
Partial Order Semantics of Types of Nets

Robert Lorenz1, Gabriel Juhás2, and Sebastian Mauser3

1 Department of Computer Science, University of Augsburg, Germany
robert.lorenz@informatik.uni-augsburg.de

2 Faculty of Electrical Engineering and Information Technology
Slovak University of Technology, Bratislava, Slovakia

gabriel.juhas@stuba.sk
3 Department of Applied Computer Science

Catholic University of Eichstätt-Ingolstadt, Germany
sebastian.mauser@ku-eichstaett.de

Abstract. In this paper we define partial order semantics of types of nets. Types
of nets are a parametric definition of Petri nets originally developed for a general
presentation of the synthesis of Petri nets from (step) transition systems. Partial
order semantics of a concrete net (of a certain type) usually are given by the set of
labelled partial orders (LPOs) enabled w.r.t. the net. For classical place/transition
nets there are several equivalent characterizations of enabled LPOs. We discuss in
which way the general notion of types of nets has to be restricted such that these
characterizations can also be formulated for nets of such type. In particular we
consider under which requirements enabled LPOs can be defined through token
flows, which have been proven to be useful for efficient synthesis and verification
of Petri nets. The presented concepts form the basis for a general presentation of
the synthesis of Petri nets from sets of LPOs.

1 Introduction

The so-called synthesis problem of Petri nets consists of deciding whether there exists
some unlabelled net which exhibits a given behaviour and in the positive case construct-
ing such net. The behavioural description can be given by a (step) transition system [4]
or by a language, i.e. a set, of (step) occurrence sequences [4] or partially ordered ex-
ecutions [13, 5]. The synthesis problem has been solved in the literature for various
classes of nets, ranging from elementary nets [9] to place/transition nets [4] (p/t-nets)
and inhibitor nets [14, 13], w.r.t. various kinds of behavioural descriptions. The common
principle for the synthesis is the idea of regions of behavioural descriptions, represent-
ing places of nets, which allow to reproduce the behaviour given by the specification.
There are industrial applications of Petri net synthesis in hardware system design, con-
trol of manufacturing systems and workflow design (see e.g. [13] for references).

In [2] so called types of nets were introduced to present the synthesis of Petri nets
from transition systems parametric w.r.t. the Petri net class. Types of nets are a paramet-
ric definition of Petri nets determining a net class by a transition system. This transition
system represents all possible states of places of a net of the considered net class and
all possible modifications of such states by transitions of the net. It is shown in [2] that,
given a type of nets, regions of a transition system may be identified with the morphisms

from the transition system to the transition system given by the considered type. All the
earlier known synthesis results for transition systems may be retrieved as instances of
the general result established in [2] by translating the considered net class into a type
of nets. The types of nets definition was extended in [3] to include a step firing rule. In
this richer context the concept of regions as morphisms is generalized to step transition
systems leading to a comprehensive presentation of the synthesis of Petri nets from step
transition systems. This presentation can also be adapted to cover the synthesis from
languages of (step) occurrence sequences [4]. The types of nets definition was further
extended in [1] to cover some specific finer behavioural aspects.

Partially ordered executions truly representing the concurrency of transition occur-
rences are often considered the most appropriate representation of behaviour of Petri
net models of concurrent systems. In the case of p/t-nets, synthesis [13, 5] and verifica-
tion [10] based on partially ordered executions given by labelled partial orders (LPOs)
proved useful and nicely applicable for system design (see e.g. research in the context
of VipTool at viptool.ku-eichstaett.de). Therefore, we are interested in a generalization
of these methods to types of nets, in particular including the development of a general
presentation of the synthesis of Petri nets from languages of LPOs. For this it is neces-
sary to first define partially ordered executions of nets parametric in their type. The aim
of this paper is to develop and examine such partial order semantics of types of nets.
The paper provides a comprehensive grounding in the theory of this topic, but beyond
no effective algorithms are discussed.

For classical p/t-nets there are several equivalent characterizations of partially or-
dered executions given by LPOs [12, 10, 5], namely several variants of the classical
definition of so called enabled LPOs, LPOs fulfilling the so called token flow property
and LPOs sequentializing LPOs underlying a process net. The classical definitions of
enabled LPOs either consider each step sequentialization, each co-set or each cut of the
LPO. In this paper we generalize the various variants of the definition of enabled LPOs
as well as the token flow property of LPOs to the setting of types of nets. In particular,
we discuss in which way the general notion of types of nets has to be restricted such that
these characterizations of partially ordered executions can be formulated. It turns out
that the restrictions introduced here do not rule out any important extension of classical
p/t-nets whose non-sequential behaviour can be described by LPOs.

