Lösungshinweise zur Klausur Mathematik II
Sommersemester 2005

Aufgabe 1

(a) (i) Arithmetisches Mittel: \(\frac{1}{2}(a + b) \);
geometrisches Mittel: \(\sqrt{ab} \)
(vgl. 1.1.6).

(ii) \(\sqrt{ab} \leq \frac{1}{2}(a + b) \) (vgl. 1.1.6)

(b) Zu bestimmen sind alle \(x \in \mathbb{R} \) mit

\[(*) \quad |x + 3| < |x - 2|.

Es gilt

\[|x + 3| = \begin{cases}
 x + 3, & \text{falls } x \geq -3 \\
 -(x + 3), & \text{falls } x < -3
\end{cases} \]

\[|x - 2| = \begin{cases}
 x - 2, & \text{falls } x > 2 \\
 -(x - 2), & \text{falls } x \leq 2
\end{cases} \]

Wir unterscheiden drei Fälle:

Fall 1: \(x < -3 \)
Dann ist auch \(x \leq 2 \), also

\[|x + 3| < |x - 2| \iff -x - 3 < -x + 2 \]
\[\iff -3 < 2. \]

Da dies eine richtige Aussage ist, ist (*) für alle \(x < -3 \) richtig.

Fall 2: \(-3 \leq x \leq 2 \)
Hier gilt

\[|x + 3| < |x - 2| \iff x + 3 < -x + 2 \]
\[\iff 2x < -1 \]
\[\iff x < -\frac{1}{2}. \]

Daher gilt (*) für \(-3 \leq x < -\frac{1}{2}\), für \(-\frac{1}{2} \leq x \leq 2\) hingegen nicht.
Fall 3: \(x > 2 \)

Dann ist auch \(x \geq -3 \), also

\[
|x + 3| < |x - 2| \iff x + 3 < x - 2 \\
\iff 3 < -2.
\]

Da dies eine falsche Aussage ist, ist \((*)\) für \(x > 2 \) nicht erfüllt.

Zusammenfassend ergibt sich

\[
\{ x \in \mathbb{R} \mid |x + 3| < |x - 2| \} =] - \infty, -\frac{1}{2} [.
\]

(c) Für die Menge \(M = \{ x \in \mathbb{R} \mid (x - 5)^2 \leq 4 \} \) gilt \(M = [3, 7] \), denn

\[
(x - 5)^2 \leq 4 \iff x^2 - 10x + 25 \leq 4 \\
\iff x^2 - 10x + 21 \leq 0 \\
\iff (x - 3)(x - 7) \leq 0 \\
\iff (x - 3 \leq 0 \text{ und } x - 7 \geq 0) \\
\text{oder} \\
(x - 3 \geq 0 \text{ und } x - 7 \leq 0) \\
\iff (x \leq 3 \text{ und } x \geq 7) \\
\text{oder} \\
(x \geq 3 \text{ und } x \leq 7) \\
\iff 3 \leq x \leq 7.
\]

Also ist \(M \) beschränkt nach 1.2.11 (i).

Alternative:

\[
(x - 5)^2 \leq 4 \iff |x - 5|^2 \leq 4 \\
\iff |x - 5| \leq 2 \\
\iff 5 - 2 \leq x \leq 5 + 2 \quad (1.3.3 \text{ (ii), (iii)})
\]

\[
\iff 3 \leq x \leq 7.
\]
Aufgabe 2

(a) Quotientenkriterium (vgl. 2.4.3):
Sei \(\sum_{n=1}^{\infty} a_n \) eine Reihe mit \(a_n \neq 0 \) für fast alle \(n \in \mathbb{N} \).
Gibt es ein \(q \in \mathbb{R} \) mit \(0 < q < 1 \), so dass

\[
\left| \frac{a_{n+1}}{a_n} \right| \leq q \quad \text{für fast alle} \quad n \in \mathbb{N}
\]

erfüllt ist, dann ist die Reihe absolut konvergent (und daher auch konvergent).
Die Bedingung ist z.B. dann erfüllt, wenn

\[
\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| < 1
\]

ist.

