Aggregating views for Petri net model
construction

Jorg Desel! and Laure Petrucci?

! KU Eichstétt, 85071 Eichstétt, Germany
2 LIPN, CNRS UMR 7030, Université Paris XIII, 93430 Villetaneuse, France

Abstract. When designing a complex system with critical requirements
(e.g. for safety issues), formal models are often used for analysis prior to
costly hardware/software implementation. However, writing the formal
model starting from the textual description is not easy. Approaches to
this problem have been presented in the context of Petri nets in [CPRO7,
CPRO8, Des08]. In this paper, since the views adopted previously are
both different and complementary, we propose to extract different pos-
sible views of the system to be modelled, together with their associated
properties. Then, they are aggregated in order to form a complete model.
Finally, the properties are checked so as to ensure the consistency of the
model w.r.t. the initial requirements.

1 Introduction

When designing a complex system with critical requirements (e.g. for safety is-
sues), formal models are often used for analysis prior to costly hardware/software
implementation. However, writing the formal specification starting from the tex-
tual description is not easy. It is well known that the first phase of modelling is of
particular importance. Only if models that faithfully present the part of reality
(or of intended reality) to be modelled are used in system design, the final system
can be expected to behave correctly according to the requirements. Conversely,
any error in an early stage of modelling will cause very costly redevelopments in
later phases.

Different suggestions for a systematic analysis of requirements have been de-
veloped in the context of process models. Some are based on extracting pre-
and post-conditions of actions from a textual description of the system under
consideration, using them as local vicinity of corresponding transitions of Petri
net models [FKM03, MKEQ7, CPR07, CPR08]. Others extract processes specifi-
cation from the textual description [Des08], indicating when the actions should
take place w.r.t. one another.

In this paper, we show that both approaches are complementary. We also
introduce a dual approach to processes, that are lifelines: instead of describing
the successions of actions, as a process does, they represent a succession of pos-
sible local states as might e.g. be observed by a user of the system. Section 2

shows that different views of the system coexist within its informal description,
that can be interpreted via pre/post-conditions, processes or lifelines. Such views
can be individually translated into a Petri net, as shown in section 3. Moreover,
some properties — such as invariants — are collected, thus expressing additional
details. Applying this approach to all views of the system mentioned in the tex-
tual description leads to a collection of nets which should be aggregated, as in
section 4, so as to obtain a complete Petri net model. The aggregation must be
performed according to specific rules in order to preserve as much as possible
consistency between the Petri net behaviour and the initial individual require-
ments. Finally (section 5), the model behaviour must be consistent with the
expected (known) properties collected in the previous phases. This consistency
check can be done by standard Petri net techniques such as model checking.
However, before that, the properties have to be formalised, i.e. translated in
some logic. Hence, the validity check of requirements concerns the three differ-
ent views (pre/post, processes and lifelines), the expected properties as well as
the formalisation of the views and of the properties. Thus, the verification phase
does not support correctness of the model but rather supports validity [Des02].
In the positive case, we can hope that the model actually models the system un-
der consideration. In an additional step, desired properties can be formulated,
formalised and analysed. If we can assume that this formalisation is valid, we
might verify the valid system model with respect to this additional specification.

2 Analysing requirements descriptions

When starting from an informal description, a system may be described in many
different ways. [CPRO7,CPROS] rely on the identification of constituent features
of the system, which can be of two kinds: state observers and events. They cor-
respond to noun phrases and verbal phrases respectively. Once these constituent
features are identified, properties are also extracted through the text analysis.
We consider first relations between state observers and events. Events can have
pre-conditions and/or post-conditions. Such an approach gives a local view of the
actions happening in the system: we know that for an event to occur, some pre-
condition should be satisfied, and that after it has occurred, some post-condition
holds. However, this view may be incomplete, i.e. partial.