We are especially interested in the token flow property [10], because in the case of
p/t-nets this property proved useful for efficient synthesis and verification. The token
flow property nicely represents the actual dependencies of transition occurrences of a
Petri net by the flow of tokens between the transition occurrences. We do not provide
a characterization of partially ordered runs based on process nets of types of nets in
this paper. But the concepts of process nets and token flows are roughly speaking only
dialects of the same principle. As known from p/t-nets [10], token flows just abstract
from the individuality of conditions of a process net by encoding their relations in a
token flow function. Following these ideas, the considerations about token flows in this
paper in a natural way also lead to a definition of process nets of types of nets.

Although the main motivation for the considerations in this paper is to prepare the
ground for a general presentation of the synthesis of Petri nets from LPOs parameter-
ized by net types, the presented theory about enabled LPOs for types of nets is of value

on its own. It gives precise insights into the limitations of expressing non-sequential
behaviour of concurrent system models through LPOs by identifying appropriate con-
ditions. In particular, the existence of efficient verification and synthesis methods w.r.t.
partial order semantics of Petri nets (which are based on token flows in the case of
p/t-nets) is clarified on an abstract level. Such methods can be developed for net types
similar to those of p/t-nets; that means this paper can be seen as the main step towards
the mentioned general presentation of synthesis of Petri nets. In particular, the different
characterizations of partially ordered executions of types of nets can straightforwardly
be used to define regions for languages of LPOs, where each characterization yields an-
other region definition. Given such a region definition, synthesis algorithms may be de-
veloped for some concrete type of net following standard computation principles known
from the theory of regions for p/t-nets [13].

Finally, it remains to mention that there are also alternative parametric Petri net
definitions such as algebraic (M, I)-nets [7], Petri nets over a group [8] or token free
nets [15]. Since we are in particular interested in synthesis, we here consider types of
nets. The local flavour of the type of nets definition makes it an appropriate uniform
definition as a basis for region theories as shown in previous works [1–4]. In [4] it is
discussed that the nets in [8] are more problematic for a general presentation of syn-
thesis. Algebraic definitions [7] do not have a local focus, and are thus complicated in
the setting of region-based approaches. Token-free nets [15] are very similar to types of
nets, but types of nets are better tuned for synthesis.

The remainder of the paper is organized as follows: In Section 2 we introduce types
of nets. In Section 3 we discuss the notion of enabled LPOs for types of nets and in
Section 4 we develop the token flow property for types of nets.

Because of lack of space we omitted all proofs and illustrating examples from the
main text of the paper and included them in a technical report [11] on our homepage.

2 Types of Nets

In this section we introduce the basic definitions of types of nets [2, 3]. We start with
some mathematical notions.

By N we denote the nonnegative integers and by ω an infinite value, i.e. n < ω for
n ∈ N, and Nω = N ∪ {ω}. For a set A, by idA we denote the identity function on A,
by 0A the zero function on A and by 1X the characteristic function of a subset X ⊆ A.

A triple (A, +, 0), where A is a set, + : A×A → A is a binary operation on A and
0 ∈ A, is called an abelian monoid if the following holds: ∀a, b, c ∈ A : (a + b) + c =
a + (b + c) (associativity), ∀a ∈ A : a + 0 = 0 + a = a (identity element) and
∀a, b ∈ A : a + b = b + a (commutativity). For n ∈ N and a1 . . . an, a ∈ A,

∑n
i=1 ai

denotes the element a1 + . . . + an ∈ A and n · a denotes the element
∑n

i=1 a ∈ A. A
morphism between two monoids (A, +, 0) and (A′, +′, 0′) is a function f : A → A′

such that f(a + b) = f(a) +′ f(b) for all a, b ∈ A and f(0) = 0′.
The free abelian monoid over the set of generators A is given by the abelian monoid

(NA, +, 0A) of the set of multi-sets over A. A multi-set over A is a function m : A →
N ∈ NA. Addition + on multi-sets is defined as usual by (m+m′)(a) = m(a)+m′(a).
We write a ∈ m if m(a) > 0. We do not distinguish between a subset X ⊆ A and the

multi-set 1X . The multi-set 1{a} for a ∈ A is often abbreviated by a. Each multi-set
m ∈ NA can be written as

∑
a∈A m(a)a. An order relation 6 on NA is defined by

m 6 m′ ⇐⇒ ∀a ∈ A : m(a) 6 m′(a). We denote m < m′ if m 6 m′ and m 6= m′.
If m 6 m′ then m′−m is the uniquely defined multi-set such that m+(m′−m) = m′

(given by (m′ −m)(a) = m′(a)−m(a) for a ∈ A).
Types of nets [2, 3] allow a parametric definition of Petri nets (in [2] only sequential

semantics and in [3] step semantics is considered) covering most of the relevant Petri
net classes, including e.g. elementary nets, p/t-nets and p/t-nets with weighted inhibitor
(or read) arcs (called pti-nets) equipped with the a-priori as well as the a-posteriori
semantics (see [11], Example 1). Each type determines a Petri net class.