(b) (i) Für \(n \in \mathbb{N} \) gilt

\[
a_n = \frac{n^2}{n+1} - \frac{(n+1)^2}{n} = \frac{n^3 - (n+1)^3}{n(n+1)} = -\frac{3n^2 - 3n - 1}{n^2 + n} = \frac{-3 \frac{3}{n} - \frac{1}{n^2}}{1 + \frac{1}{n}} = \frac{c_n}{d_n},
\]

wobei

\[
c_n = -3 - \frac{3}{n} - \frac{1}{n^2}, \quad d_n = 1 + \frac{1}{n}.
\]

Es gilt \(d_n \neq 0 \) für alle \(n \in \mathbb{N} \).
Bekanntlich ist \(\left(\frac{1}{n} \right) \) eine Nullfolge (vgl. 2.1.9 (ii)). Daraus folgt mit 2.1.12, dass
\((c_n) \) konvergent ist mit Grenzwert \(-3\) und \((d_n) \) konvergent ist mit Grenzwert \(1 \), also \((a_n) \) konvergent ist mit Grenzwert \(\frac{-3}{1} = -3 \).

(ii) Für \(n \in \mathbb{N} \) gilt

\[
b_n = \frac{2^n + (-1)^n}{2n+1} + (-1)^{n+1} = \frac{1 + (-\frac{1}{2})^n}{2 - (-\frac{1}{2})^n} = \frac{c_n}{d_n},
\]

wobei

\[
c_n = 1 + (-\frac{1}{2})^n, \quad d_n = 2 - (-\frac{1}{2})^n.
\]

Es gilt \(d_n = 2 - (-\frac{1}{2})^n \geq 2 - 1 = 1 > 0 \), also \(d_n \neq 0 \) für alle \(n \in \mathbb{N} \).
Bekanntlich ist \(\left(q^n \right) \) eine Nullfolge für \(-1 < q < 1\) (vgl. 2.1.9 (iii)). Daraus folgt mit 2.1.12, dass \((c_n) \) konvergent ist mit Grenzwert \(2 \) und \((d_n) \) konvergent ist mit Grenzwert \(\frac{1}{2} \).
(c) (i) Nach 5.4.2 (5) ist \(\log {\text{streng monoton wachsend}}. \) Daher gilt für alle \(n \in \mathbb{N}, \ n \geq 2 \)
\[
\log \frac{1}{n} \leq \log \frac{1}{2} < \log 1 = 0,
\]
d.h. \(\log \frac{1}{n} \) ist keine Nullfolge und die Reihe \(\sum_{n=1}^{\infty} \log \frac{1}{n} \) erfüllt somit die notwendige Konvergenzbedingung 2.3.5 nicht. \(\sum_{n=1}^{\infty} \log \frac{1}{n} \) ist also divergent.

(ii) Nach 5.4.6 (4) (v) gilt \(|\sin x| \leq 1 \) für alle \(x \in \mathbb{R} \). Daher gilt für alle \(n \in \mathbb{N} \)
\[
|a_n| = \left| \frac{\sin(2\pi n^2)}{n^2} \right| = \frac{\left| \sin(2\pi n^2) \right|}{n^2} \leq \frac{1}{n^2}.
\]
Nach 2.2.6 (i)/2.3.3 (i) ist \(\sum_{n=1}^{\infty} \frac{1}{n^2} \) konvergent, so dass nach dem Majorantenkriterium 2.4.1 (i) \(\sum_{n=1}^{\infty} \frac{\sin(2\pi n^2)}{n^2} \) absolut konvergent und daher konvergent ist.