Indeed, let us consider a simple example of a system to be designed, where
several people are involved in a factory plant. The factory processes and ships
glass panes that must be cut to some specific size. Each of the persons handling
the glass panes after it has been cut has a different and partial vision, e.g.:

— the worker moving the glass to the warehouse knows that for action stock
to happen, a glass pane is required from the end of the conveyer belt,
and transports it to the warehouse depot. He also knows that the action cut
takes a glass pane on the belt and will move it afterwards to the end of
the belt ;

— the stock manager knows that for the same action stock, when the glass
pane arrives at the end of the conveyer belt he creates an entry in the

database indicating that the pane is in the stock. But the stock manager
does not know where the glass pane is stocked in the depot since (s)he does
not handle it. The stock manager also informs us that “when shipping
items, they are removed from the database and marked as sold”.

The examples above (and the method from [CPRO7, CPRO8]) consider the
pre- and post-conditions of events. But a similar analysis can be applied to state
observers as well. For example, the description could mention that “a processed
glass pane is produced by a cutting action and then moved by action stock”.
In this case the description concerns the vicinity — i.e. pre- and post-conditions
— of a resource (or state observer) instead of the vicinity of an action (or event).

Other parts of the description may indicate how some successions of actions
are meant to occur, thus leading to a process view of the (partial) order of events,
as advocated in [Des08]. In such a case, the steps or pre/post-conditions between
events are unknown and cannot be extracted from the informal requirements
description. This view of processes can also include multiple branches, indicating
that at some stage, several actions may take place simultaneously.

In our glass factory example, a supervisor describes the work in the factory:
“Glass is loaded on a conveyer belt, moved to the workstation and then cut ;
one part is dumped and another stocked”.

In a workflow, a process will start with some action and end later with a final
termination action. When modelling other complex systems, such as protocols,
loops become inherent to the normal functioning.

In our example, the glass is cut into a pane to be sold and another part. In
the previous description, this other part is dumped. But a possibility is also to
reuse it, and cut it (for example to produce smaller glass panes).

This alternative scheme will be used in section 3.2 to illustrate loops in pro-
cesses, and we shall see that handling loops requires the use of rather elaborate
techniques.

Similarly, the flow of documents or resources (instead of actions) can be
detailed. In that case, we talk about [lifelines, which can be seen as a dual to
the process view. They can express e.g. the circulation of a document within an
administration. There, alternatives are allowed, indicating multiple possibilities.
As we shall see in section 3.3, even though loops may occur in lifelines, they are
easier to handle than those of processes.

Let us now add to our glass factory the description of the part delivery: “The
glass pane in the depot is loaded onto a fenwick which brings it either to a
truck which will directly deliver the pane to a shop, or it will be brought to be
packaged in a crate which will be put on a train (e.g. for delivery in a foreign
country)”.

The textual description also often contains static properties. As indicated
in [CPRO7,CPRO0S], these properties should be collected during the textual de-
scription analysis in order to be checked at a later stage (see section 5).

In the glass pane factory, the stock manager states that there should be
exactly one database entry per item in the stock. This is an invariant property,
where the number of entries in the database is at all times equal to the number
of items in the stock.

Once the textual description of the system has been analysed, we have a
collection of pre/post-conditions, processes, lifelines and properties. In the next
section, we show how the first three can be pictured for facilitating their under-
standing and how to model them individually with a Petri net.

3 Requirements specification schemes

In this section, we shall study the three kinds of views identified in the previous
section. For each of these, we provide a graphical representation inspired from
Petri nets — actions represented by boxes, state observers by circles — and
then show how they can be transformed into a Petri net according to simple
specification schemes.

3.1 Pre/post view

The pre/post view contains both actions and state observers. Therefore, it maps
naturally to a Petri net model. The central element of the view is mapped to a
transition if it is an action, to a place otherwise, and its pre-conditions to input
places, its post-conditions to output places (to transitions respectively). Places
and transitions thus derived are labelled with the associated piece of information
(name of the action, ...). With this view, the graphical representation and the
Petri net are identical.

Let us model the example of the two persons in section 2. We obtain the
Petri nets in figure 1.

on_belt cut belt_end belt_end . in_database
belt-end 4 depot in_database shipping ~ sold
(a) View of the worker (b) View of the stock manager

Fig. 1. Example of the pre/post views

3.2 Process view

The process view is exclusively based on actions. Therefore, it can be schematised
using bozxes only. These boxes are linked by arcs indicating the partial order of
actions. When several arcs exit the same node, all subsequent actions occur in
parallel.