We consider Petri nets as usual consisting of a set of places P and a set of transitions
T . The states (markings) of the net and the occurrence rule for (steps of) transitions is
defined parametric w.r.t. the considered type of nets. A type of nets τ is a deterministic
(step) transition system over a set of local events LE with set of states LS and transition
relation τ [3]. The marking of a place is given by a local state from LS. The occurrence
of transitions is determined by local events from LE assigned to every pair (p, t) ∈
P × T by a weight function W . Roughly speaking, a step of transitions is enabled to
occur in a marking, if for each place the corresponding step of local events is enabled
w.r.t. τ in the local state given by the marking.

Definition 1 (Type of nets). A type of nets is a triple τ = (LS, LE, τ), where LS
is a set of local states, LE is an abelian monoid (LE, +, 0) of local events and τ ⊆
LS × LE × LS defines the partial action of local events on local states. The partial
action is required to be deterministic, i.e. (s, e, s′), (s, e, s′′) ∈ τ =⇒ s′ = s′′.

As usual (s, e, s′) ∈ τ is abbreviated by s
e−→ s′. A local event e is enabled in a

local state s, if ∃s′ : s
e−→ s′, denoted by s

e−→. The identity event 0 is enabled in each
local state s with s

0−→ s.

Definition 2 (Net of type τ). A (Petri) net of type τ is a triple N = (P, T,W), where
P is a finite set of places, T is a finite set of transitions and W : P × T → LE is a
weight function. A marking of N is a mapping m : P → LS. A marked net of type τ is
a structure (P, T, W,m0), where (P, T, W) is a net of type τ and m0 : P → LS is an
initial marking.

Definition 3 (Occurrence rule). Let N = (P, T, W) be a net of type τ = (LS,LE, τ).
A multi-set of transitions x ∈ NT , called a step of transitions, is enabled (to occur) in a
marking m of N if for each place p:

∃s′ ∈ LS : (m(p),
∑

t∈T

x(t) ·W (p, t), s′) ∈ τ.

In this case, its occurrence leads to the marking m′ uniquely defined by m′(p) = s′. We
write m

x−→ m′ to denote that x is enabled in m and that its occurrence leads to m′.

A finite sequence of steps σ = x1 . . . xn, n ∈ N, is called a step (occurrence)
sequence enabled in a marking m and leading to the follower marking mn, denoted
by m

σ−→ mn, if there exists a sequence of markings m1, . . . ,mn such that m
x1−→

m1
x2−→ . . .

xn−→ mn. The marking mn is said to be reachable from the marking m.

3 Enabled LPOs in Types of Nets

In this section, for the first time partial order semantics of types of nets is introduced.
The partial order semantics of a net of some type is given by the set of labelled partial
orders (LPOs) enabled in this net. For p/t-nets, there are several different characteriza-
tions of enabled LPOs. It turns out that for each characterization we have to restrict the
very general definition of types of nets adequately in order to adapt the characteriza-
tion to the introduced parametric net definition. The considerations give new detailed
insights into the notion of LPOs enabled w.r.t. Petri nets.

We first recall basic notions of partial orders. A partial order is a pair (V, <), where
V is a finite set of nodes and <⊆ V × V is an irreflexive and transitive binary relation
over V called the set of arcs. A node v ∈ V such that ∀v′ ∈ V : v′ 6< v (v′ 6> v) is
called minimal (maximal). Two nodes v, v′ ∈ V , are called independent if v 6< v′ and
v′ 6< v. By co< ⊆ V × V we denote the set of all pairs of independent nodes of V . A
co-set is a subset C ⊆ V fulfilling ∀v, v′ ∈ C : v co<v′. A cut is a maximal co-set. For
a co-set C of a partial order (V,<) and a node v ∈ V \ C we write v < C (C < v), if
v < v′ (v′ < v) for some v′ ∈ C, and v co<C, if v co<v′ for all v′ ∈ C. If co< = idV

then (V, <) is called total. If co< is transitive then (V,<) is called to be in step form.
Given a set V ′ ⊆ V , a partial order (V ′, <′) is called a prefix of (V, <) if (v′ ∈

V ′ ∧ v < v′) =⇒ (v ∈ V ′) and <′=< |V ′×V ′ . In this case the prefix (V ′, <′) is said
to be defined by V ′. Given a co-set C of (V, <), a prefix of C is a prefix (V ′, <′) of
(V, <) fulfilling {v ∈ V | v < C} ⊆ V ′ and C ∩ V ′ = ∅. A cut has only one prefix.
Given two partial orders po 1 = (V, <1) and po 2 = (V, <2), we say that po 2 is a
sequentialization of po 1 if <1⊆<2. If po 2 is total it is called a linearization and if
po 2 is in step form it is called a step sequentialization.

Definition 4 (Labelled partial order). A labelled partial order (LPO) is a triple lpo =
(V, <, l), where (V, <) is a partial order, and l : V → T is a labelling function with set
of labels T .

