = 4ty we are done. Assume thst is not a prefix ofs. Then

w' ©* ! ande(([u), [w])) = of(lw]. [w). The follow- ' "y 177 defines a prefix of ande((5", 7)) <
ing lemma states that the final marking of prefixes can be c((8™, 7)) for 8" = {[v] | v = vo Vv € V"} and

computed by capacities of flow cuts in the associated flow 7 — 17\ 5 (sincec(([u], [w])) = 0 if w < v and there

network. may be edgefu, [w]) € E with u € V""\ V" which only
Lemma 19. LetS’ = (V/, </, ', l') be a prefix of a node count in the second case). =

v. Letfurtherz be atoken flow function &and(G, ¢, s, 1), Thus inhibitor values can be computed through the max-
G = (W, E), be the flow network associated toand v. imal capacity of a flow cut in the associated flow network.

DenoteS = {[v] | v =wvo Vv € V'} andT = W\ S. Then  This maximal capacity equals the minimal flow through this
ms(z) = c((S,T)). network. The proof for this statement is analogous to the



proof of the better knowmaximal flow equals minimal cut  chronicity and concurrency are not distinguished and exe-
theorem of Ford/Fulkerson [3] in flow networks with upper cutions are represented by enabled LPOs. Nonetheless, the
capacities. As for maximal flows in flow networks with up- generalized notion of the token flow property (definition 13)
per capacities there are polynomial algorithms to computecan be used for such LPOs, where in condition (FIN) classi-
minimal flows in flow networks with lower capacities run- cal prefixes of LPOs and a modified notion of final markings
ning in O(n?) time wheren is the number of nodes of the  corresponding to the a posteriori occurrence rule must be
flow network resp. the given LSO (we give a short explana- considered. Then the equivalence of enabledness and token
tion of the main arguments in the Appendix). flow property follows by construction. For the efficient test

If pis a place for which there is a token flow function of of the token flow property one needs to consider a modified
the given LSO satisfying (IN) and (OUT) then the inhibitor flow network to compute the inhibitor value of nodes.
value w.r.t. this token flow function must be computed for
each node of the LSO. Altogether, the polynomial test of the
token flow property take®(| P|n*) time and looks formally ~ References

as follows:
1: test «— true [1] J. Billington. Protocol specification using p-graphdeah-
2: forall (p € P)do nique based on coloured petri nets. In W. Reisig; G. Rozen-
3. if (V, =,1) does not fulfill token flow property w.r.f. berg [12], pages 293-330.
(P, T, F,W,mg) andp) then [2] S. Donatelli and G. Franceschinis. Modelling and anialys
4: test «— false of distributed software using gspns. In W. Reisig; G. Rozen-
5 else berg [12], pages 438—-476.
6: x, < token flow function ofS satisfying (IN) ang [3] L. Ford and D. Fulkerson. Maximal flow through a network.
(OUT) w.rt.p Canadian Journal of Mathematic8:399-404, 1956.
& forall (v € V) do . [4] A. Goldberg and S. Rao. Beyond the flow decomposition
8: (G, ¢, s,t) < flow network associated to, and barrier. Journal of the ACM45(5):783-797, 1998.
v
- . [5] G. Juhas, R. Lorenz, and J. Desel. Can i execute my sce-
o M « value of a minimal flow Ir(G’ 6 5 t) nario in your net?. In G. Ciardo and P. Darondeau, editors,
10: if (M > I((p,1(v)))) then ICATPN volume 3536 ofLecture Notes in Computer Sci-
11 test < false ence pages 289-308. Springer, 2005.
ig: enznfgrlf [6] A. Kiehn. On the interrelation between synchronized
’ . and non-synchronized behaviour of petri net&lektron-
14:  endif ische Informationsverarbeitung und Kybernetd(1/2):3—
15: end for 18, 1988.
16: return test

. - - [7] H. C. M. Kleijn and M. Koutny. Process semantics of gen-
Algorithm 1: Tests whetheS = (V, <, . [) fulfills the eral inhibitor netsInf. Comput, 190(1):18-69, 2004.

token flow property w.r.t( N N =(P,T,F,W,I). i .
property (N, mo ( ) [8] V. Malhotra, M. Kumar, and S. Maheshwari. AD(]V|?)
algorithm for finding maximum flows in networkiforma-

5 Conclusion tion Processing Letterg(6):277—278, 1978.
] ] ~[9] J. PetersonPetri Net Theory and the Modeling of Systems
We defined executions of PTI-nets w.r.t. the a priori Prentice-Hall, 1981.