The process view of the glass factory example is pictured in figure 2.

dump

[]

load move cut

[0

[]

stock

Fig. 2. Example of the process view

In the process view, information on the actions is available, while the interme-
diate states between actions are unknown. Thus, when translating the graphical
process description into a Petri net, the actions obviously map to transitions
labelled by their name, while the intermediate states are mapped to places with
an as yet unknown meaning. Hence, we introduce, on each arc between two ac-
tions, a place labelled with a ?. These places, called ?-places in the sequel, will
be further processed during the aggregation phase described in section 4.

Figure 3 shows the Petri net derived from the process description in figure 2.

dum
O—0

load : move . cut

COr—0O

2 stock

Fig. 3. The Petri net derived from the process view

Note that when several arcs exit an action a in the process description, the
Petri net has one 7-place per original arc. Thus, after firing a transition a all of its
output ?-places are marked, enabling all subsequent transitions. This behaviour
is consistent with the possibility of concurrent actions explained in section 2.

Some series of actions within a process might be repetitive, inducing loops in
the process view. This is the case in our example if we consider that a part cut
can be either dumped or reused, as pictured in figure 4. Several problems arise
in such a case:

— an alternative between different actions is implicitly introduced. This is not
consistent with the semantics of the process view ;

— loops may have side effects if not dealt with very carefully ;

— the values of state observers when the loop is restarted are not clear. This
is particularly the case when the start action has multiple pre-conditions.

dump

load move cut

[0]

[]

stock

Fig. 4. Example of a process loop view

In order to take loops into account, we propose, inspired by [BDMO0S], to
apply a synthesis procedure in order to automatically obtain a Petri net mod-
elling the process. Many works deal with Petri nets synthesis [Dar07, BDLMO08Db,
BDLMO08a], and present algorithms. Applied to the process description, they
automatically generate a Petri net model (or else the synthesis algorithm fails).
This resulting Petri net is guaranteed to have precisely the specified behaviour,
provided any Petri net with this behaviour exists. Otherwise, the generated Petri
net has the specified behaviour and minimal additional behaviour. Synthesis ap-
proaches developed in the context of process mining [BDLMO07] assume that only
part of the behaviour was specified. They have the additional goal to generate a
comparably small (and easy to understand) Petri net. Synthesis is not the focus
of this paper, and will not be detailed any further.

3.3 Lifeline view

The lifeline view is the dual of the process view. It deals exclusively with states
which are then pictured using circles. When several alternatives are possible, the

graphical representation contains as many outgoing arcs as subsequent possibil-
ities. The semantics is then a choice among the different alternatives.
Figure 5 depicts the lifeline view in the example.

truck shop

O—0

depot fenwick

O—
O—0O

crate train

Fig. 5. Example of the lifeline view

Dually to the process view, in the lifeline view information on the states is
available, while the intermediate actions are unknown. Thus, when translating
the graphical lifeline description into a Petri net, the states obviously map to
places labelled by their name, while the intermediate actions are mapped to
transitions with an as yet unknown meaning. Hence, we introduce, on each arc
between two states, a transition labelled with a ?, called ?-transition hereafter.

Figure 6 shows the Petri net derived from the lifeline description in figure 5.

Note that when several arcs exit a state S in the lifeline description, the Petri
net has one 7-transition per original arc. Thus, once marked, state S can be used
by one of its output ?-transitions indicating a choice between these actions as
explained in section 2.

2 truck 2 shop

—O—0—0)

depot

O—0—

—O—0—0

crate : train

Fig. 6. The Petri net derived from the lifeline view

Dealing with loops in lifeline views is not an issue as it is the case with process
views. In lifelines, the loop does not violate the arc semantics since alternatives
are allowed. Moreover, the starting state of the loop is known and consistent
from one iteration to the other.

3.4 Required properties

The textual description allows for identifying required properties. In [CPRO7],
these properties are categorised into pre/post-conditions and additional proper-
ties. In our approach here, pre/post-conditions are already taken into account
in the Petri net specification. Most of the other properties can be expressed
in terms of either a temporal logic, e.g. LTL or CTL [BBF*01], or Petri nets
inwvariants. Transforming the different views into Petri net models has lead to
identifying a collection of named places and transitions on which the properties
can be expressed.