We use the above notations defined for partial orders also for LPOs. We consider
LPOs only up to isomorphism. In the case that T is a set of transitions, nodes in V model
transition occurrences, called events. The arcs of lpo model a dependency relationship
between events and independency of events expresses concurrency. For a set of events
V ′ ⊆ V , we define the step of transitions |V ′|l ⊆ NT by |V ′|l(t) = |{v ∈ V ′ |
l(v) = t}|. If lpo is in step form, i.e. V =

⋃n
i=1 Vi and <=

⋃
i<j Vi × Vj , we call the

step sequence σlpo = |V1|l . . . |Vn|l associated to lpo. Given a step sequentialization
(linearization) lpo′ of lpo, we call σlpo′ a step sequence (linear sequence) of lpo.

An LPO over a set of labels T can be enabled or not enabled in a marked net
N = (P, T,W,m0) of type τ . An enabled LPO models valid behaviour of the net.
That means, an LPO is enabled in a net, if the events of the LPO can occur in the net
respecting the concurrency and dependency relations of the LPO. In particular, it must
be possible that concurrent events can occur in any order as well as in one step, while
ordered events have to occur in the respective order. Thus formally, enabledness of an
LPO means that every step sequence of the LPO is enabled in the given net (observe
that every sequentialization and prefix of an enabled LPO is also enabled).

Definition 5 (Enabledness). Let N = (P, T, W,m0) be a marked net of type τ =
(LS,LE, τ). An LPO lpo = (V, <, l) with l : V → T is called enabled (to occur) in
N if for every step sequentialization lpo′ of lpo, the associated step sequence σlpo′ is

enabled to occur in N . The marking m′ given by m0

σlpo′−→ m′ is a final marking of lpo.

Note that different step sequences of an enabled LPO may produce different final
markings of the LPO (see [11], Example 2).

In the case of p/t-nets, enabled LPOs can be equivalently characterized through
requiring that for each co-set C of the LPO and each prefix of C, the final marking of
this prefix enables the step of transitions |C|l. This cannot analogously be formulated
for types of nets for two reasons. First the final marking of a prefix is not unique, i.e.
for types of nets each final marking of the prefix should enable |C|l. Second, a final
marking is only defined if the prefix itself is enabled – for p/t-nets a final marking can
also be defined by the events in the prefix whether or not it is enabled. Both problems
can be solved through restricting the definition of types of nets adequately. But this is
discussed later on. Without a further restriction we can state:

Lemma 1. Let N = (P, T,W,m0) be a marked net of type τ = (LS, LE, τ). An LPO
lpo = (V,<, l) with l : V → T is enabled in N if and only if for every non-empty
co-set C of lpo and every prefix lpo′ = (V ′, <′, l′) of C, lpo′ is enabled and |C|l is
enabled in each final marking of lpo′.

This characterization can be simplified for nets, whose enabled LPOs always have a
unique final marking. There is a nice and natural property of nets ensuring such unique
final markings. We call it weak intermediate state property (WISP). A marked net N
fulfills the WISP if all reachable markings m,m′, m′′ together with steps of transitions
x1, x2 satisfy

m
x1+x2−→ m′ ∧m

x1x2−→ m′′ =⇒ m′ = m′′

This means, if an enabled step can be divided into a sequence of two steps which is
also enabled, this sequence yields the same marking.

Lemma 2. Let N = (P, T,W,m0) be a marked net of type τ = (LS, LE, τ) satisfying
the WISP. Then each LPO lpo = (V, <, l) enabled in N has a unique final marking.

The characterization of enabled LPOs by co-sets now reads as follows showing that
only one step sequence has to be considered for each prefix of each co-set.

Lemma 3. Let N = (P, T,W,m0) be a marked net of type τ = (LS, LE, τ) satisfying
the WISP and let lpo = (V, <, l) with l : V → T be an LPO. If lpo is enabled in N ,
then for every non-empty co-set C of lpo and every prefix lpo′ = (V ′, <′, l′) of C, every
step sequence σ of lpo′ is enabled and |C|l is enabled in the follower marking of σ. If
for every non-empty co-set C of lpo and every prefix lpo′ = (V ′, <′, l′) of C, there is
an enabled step sequence σ of lpo′ such that |C|l is enabled in the follower marking of
σ, then lpo is enabled in N .

Unique final markings of enabled LPOs are required in Lemma 3 (by the WISP), be-
cause there are simple examples showing that otherwise the second statement of Lemma
3 does not hold (see [11], Example 3).

It is interesting to have a requirement for types of nets which ensures unique final
markings of enabled LPOs for all nets of a type satisfying this requirement. The WISP
can also be formulated for types of nets. A type of nets (LS, LE, τ) fulfills the WISP
if all combinations of local states s, s′, s′′ and local events e1, e2 satisfy

s
e1+e2−→ s′ ∧ s

e1e2−→ s′′ =⇒ s′ = s′′

Lemma 4. If (LS, LE, τ) is a type of nets satisfying the WISP then each marked net
of this type satisfies the WISP. If (LS, LE, τ) does not satisfy the WISP then there is a
marked net of this type not satisfying the WISP.