Aufgabe 3

(a) Nach Definition 3.5.4 heißt \(f \) gleichmäßig stetig auf \(D \), wenn gilt:
\[
\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x, y \in D : (|x - y| < \delta \Rightarrow |f(x) - f(y)| < \varepsilon).
\]

(b) Da Stetigkeit eine lokale Eigenschaft ist (Satz 3.2.3), ist \(f \) für jedes \(c \in \mathbb{R} \) auf den offenen Intervallen \(]-\infty, 2[\) und \(]2, \infty[\) stetig, da \(f \) dort jeweils Einschränkung eines Polynoms ist.
Zu untersuchen bleibt die Stetigkeit im Punkt \(a = 2 \). Es gilt
\[
f : \mathbb{R} \rightarrow \mathbb{R} \text{ ist stetig in } a \in \mathbb{R} \Leftrightarrow f \text{ besitzt in } a \text{ den Grenzwert } f(a),
\]
d.h. \(\lim_{x \to a} f(x) = f(a) \).

Also gilt
\(f \) ist stetig in \(a = 2 \) \(\iff \lim_{x \to 2} f(x) = f(2) = 4 + 2c - 1 = 3 + 2c \)
\[
\Leftrightarrow \lim_{x \to 2} (5x + 1) = 3 + 2c
\]
\[
\Leftrightarrow 11 = 3 + 2c
\]
\[
\Leftrightarrow 8 = 2c
\]
\[
\Leftrightarrow c = 4.
\]
Für \(c = 4 \) ist \(f \) auf ganz \(\mathbb{R} \) stetig.
(c) Für $x \neq 1$ gilt
\[
f(x) = g(x) = \frac{x^2 - 1}{(x^2 + 7)(x - 1)} = \frac{(x + 1)(x - 1)}{(x^2 + 7)(x - 1)} = \frac{x + 1}{x^2 + 7}.
\]
Für $x = 1$ gilt
\[
\frac{x + 1}{x^2 + 7} = \frac{2}{8} = \frac{1}{4}.
\]
Also kann g generell durch die Formel
\[
g(x) = \frac{x + 1}{x^2 + 7}
\]
beschrieben werden.
Als rationale Funktion mit Definitionsgebiet \mathbb{R} ist g nach 3.2.8 stetig, also auch stetig in $a = 1$.
Die Funktion $g : \mathbb{R} \to \mathbb{R}$ ist die stetige Fortsetzung der Funktion $g|_{\mathbb{R} \setminus \{1\}}$ in $a = 1$.
Die Funktion $f : \mathbb{R} \to \mathbb{R}$ ist Fortsetzung der Funktion
\[
f|_{\mathbb{R} \setminus \{1\}} = g|_{\mathbb{R} \setminus \{1\}}.
\]
Da $f(1) \neq g(1)$, kann f wegen der Eindeutigkeit der stetigen Fortsetzung 3.3.2 in $a = 1$ nicht stetig sein.

Alternative:
Für die Folge $\left(1 + \frac{1}{n}\right)$ gilt $\lim_{n \to \infty} \left(1 + \frac{1}{n}\right) = 1$, aber
\[
\lim_{n \to \infty} f\left(1 + \frac{1}{n}\right) = \lim_{n \to \infty} \frac{(1 + \frac{1}{n}) + 1}{(1 + \frac{1}{n})^2 + 7} = \lim_{n \to \infty} \frac{2 + \frac{1}{n}}{1 + \frac{2}{n} + \frac{1}{n^2} + 7} = \lim_{n \to \infty} \frac{2 + \frac{1}{n}}{8 + \frac{2}{n} + \frac{1}{n^2}} = \frac{2}{8} = \frac{1}{4} \neq f(1).
\]
Also ist f nach dem Folgenkriterium 3.2.5 nicht stetig in $a = 1$.
Aufgabe 4

(a) Kettenregel (vgl. 4.1.7 (v)):
Seien \(a \in D \subseteq \mathbb{R} \), \(f : D \to \mathbb{R} \) differenzierbar in \(a \) und \(h : E \to \mathbb{R} \) mit \(f(D) \subseteq E \) differenzierbar in \(f(a) \). Dann ist auch \(h \circ f \) differenzierbar in \(a \) mit

\[
(h \circ f)'(a) = h'(f(a))f'(a).
\]