The example property, indicating that the number of entries in the database
is at all times equal to the number of items in the stock, is then expressed by
the following P-invariant:

VM € [My) : M(in_database) = M (depot)

where M is a reachable state of the global system, and M, its initial state.

4 Aggregating specification schemes

After having analysed the textual description, derived the different views and
translated them into individual Petri nets, we have to aggregate these into a sin-
gle Petri net modelling the complete system. This net will further be analysed
(see section 5) to check its properties. However, we shall guarantee that by con-
struction the net will be as consistent with the initial requirements specification
as possible.

The aggregation of the individual nets should follow the following rules:

— all places (respectively transitions) named with the same label (except ?)
are fused into a single place (respectively transition) with the same name.
This is consistent since the name of a net element is derived from the textual
description and carries a single informal meaning ;

— some of the 7-places and 7-transitions correspond in fact to some already
identified place or transition (which might be labelled by 7). In this case, the
place or transition can be deleted because this operation does not change
the overall behaviour of the net. A simple operation guaranteeing the same
behaviour consists in deleting a ?-place (or ?-transition) x when there exists
another place (respectively transition) y with at least the same input and at
least the same output:

e for a 7-place x,if Jy € P:°x C *yAz® C y°®, z can be deleted ;

e for a ?-transition x,if Jy € T :°x C *yAzx® C y®, x can be deleted ;
where P (T respectively) denotes the set of places (transitions) at this stage
of the procedure.

The aggregation of the individual Petri nets corresponding to the pre/post,
process and lifeline views in the glass factory example lead to the Petri net model
of figure 7. The places and transitions fused together to constitute a single one
are:

— cut in one pre/post view of the worker and the process view ;

— belt_end in both pre/post views of the worker and one of the stock manager
pre/post views ;

— stock in a pre/post view of the worker, a pre/post view of the stock manager
and the process view ;

— depot in a pre/post view of the worker and the lifeline view.

on_belt ? dump

load

5—0O—0—0O

shop 2 truck sold

O—0—0O—10 O
O—0—0O—0

train crate

O—O

fenwick

Fig. 7. The aggregated Petri net

We also note the dashed 7-place has the same input and the same output as
place belt_end. Therefore, the dashed part of the net in figure 7 can be deleted,
without any impact on the Petri net behaviour.

In the next section, the net properties will be checked so as to validate the
Petri net model w.r.t. the requirements.

5 Checking consistency

There exists a wide range of techniques and tools to check Petri nets dynamic
and static properties. The main approach consists in generating the system state
space and analysing it afterwards. However, the state space explosion problem
occurs with large systems and many tools propose efficient methods to cope with
this. Checking that an invariant holds can be done on the state space by checking
that the invariant holds for all generated states or by simple flow verification.

All these techniques are implemented in tools, which handle Petri nets [VIP,
DJLNO03] or high-level nets [LM07, CPN], temporal logics [DLP04, KP08]|, user-
defined properties [CPN], synthesis [BDLMO8c], ...

The Petri nets designed should be correct by construction w.r.t. the pre/post,
process and lifeline views. However, when using the synthesis procedure, a net
is automatically obtained, the behaviour of which should be checked against the
requirements. Moreover, even though the individual nets behave as expected,
the aggregation step, and thus their composition together, may induce other
behaviour. For example, some states may never be reachable and parts of he
net may become dead. This does of course not respect the requirements of the
overall system. Therefore, the behaviour and expected properties of the system
must be checked once the Petri net is built.

Let us now analyse the glass factory example. Initially, no glass pane is
loaded, none is in the warehouse, and nothing has been sold or shipped. Hence,
the initial marking is empty. However, we immediately see that transition load
can be fired infinitely often, which should obviously not be possible: only a single
glass pane can be on the conveyer belt at any time. Note that this was not part of
the initial textual description. Moreover, transition cut can never be fired since
place on_belt is never marked. In a real case study, this would lead to discussing
with the domain experts the validity of new assumptions. The proposal could
also be that there are two glass panes, one just loaded and one ready to be
cut. So, let us consider additional pre/post views where the conveyer belt
is free before being loaded and after the glass has been cut, and there is a
glass pane on the belt after it has been loaded and until it is cut. This leads
to a modified Petri net (following the same aggregation rules as in section 4).
Initially, the conveyer belt is free, thus the initial marking contains one token in
place free_belt. A new property states that either there is a glass pane on the
conveyer belt or the conveyer belt is free.