Consider now the case of two different enabled LPOs having exactly the same multi-
set of transition occurrences. Although each of these LPOs has a unique final marking if
WISP holds, these final markings need not be equal (see [11], Example 4). Types of nets
can be restricted in such a way, that final markings of enabled LPOs only depend from
the numbers of transition occurrences, but not longer from the ordering. This simplifies
testing enabledness of LPOs, because then obviously in the second statement of Lemma
3 only the numbers of transition occurrences in lpo′ need to be considered (instead of
a step sequence of lpo′). A property generalizing the WISP in this sense is the Parikh
image property (PIP). The PIP can be formulated for nets and types of nets.

A marked net N fulfills the PIP if all reachable markings m,m′,m′′ together with
steps of transitions x1, . . . , xn and x′1, . . . , x

′
m satisfy:

m
x1...xn−→ m′ ∧m

x′1...x′m−→ m′′ ∧ x1 + . . . + xn = x′1 + . . . + x′m =⇒ m′ = m′′.

A type of nets (LS, LE, τ) fulfills the PIP if all combinations of local states s, s′, s′′,
a multi-set of local events u and two partitions u = u1 + . . . + un = u′1 + . . . + u′m of
u satisfy for ei =

∑
e∈ui

ui(e)e and e′i =
∑

e∈u′i
u′i(e)e:

s
e1...en−→ s′ ∧ s

e′1...e′m−→ s′′ =⇒ s′ = s′′.

This property is a typical feature of Petri nets. The property means that the marking
reached after firing an enabled step sequence is determined by the number each single
transition occurs in the step sequence (a generalization of the Parikh image). Note that
the PIP implies the WISP.

Lemma 5. If (LS,LE, τ) is a type of nets satisfying the PIP then each marked net of
this type satisfies the PIP. If (LS,LE, τ) does not satisfy the PIP then there is a marked
net of this type not satisfying the PIP.

Lemma 6. Let N satisfy the PIP and let lpo = (V, <, l), lpo′ = (V ′, <′, l′) be LPOs
enabled in N with |V |l = |V ′|l′ . Then the final markings of lpo and lpo′ coincide.

In more restricted cases, the characterization of enabled LPOs by co-sets can further
be simplified by not taking every co-set (and each prefix of the co-sets) into account, but
only every cut (and the prefix of the cut). We formulate a sufficient condition for this.
Most net classes exhibit the well-known intermediate state property (ISP) [3, 4] (which
is stronger than the WISP, but incomparable with the PIP). A marked net N fulfills the
ISP if for all reachable markings m,m′, m′′ and steps of transitions x1, x2:

m
x1+x2−→ m′ =⇒ m

x1x2−→ m′.

The ISP can also be formulated for types of nets. A type of nets (LS, LE, τ) fulfills
the ISP if all combinations of local states s, s′, s′′ and all local events e1, e2 satisfy:

s
e1+e2−→ s′ =⇒ s

e1e2−→ s′.

Lemma 7. If (LS,LE, τ) is a type of nets satisfying the ISP then each marked net of
this type satisfies the ISP. If (LS, LE, τ) does not satisfy the ISP then there is a marked
net of this type not satisfying the ISP.

Lemma 8. Let N = (P, T,W,m0) be a marked net of type τ = (LS,LE, τ) fulfilling
the ISP and let lpo = (V, <, l) with l : V → T be an LPO. If lpo is enabled in N , then
for every cut C of lpo, every step sequence σ of the prefix of C is enabled and |C|l is
enabled in the follower marking of σ. If for every cut C of lpo, there is an enabled step
sequence σ of the prefix of C such that |C|l is enabled in the follower marking of σ,
then lpo is enabled in N .

The ISP is necessary for this characterization in the sense that, if a net does not
fulfill the ISP, but it fulfills the WISP, then the second statement of Lemma 8 does not
hold (see [11], Example 5). In general, using LPOs as a behavioural model for nets
satisfying the WISP but not the ISP, which means that a sequential decomposition of
some enabled step of transitions is not enabled, is problematic.

Simple examples show that there are types of nets not satisfying the WISP, satisfy-
ing the WISP but not the ISP and the PIP, satisfying the ISP but not the PIP, satisfying
the PIP but not the ISP, and satisfying both the PIP and the ISP (see [11], Example 6).

4 Token Flows in Types of Nets

In this section we generalize the notion of token flows, originally developed for p/t-nets,
to types of nets. The existence of appropriate token flows of an LPO gives an equivalent
characterization of enabledness.