(b) (i) Es gilt \(f = (f_1 \circ f_2) + f_3 \) mit

\[
\begin{align*}
f_1 :]0, \infty[& \to \mathbb{R}, \quad f_1(x) := -2 \log x, \\
f_2 :]0, \infty[& \to \mathbb{R}, \quad f_2(x) := e^x - 1, \\
f_3 :]0, \infty[& \to \mathbb{R}, \quad f_3(x) := x.
\end{align*}
\]

\(f_1, f_2, f_3 \) sind differenzierbar mit Ableitungen

\[
\begin{align*}
f_1' :]0, \infty[& \to \mathbb{R}, \quad f_1'(x) = -\frac{2}{x} \quad (\text{vgl. 5.4.2 (2)}), \\
f_2' :]0, \infty[& \to \mathbb{R}, \quad f_2'(x) = e^x \quad (\text{vgl. 5.4.1 (1)}), \\
f_3' :]0, \infty[& \to \mathbb{R}, \quad f_3'(x) = 1 \quad (\text{vgl. 4.1.3 (ii)}).
\end{align*}
\]

Nach 4.1.7 (1) und der Kettenregel 4.1.7 (v) ist dann auch \(f = (f_1 \circ f_2) + f_3 \) differenzierbar mit

\[
f'(x) = (f_1 \circ f_2)'(x) + f_3'(x) = f_1'(f_2(x))f_2'(x) + f_3'(x)
\]

\[
= -\frac{2}{e^x - 1}e^x + 1 = \frac{-2e^x + e^x - 1}{e^x - 1} = \frac{1 + e^x}{1 - e^x}.
\]

(ii) Es gilt \(g = g_1g_2 \) mit

\[
\begin{align*}
g_1 : \mathbb{R} & \to \mathbb{R}, \quad g_1(x) := x^2 - 2x + 2, \\
g_2 : \mathbb{R} & \to \mathbb{R}, \quad g_2(x) := e^x.
\end{align*}
\]

\(g_1, g_2 \) sind differenzierbar mit Ableitungen

\[
\begin{align*}
g_1' : \mathbb{R} & \to \mathbb{R}, \quad g_1'(x) = 2x - 2 \quad (\text{vgl. 4.1.8}), \\
g_2' : \mathbb{R} & \to \mathbb{R}, \quad g_2'(x) = e^x \quad (\text{vgl. 5.4.1 (1)}).
\end{align*}
\]

Nach der Produktregel 4.1.7 (iii) ist dann auch \(g = g_1g_2 \) differenzierbar mit

\[
g'(x) = g_1'(x)g_2(x) + g_1(x)g_2'(x)
\]

\[
= (2x - 2)e^x + (x^2 - 2x + 2)e^x = x^2e^x.
\]

(iii) Es gilt \(h = h_1 \circ \frac{h_2}{h_3} \) mit

\[
\begin{align*}
h_1 :]0, \infty[& \to \mathbb{R}, \quad h_1(x) := \log x, \\
h_2 :]1, \infty[& \to \mathbb{R}, \quad h_2(x) := x + 1, \\
h_3 :]1, \infty[& \to \mathbb{R}, \quad h_3(x) := x - 1.
\end{align*}
\]

\(h_1, h_2, h_3 \) sind differenzierbar mit Ableitungen

\[
\begin{align*}
h_1' :]0, \infty[& \to \mathbb{R}, \quad h_1'(x) = \frac{1}{x} \quad (\text{vgl. 5.4.2 (2)}), \\
h_2' :]1, \infty[& \to \mathbb{R}, \quad h_2'(x) = 1 \quad (\text{vgl. 4.1.8}), \\
h_3' :]1, \infty[& \to \mathbb{R}, \quad h_3'(x) = 1 \quad (\text{vgl. 4.1.8}).
\end{align*}
\]
Nach der Quotientenregel 4.1.7 (iv) und der Kettenregel 4.1.7 (v) ist dann auch
\[h = h_1 \circ \left(\frac{h_2}{h_3} \right) \] differenzierbar mit
\[
h'(x) = h'_1 \left(\frac{h_2}{h_3}(x) \right) \cdot \frac{h_2'(x)h_3(x) - h_2(x)h_3'(x)}{(h_3(x))^2}
\]
\[= \frac{x - 1}{x + 1} \cdot \frac{x - 1 - (x + 1)}{(x - 1)^2} = \frac{-2}{x^2 - 1} = \frac{2}{1 - x^2}.
\]

Aufgabe 5

(a) Nach dem Identitätssatz für Potenzreihen (Satz 5.3.10) gilt:
\[a_n = \frac{1}{n!} f^{(n)}(a) \]

für jedes \(n \in \mathbb{N}^0 \).