Another problem occurs in the system. Indeed, the property indicated by
the stock manager, stating that there is exactly one entry in the database for
each glass pane in the depot does not hold since the shipping transition and
the ?-transition exiting the depot place can occur independently. This should
not be the case, and the database entry should be removed at the same time
as the glass pane exits the depot, meaning that the two transitions should be
synchronised.

The newly added parts are shown with thick lines in the modified Petri net
of figure 8.

on_belt ? dump

load move cut

-0
]
O

belt_end
free_belt
shop ? truck ? sold shipping in-database
: j O \O: /’:‘ \?D /‘m’:c‘k
O—D—O———C
train : crate : fenwick depot

Fig. 8. The modified Petri net

The new property is easily captured by the following invariant, which holds:
VM € [Mp) : M(on_belt)+ M(free belt) =1
The number of items in the database and depot are now the same:

VM € [My) : M(in_database) = M (depot)

6 Conclusion and future work

Designing complex systems is a difficult task that can be eased using a struc-
tured approach. The design of a formal model gives a certain confidence in the
correct behaviour of the system under consideration. In this paper, we have
shown that the textual description of the system, possibly described by different
domain experts, can be considered using several aspects, including partial views
and properties. The partial views which can be obtained can focus on pre- and
post-conditions, but also on partial orders of events that constitute processes,
or on lifelines which represent successions of possible states. We have given a
graphical representation for these three types of views and shown how they map

to basic Petri net models. This collection of individual nets can be aggregated
so as to form a single Petri net modelling the complete system. The textual re-
quirements description also expresses expected properties that the system should
satisfy. These properties are also modelled so that we can check whether they
hold for the Petri net. In this case, one can have a greater confidence in the cor-
rect behaviour of the system — provided, of course, that the design (pre/post,
processes and lifelines views as well as formalisation of properties) is consistent
with the informal requirements.

As shown in section 3, it is necessary in some cases to apply a synthesis
algorithm in order to obtain a Petri net in which the intended behaviour can
occur (but maybe more). In the future, we shall adapt the synthesis techniques
to our multiple views approach.

The aggregation rules to glue and reduce the individual nets together are
for the moment very simple. However, we can identify some cases for which
more elaborate rules would apply. They shall be formalised, guaranteeing the
behaviour preservation.

The design is generally structured both horizontally and vertically. The hor-
izontal structuring, addressed in [CPRO08] consists in constructing the model in
a modular fashion: the modules are Petri nets communicating with each other
through places and/or transitions. They are extracted from the textual descrip-
tion of the system. Vertical structuring concerns refinement issues. For a large
system, the first approach is often rather coarse and events are refined (de-
tailed further) at a later stage. Such a vertical structuring is tackled in [Des08].
Combining horizontal and vertical structuring raises several issues such as syn-
chronisation of refined transitions, termination, ... The approach in this paper
shall be further developed to integrate these structuring concepts.

To validate this work, it will be necessary to process larger case studies. We
plan to apply it first to academic examples of greater size, and then an indus-
trial protocol handling distributed databases for mass storage. A tool support
automating the Petri net generation and aggregation procedures will then be
most helpful.

References

[BBFT01] B. Bérard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit, L. Petrucci,
and Ph. Schnoebelen. Systems and Software Verification. Model-Checking
Techniques and Tools. Springer, 2001.

[BDLMO07] R. Bergenthum, J. Desel, R. Lorenz, and S. Mauser. Process mining based
on regions of languages. In Proc. Int. Conf. on Business Process Man-
agement, Brisbane, Australia, volume 4714 of Lecture Notes in Computer
Science, pages 375-383. Springer, September 2007.

[BDLMO08a] R. Bergenthum, J. Desel, R. Lorenz, and S. Mauser. Synthesis of Petri
nets from finite partial languages. Fundamenta Informaticae, 2008. To
appear.