The notion of token flows was introduced for p/t-nets in [10] as a compact represen-
tation of process nets. Namely, token flows abstract from the individuality of conditions
of a process net and encode the flow relation of the process net by natural numbers. For
each place a natural number is assigned to each arc of the LPO underlying a process net.
Such a natural number assigned to an arc (e, e′) represents the number of tokens pro-
duced by the event e and consumed by the event e′ in the respective place. As shown in
[10] an LPO is enabled in a p/t-net if and only if it fulfills the so called token flow prop-
erty. This characterization of enabledness has in particular been successfully applied
for the efficient verification [10] and the synthesis [5, 6] of p/t-nets.

In types of nets, markings given by the numbers of tokens in places are generalized
to local states of places. In general, types of nets do not exhibit some kind of flow of lo-
cal states based on ”consuming” and ”producing” local states by transition occurrences.
Therefore, we define a subclass of types of nets, called flow types of nets. The main idea
is to equip the set of local states with an appropriate algebraic structure, such that local
states can be added and related to each other and such that there is a set of generators.
Moreover, the sets of local events and local states are related through appropriate mor-
phisms modelling a local flow. The partial action of local events on local states has to

be consistent to the local flow. After the definition we will make plausible that each of
these restrictions is actually necessary to allow a reasonable notion of token flow.

Definition 6. A flow type of nets (τ, f) is a type of nets τ = (LS,LE, τ) together with
a flow map f = (f1, f2) : LE → LS × LS fulfilling:
• LS is a free abelian monoid,
• f1, f2 are monoid morphisms,
• (s, e, s′) ∈ τ =⇒ f1(e) ≤ s ∧ s′ = s− f1(e) + f2(e).

The effect of the occurrence of concurrent transitions onto a local state is given by
the effect of the corresponding local events. We assume that if a step of local events
(which of course itself defines a local event) is enabled in a local state, then each of
the local events in the step consumes a ”part” of the local state, modelled by f1, and
produces a ”part” of the follower local state, modelled by f2. That means that the lo-
cal state can be partitioned into several components (which are themselves local states)
and that these components can be composed to the ”whole” local state. Of course the
composition of local states should be associative and commutative, since the effect of
the occurrence of concurrent transitions onto a local state should be independent from
any ordering of these concurrent transitions. Also a zero-flow, i.e. an identity local state
is necessary. Thus, it is reasonable to assume the set of local states to be an abelian
monoid. The need to partition local states also shows that generator local states are rea-
sonable, i.e. to consider a free abelian monoid of local states. The mappings f1 and f2

are assumed to be morphisms to guarantee that the local states consumed and produced
by a step of transitions are consistent to the local states consumed and produced by the
single transitions in the step. The last property of the flow type of nets definition ensures
that the change (s, e, s′) ∈ τ of a local state s to a local state s′ by a local event e is
consistent with the flow f(e) of e and that s′ can be computed in this way. Later on,
token flows in LPOs will be based on the flow map f .

All net classes we are interested in can be represented as flow types of nets by
equipping the types of nets instantiation in a natural way with an appropriate flow map.
Examples are p/t-nets, pti-nets equipped with the a-priori and the a-posteriori semantics
as well as elementary nets (see [11], Example 7).

The requirements of the flow type of nets definition ensure the PIP introduced in
the last section. In particular, the final marking of an enabled LPO is unique and solely
depends on the numbers of transition occurrences in the LPO.

Lemma 9. A flow type of nets (τ, f), τ = (LS, LE, τ), fulfills the PIP.

The final marking of an enabled LPO can be computed as follows.

Lemma 10. The final marking m of an enabled LPO lpo = (V, <, l) of a marked net
N = (P, T, W,m0) of a flow type (τ, f) is given by

m(p) = m0(p) +
∑

v∈V

f2(W (p, l(v)))−
∑

v∈V

f1(W (p, l(v))), p ∈ P.

Let lpo = (V, <, l) be an LPO. A token flow function (on lpo) is a function x :<→
LS (LS a free abelian monoid). For v ∈ V , Inx(v) =

∑
v′<v x(v′, v) is the intoken

flow of v (w.r.t. x), and Outx(v) =
∑

v<v′ x(v, v′) is the outtoken flow of v (w.r.t. x).

Definition 7 (Token flow LPO). A token flow LPO is a pair (lpo,x), where lpo =
(V, <, l) is an LPO and x = (x1, . . . , xk) :<→ LSk is a function satisfying
• lpo has a unique minimal node vmin (initial node) with l(vmin) /∈ l(V \ {vmin}).
• lpo has a unique maximal node vmax (final node) with l(vmax) /∈ l(V \ {vmax}).
• Each xi is a token flow function on lpo satisfying l(v) = l(w) =⇒ Inxi(v) =
Inxi

(w) ∧Outxi
(v) = Outxi

(w) for each pair of nodes v, w ∈ V .
The LPO underlying a token flow LPO (lpo,x) is the LPO lpo′ = (V ′, < |V ′×V ′ ,

l|V ′) for V ′ = V \ {vmin, vmax}.