(b) Es liegt die Potenzreihe \(\sum_{n=0}^{\infty} a_n (x - a)^n \) vor mit \(a = -8 \), \(a_0 = 0 \) und \(a_n = \frac{1}{n!} \) für alle \(n \in \mathbb{N} \).

Für \(n \in \mathbb{N} \) gilt
\[\sqrt[n]{|a_n|} = \sqrt[n]{\frac{1}{n^3}} = \frac{1}{(\sqrt[n]{n})^3}. \]

Da \(\lim_{n \to \infty} \sqrt[n]{n} = 1 \) (vgl. 5.3.4 (i)), folgt
\[\lim_{n \to \infty} \sqrt[n]{|a_n|} = 1. \]

Der Konvergenzradius ist nach dem Satz von Hadamard 5.3.3 (iii) also 1. Folglich ist die Potenzreihe nach 5.3.2 für \(|x + 8| < 1 \) (d.h. für \(-9 < x < -7 \)) konvergent und für \(|x + 8| > 1 \) (d.h. für \(x < -9 \) oder \(x > -7 \)) divergent.

Es sind noch die Punkte \(x = -9 \) und \(x = -7 \) zu untersuchen.

Für \(x = -9 \) liegt die Reihe \(\sum_{n=1}^{\infty} \frac{1}{n!}(-1)^n \) vor, die nach dem Leibniz-Kriterium 2.3.8 konvergiert.

Für \(x = -7 \) liegt die Reihe \(\sum_{n=1}^{\infty} \frac{1}{n!} \) vor, die nach dem Majorantenkriterium 2.4.1 konvergiert, da \(\frac{1}{n!} \) nach 2.3.3 (i) eine konvergente Majorante ist.

Die Potenzreihe \(\sum_{n=1}^{\infty} \frac{1}{n!} (x + 8)^n \) konvergiert also im Intervall \([-9, -7]\), außerhalb dieses Intervalls divergiert sie.
(c) (1) Die Funktion f ist auf ihrem Definitionsgebiet $]0, \infty[$, einer offenen Menge, differenzierbar mit Ableitung

$$f'(x) = 2x - \frac{2}{x^3} \quad \text{für alle } x \in]0, \infty[.$$

Hat f in $a \in]0, \infty[$ ein lokales Extremum, so muss nach 4.3.13 gelten

$$0 = f'(a) = 2a - \frac{2}{a^3},$$

also $2a^4 = 2$, das heißt $a = 1$.

Mit der zweiten Ableitung

$$f''(x) = 2 + \frac{6}{x^4} \quad \text{für alle } x \in]0, \infty[$$

gilt $f''(1) = 2 + 6 = 8 > 0$. Gemäß 4.3.14 besitzt f an der Stelle $a = 1$ ein lokales Minimum. Dies ist das einzige lokale Extremum.

(2) Weil das Intervall $[\frac{1}{2}, 2]$ kompakt ist, nimmt die Funktion f auf $[\frac{1}{2}, 2]$ Maximum und Minimum an.

Dies kann in einem der Randpunkte $\frac{1}{2}$ bzw. 2 oder im Inneren $]\frac{1}{2}, 2[$ des Intervalls $[\frac{1}{2}, 2]$ geschehen. Nach (1) kommt im Inneren nur der Punkt 1 in Frage.