[BDLMO08b] R. Bergenthum, J. Desel, R. Lorenz, and S. Mauser. Synthesis of Petri

[BDLMO8c]

[BDMOS]

[CPN]

[CPRO7]

[CPROS]

[Dar07]

[Des02]

[Des08]

[DJLNO3]

[DLP04]

[FKMO03]

[KPOS]

[LMO7]

nets from infinite partial languages. In Proc. 8th Int. Conf. on Application
of Concurrency to System Design (ACSD’08), Xi’an, China. IEEE Comp.
Soc. Press, June 2008. To appear.

R. Bergenthum, J. Desel, R. Lorenz, and S. Mauser. Synthesis of Petri nets
from scenarios with VipTool. In Proc. 29th Int. Conf. on Application and
Theory of Petri Nets, Xi’an, China, Lecture Notes in Computer Science.
Springer, June 2008. To appear.

R. Bergenthum, J. Desel, and S. Mauser. Synthesis of Petri nets for busi-
ness process design. In Proc. Workshop Verhaltensmodellierung: Best Prac-
tices und neue Erkenntnisse, Modellierung 2008, Berlin, 2008. To appear.
cpntools. http://wiki.daimi.au.dk/cpntools/cpntools.wiki.

C. Choppy, L. Petrucci, and G. Reggio. Designing coloured Petri net
models: a method. In Proc. Workshop on Practical Use of Coloured Petri
Nets, Aarhus, Denmark, October 2007.

C. Choppy, L. Petrucci, and G. Reggio. A modelling approach with
coloured Petri nets. In Proc. 13th Int. Conf. on Reliable Software Tech-
nologies — Ada-FEurope, Venice, Italy, Lecture Notes in Computer Science.
Springer, June 2008. To appear.

Ph. Darondeau. Synthesis and control of asynchronous and distributed
systems. In Proc. 7th Int. Conf. on Application of Concurrency to System
Design (ACSD’07), Bratislava, Slovak Republic, pages 13-22. IEEE Comp.
Soc. Press, July 2007.

J. Desel. Model validation — a theoretical issue? In Proc. 23rd Int. Conf.
on Application and Theory of Petri Nets, Adelaide, Australia, volume 2360
of Lecture Notes in Computer Science, pages 1-23. Springer, June 2002.
J. Desel. From human knowledge to process models. In Proc. of UNISCOM
2008, Klagenfurt, Austria, LNBIP. Springer, April 2008. To appear.

J. Desel, G. Juhds, R. Lorenz, and C. Neumair. Modelling and validation
with VipTool. In Proc. Int. Conf. on Business Process Management, vol-
ume 2678 of Lecture Notes in Computer Science, pages 380-389. Springer,
June 2003.

A. Duret-Lutz and D. Poitrenaud. SPOT: an extensible model checking li-
brary using transition-based generalized Biichi automata. In Proceedings of
the 12th IEEE/ACM International Symposium on Modeling, Analysis, and
Simulation of Computer and Telecommunication Systems (MASCOTS04),
pages 76-83, Volendam, The Netherlands, October 2004. IEEE Computer
Society Press.

G. Fliedl, C. Kop, and H.C. Mayr. From scenarios to KCPM dynamic
schemas — aspects of automatic mapping. In Natural Language Processing
and Information Systems, 8th International Conference on Applications of
Natural Language to Information Systems, volume 29 of LNIP, pages 91—
105. Gesellschaft fiir Informatik, 2003.

K. Klai and D. Poitrenaud. MC-SOG: An LTL model checker based on
symbolic observation graphs. In Proc. 29th Int. Conf. on Application and
Theory of Petri Nets, Xi’an, China, Lecture Notes in Computer Science.
Springer, June 2008. To appear.

LIP6-MoVe. The CPN-AMI Home page. http://wuw.lip6.fr/cpn-ami,
2007.

[MKEO7] H.C. Mayr, C. Kop, and D. Esberger. Business process modeling and
requirements modeling. In First International Conference on the Digital
Society (ICDS’07). Los Alamitos, CA, USA, pages 8-11, 2007.

[VIP] Viptool. http://wuw.ku-eichstaett.de/Fakultaeten/MGF/Informatik/
Projekte/Viptool.de/.