semantics as enabled LSOs. This definition of enabled . .
LSOs is a proper generalization of the definition of enabled 101 J. van Leeuwen, edltoHaanbook of Theoretucal_ Computer
. . Science, Volume A: Algorithms and Complexitiglsevier

LPOs and allows the representation of executions of PTI- and MIT Press, 1990.

nets with minimal causal dependencies between transition

occurrences. As the first main result we showed that en- !

abled LSOs can be characterized through the so called to-

ken flow property which we lifted from LPOs to LSOs, thus

establishing a part of the semantical framework of p/t-net- [12] W. Reisig; G. Rozenberg, editoLectures on Petri Nets II:

executions to PTI-nets (Figure 2). As the second mainresult ~ AAPPlications, Advances in Petri Nets, the volumes are based

we developed a polynomial test of the token flow property. ggp:?eemﬁg\ﬁgg%%Iﬁriiriig(;nozzg:u’?eeﬁétgsIi(:] goz?ﬁghl’
These results are also valid for the a posteriori seman- ScienceSpringer, 1998.

tics of PTI-nets. In this case, the test of inhibitor coratis

need not precede the execution of transitions, therefare sy

11] W. Vogler. Modular Construction and Partial Order Seman-
tics of Petri Nets.volume 625 oLecture Notes in Computer
Science Springer, 1992.



Appendix (only for the reviewing procedure) the maximal capacity of flow cuts in such flow networks:
Compute an arbitrary (feasible) flow of the flow network
We finally present briefly the ideas how to provenani- satisfying the lower capacity constraint (a) by a transfarm
mal flow equals maximal ctiteorem in flow networks with  tion into a maximal flow problem ([10]). There are maxi-
lower capacities and how to compute efficiently such mini- mal flow algorithms running it (n?) time and faster ([8])

mal flows. wheren is the number of nodes of the LSO. Then itera-
It is easy to see that the following statements are equiva-tively reduce this flow along (shortest) flow reducing paths.
lent for flow networks with lower capacities: This takes again maximal(n?) time (a proof is analogous

to the case of computing maximal flows in flow networks
with upper capacities along so called flow augmenting paths
(i) There is no flow reducing path in thesidual network (3, 8])). This gives a overall time complexity @(n?).
w.rt. f. See also [4] for an overview on flow theory and efficient
algorithms.

(i) fis aminimal flow.

(i) Thereis a flow cut(S,T") with ¢((S,T)) = |f]-

Here the residual networl, cy, s,t), G = (W, Ey), W.r.t.

f is defined as follows: Fa,v') € E definec,((v,v")) =
f((v,v"))=c((v,v")) and denotd; = {(v,v") € WxW |
((v,v") € EAcp((v,0) > 0)V ((v,v) € E)}. Aflow
reducing path w.rt. a flowf in the residual network is a
simple path from source to sink in the residual network w.r.t

Clearly, if f is a minimal flow then there is no flow re-
ducing path in the residual network w.rft. This is because
along a flow reducing path the flojvcan be reduced as fol-
lows: for edgeqv,v’) € E, if (v,v") belongs to the path
then reduce the flow on this edge byif (v',v) belongs
to the path then augment the flow on this edgel byrhen
by construction the reduced flow still satisfies the capacity
constraint (a) and also constraint (b) since either the flow
ingoing (outgoing) a node is once reduced and once aug-
mented byl (along the path) or ingoing and outgoing flow
of a node are both reduced or both augmented (along
the path). Moreovelf| is reduced byt since this is the case
for the flow ingoing the sink.

If there is no flow reducing path in the
flow network w.r.t. f then we define a flow
cut (S,7) as follows: S = {w € W |
there is a simple path fromto w in the residual network
andT = W\ S. Thenf((u,v)) = ¢((u,v)) for each edge
(u,v) € EN(SxT) (otherwisev € S)andEN(T xS) =0
(otherwiseu € S for (u,v) € EN (T x S)). Itis easy to
seethatf| = > c pr(sxr) f(€) = Xeepnirxs) f(e) (for
each flow cu{(S, T)). This givese((S,T)) = | f].

Finally, if there is a flow cutS, T') with | f| = ¢((S, T)
then f must be minimal sincef| = >_ .. o (s w7 f(€) —
eernrxsy fle) = e((S',T7)) for all flow cuts(S’, 77)
(because((S’,T")) = 0inthe casel N (T’ x S’) £ 0).

In particular,|f| = ¢((S,T)) if and only if (S,T) is a
flow cut with maximal capacity and is a minimal flow in
the flow network.

We end up with a polynomial algorithm for the compu-
tation of minimal flows in flow networks with lower capaci-
ties therewith offering the possibility to efficiently conme