Wir berechnen die Werte $f(\frac{1}{2})$, $f(1)$, $f(2)$.

$$f(\frac{1}{2}) = \frac{1}{4} + 4 = \frac{17}{4}$$
$$f(1) = 1 + 1 = 2$$
$$f(2) = 4 + \frac{1}{4} = \frac{17}{4}$$

Also nimmt f auf $[\frac{1}{2}, 2]$ im Punkt 1 sein Minimum 2 und in den Punkten $\frac{1}{2}$ und 2 sein Maximum $\frac{17}{4}$ an.

\[\text{Aufgabe 6}\]

(a) Partielle Integration (vgl. 6.2.10):

Sei $I = [a, b]$ mit $a < b$, und seien f und g stetig differenzierbar auf I. Dann gilt:

$$\int_a^b f'(x)g(x)\,dx = f(x)g(x)\bigg|_a^b - \int_a^b f(x)g'(x)\,dx.$$

(b) (i) Dieses Integral kann sowohl mit partieller Integration als auch mit der Substitutionsregel berechnet werden. Wir wählen den einfachen Weg, nämlich die Substitutionsregel 6.2.11. Im Integranden finden wir die Funktion

$$\varphi : [0, 2] \longrightarrow \mathbb{R}, \quad \varphi(t) := 1 + t^2$$
und deren Ableitung $\varphi'(t) = 2t$, so dass mit

$$f : [\varphi(0), \varphi(2)] = [1, 5] \rightarrow \mathbb{R}, \ f(x) := \frac{1}{x}$$

gilt:

$$\int_{0}^{2} \frac{x}{1+x^2} dx = \frac{1}{2} \int_{0}^{2} \frac{2t}{1+t^2} dt = \frac{1}{2} \int_{0}^{2} f(\varphi(t))\varphi'(t) dt$$

$$= \frac{1}{2} \int_{\varphi(0)}^{\varphi(2)} f(x) dx = \frac{1}{2} \int_{1}^{5} \frac{1}{x} dx = \frac{1}{2} \log x \bigg|_{1}^{5}$$

$$= \frac{1}{2} \log 5 - \frac{1}{2} \log 1 = \frac{1}{2} \log 5.$$

Die Voraussetzungen der Substitutionsregel waren erfüllt, da f stetig, φ stetig differenzierbar und $\varphi([0, 2]) = [1, 5]$ gilt (\varphi ist monoton wachsend).

(ii) Wir wollen die Methode der partiellen Integration 6.2.10 verwenden und setzen

$$f, g : [0, \frac{\pi}{2}] \rightarrow \mathbb{R}, \ f(x) := \sin x, \ g(x) := \cos^2 x.$$

f und g sind stetig differenzierbar mit Ableitungen

$$f'(x) = \cos x, \ g'(x) = -2 \cos x \sin x.$$

Es gilt dann

$$\int_{0}^{\frac{\pi}{2}} \cos^3 x dx = \int_{0}^{\frac{\pi}{2}} f'(x)g(x) dx = f(x)g(x) \bigg|_{0}^{\frac{\pi}{2}} - \int_{0}^{\frac{\pi}{2}} f(x)g'(x) dx$$

$$= \sin x \cos^2 x \bigg|_{0}^{\frac{\pi}{2}} - \int_{0}^{\frac{\pi}{2}} (-2 \sin^2 x \cos x) dx$$

$$= 0 + 2 \int_{0}^{\frac{\pi}{2}} (1 - \cos^2 x) \cos x dx$$

$$= 2 \int_{0}^{\frac{\pi}{2}} \cos x dx - 2 \int_{0}^{\frac{\pi}{2}} \cos^3 x dx,$$

da $\cos \frac{\pi}{2} = \sin 0 = 0$ und $\sin^2 x = 1 - \cos^2 x$. Es folgt

$$3 \int_{0}^{\frac{\pi}{2}} \cos^3 x dx = 2 \int_{0}^{\frac{\pi}{2}} \cos x dx = 2 \sin x \bigg|_{0}^{\frac{\pi}{2}} = 2 - 0 = 2,$$

also

$$\int_{0}^{\frac{\pi}{2}} \cos^3 x dx = \frac{2}{3}.$$