A token flow LPO fulfills the token flow property if, roughly speaking, each token
flow function corresponds to a place of the net. A token flow assigned to an arc (v, v′)
represents the local state which is produced by the occurrence of l(v) and consumed by
the occurrence of l(v′). The initial node is intended to produce the initial marking of
the net, while the final node represents a transition consuming the final marking reached
after the occurrence of all previous events given by the LPO (initial and final node are
omitted in the LPO underlying a token flow LPO).

Definition 8 (Token flow property). A token flow LPO (lpo,x), lpo = (V, <, l) and
x = (x1, . . . , xk) :<→ LSk, fulfills the token flow property w.r.t. a marked net N =
(P, T, W,m0) of a flow type (τ, f), if l(V \{vmin, vmax}) ⊆ T and if there is a bijective
mapping φ : {1, . . . , k} → P satisfying
• ∀i : Outxi(vmin) = m0(φ(i)).
• ∀i,∀v 6= vmin, vmax : Outxi(v)=f2(W (φ(i), l(v)))∧Inxi(v) =f1(W (φ(i), l(v))).

For φ(i) = p we also denote xp = xi, Outp() = Outxi() and Inp() = Inxi(). We
say that an LPO lpo′ fulfills the token flow property if there is a token flow LPO (lpo,x)
fulfilling the token flow property, such that lpo′ is the LPO underlying (lpo,x).

This notion of token flow property is a generalization of the token flow property
for p/t-nets [10]. The only restriction in the flow type of nets definition not directly
motivated as necessary by the previous definitions of token flow is the consideration of
the set of local states as a free abelian monoid instead of an arbitrary abelian monoid.
But there are examples showing that the characteristic of a free abelian monoid to have
a subset of generator elements is necessary to guarantee that for each enabled LPO it is
possible to find an appropriate token flow distribution ensuring the token flow property
(see [11], Example 8).

Now we can show the central theorem of the paper that each LPO enabled w.r.t. a
net of a flow type fulfills the token flow property. This result generalizes the result from
[12] that each enabled LPO of a p/t-net sequentializes an LPO underlying a process net.

Theorem 1. Let N = (P, T,W,m0) be a marked net of flow type (τ, f), τ = (LS, LE,
τ) and let the LPO lpo′ = (V ′, <, l) with l : V ′ → T be enabled w.r.t. N . Then lpo′

fulfills the token flow property w.r.t. N .

Next we consider the reverse statement to this theorem in order to actually get an
equivalent characterization of enabledness by token flows. By considering several net
classes, we have seen that for this we need different additional requirements depending
on the net class. The simplest situation is to consider flow types of nets also satisfying
the reverse implication of the third requirement in Definition 6, comprising e.g. p/t-nets:

Lemma 11. Let (τ, f), τ = (LS,LE, τ), be a flow type satisfying: f1(e) ≤ s∧s′ = s−
f1(e)+f2(e) =⇒ (s, e, s′) ∈ τ (note that this implies the ISP). Let N = (P, T, W,m0)
be a marked net of flow type (τ, f) and let the LPO lpo′ = (V ′, <, l) with l : V ′ → T
fulfill the token flow property w.r.t. N . Then lpo′ is enabled w.r.t. N .

The requirement in Lemma 11 is quite restrictive, since e.g. inhibitor nets do not
satisfy this restriction. One possibility to cover such net classes could be to equip each
flow type (τ, f), τ = (LS,LE, τ) with a blocking function b : LS × LE → {0, 1}
such that

(f1(e) ≤ s ∧ s′ = s− f1(e) + f2(e) ∧ b(s, e) = 1) ⇐⇒ (s, e, s′) ∈ τ.

Canonical blocking functions for net classes such as pti-nets can easily be defined
(see [11], Example 9). In this setting the enabledness of an LPO is determined by the
flow and the blocking function. By Lemma 11 and Theorem 1, the flow part is encoded
in the token flow property. For the blocking part an additional non-blocking property has
to be considered such that an LPO is enabled if and only if the token flow property and
the non-blocking property is satisfied. The non-blocking property is straightforwardly
defined by requiring for every non-empty co-set (resp. cut if the ISP is fulfilled) C of an
LPO lpo and every prefix lpo′ of C that there is an enabled step sequence of lpo′ with
follower marking m such that b(m(p),

∑
t∈T |C|l(t) ·W (p, t)) = 1 for each place p.

Corollary 1. Let (τ, f), τ = (LS,LE, τ), be a flow type equipped with a blocking
function b. Let N = (P, T, W,m0) be a marked net of flow type (τ, f) and let lpo =
(V, <, l) be an LPO with l : V → T , then lpo is enabled if and only if the token flow
property and the non-blocking property is satisfied.

The non-blocking property can often be simplified by using specific features of
the considered type of nets. We developed a simplified non-blocking property e.g. for
inhibitor nets [14] and nets with capacities. Together with the token flow property these
properties lead to efficient verification methods and are useful for synthesis.

5 Conclusion

In this paper we introduced several restrictions to types of nets in order to be able to
introduce enabledness of LPOs w.r.t. nets of some type in a meaningful way. We first
adapted the classical characterizations of enabled LPOs w.r.t. p/t-nets. The restrictions
WISP, PIP and ISP introduced in this context seem to be natural for concrete Petri
nets and are satisfied by all classes of net types, whose causal behaviour can reason-
ably be described through LPOs (including e.g. read arcs, inhibitor arcs and capacities
w.r.t. most known semantics). There are some exceptions for net classes whose causal
behaviour cannot any more be captured by LPOs, e.g. inhibitor nets w.r.t. the a-priori
semantics and (usually) nets with step firing policies such as localities do not satisfy the
ISP. Secondly, we generalized the newly developed characterization of enabled LPOs
based on token flows (called token flow property) to net types. For this we considered
so called flow types of nets, which still include the above mentioned net classes. For
such types, the token flow property is a necessary condition for enabledness. In order

to get equivalence of enabledness and token flow property, flow types of nets need to
be further restricted. At this point it turns out that it is not clear how to define such a
restriction in a general way without being too restrictive in the sense that p/t-nets are
almost re-invented. The non-blocking property is a first proposal here.

We have already mentioned the main follow-up question for future research in the
introduction: We want to analyze several notions of regions of types of nets for lan-
guages of LPOs and examine computation principles for concrete types of nets, with
the aim of an integration into a general synthesis framework for types of nets.

Another interesting application of the central notion of token flows is the develop-
ment of efficient verification algorithms to test, whether a given LPO is enabled in a
given net of some flow type. For this purpose we plan to apply flow theory (generalized
to free abelian monoids having a finite set of generators) as in the case of p/t-nets [10].

Note finally that the theory presented in this paper can also be formulated for infinite
sets of transitions and places

References

1. E. Badouel, M. A. Bednarczyk, and P. Darondeau. Generalized Automata and Their Net
Representations. In Unifying Petri Nets, LNCS 2128, pages 304–345, 2001.

2. E. Badouel and P. Darondeau. Dualities Between Nets and Automata Induced by
Schizophrenic Objects. In CTCS, LNCS 953, pages 24–43, 1995.

3. E. Badouel and P. Darondeau. On the Synthesis of General Petri Nets. Technical Report
3025, Inria, 1996.

4. E. Badouel and P. Darondeau. Theory of Regions. In Petri Nets, LNCS 1491, pages 529–586,
1996.

5. R. Bergenthum, J. Desel, R. Lorenz, and S. Mauser. Synthesis of Petri Nets from Finite
Partial Languages. To appear in Fundam. Inform., 2008.

6. R. Bergenthum and S. Mauser. Comparison of Different Algorithms to Synthesize a Petri
Net from a Partial Language. In Proceedings of Workshop CHINA @ICATPN, 2008.

7. J. Desel, G. Juhás, and R. Lorenz. Petri Nets over Partial Algebra. In Unifying Petri Nets,
LNCS 2128, pages 126–172, 2001.

8. M. Droste and R. M. Shortt. From Petri Nets to Automata with Concurrency. Applied
Categorical Structures, 10(2):173–191, 2002.

9. A. Ehrenfeucht and G. Rozenberg. Partial (set) 2-Structures. Part I: Basic Notions and the
Representation Problem / Part II: State Spaces of Concurrent Systems. Acta Inf., 27(4):315–
368, 1989.

10. G. Juhás, R. Lorenz, and J. Desel. Can I Execute My Scenario in Your Net? In ICATPN
2005, LNCS 3536, pages 289–308, 2005.

11. G. Juhás, R. Lorenz, and S. Mauser. Examples and Proofs: Partial
Order Semantics of Types of Nets. Technical report, http://www.ku-
eichstaett.de/Fakultaeten/MGF/Informatik/Mitarbeiter/Mauser/Publikationen.de, 2008.

12. A. Kiehn. On the Interrelation Between Synchronized and Non-Synchronized Behaviour of
Petri Nets. Elektronische Informationsverarbeitung und Kybernetik, 24(1/2):3–18, 1988.

13. R. Lorenz, G. Juhás, and S. Mauser. How to Synthesize Nets from Languages - a Survey. In
Proceedings of the Wintersimulation Conference (WSC), pages 637–647, 2007.

14. R. Lorenz, S. Mauser, and R. Bergenthum. Theory of Regions for the Synthesis of Inhibitor
Nets from Scenarios. In ICATPN, LNCS 4546, pages 342–361, 2007.

15. A. Mazurkiewicz. Petri Nets Without Tokens. In ICATPN, LNCS 4546, pages 20–23, 2007.

