
Sequencing Bitvectors with Distance Constraints

R. Nickel∗, W. Hochstättler†

8. July 2003

Abstract

Motivated by an application in the automobile industry, we present results on the fol-
lowing problem:

Given a finite multi-set F = {b1, ..., b1, b2, ..., b2, ..., bα, ..., bα} of β-dimensional 0-1-
vectors and bounds mj , mj ∈ N with mj < mj (j = 1..β). Find a sequencing bi1 , bi2 , ..., binof
the vectors of F such that in each component j there are at least mj and at most mj zeroes
between two ones.

We show that this problem is NP-hard even for simplified cases but becomes polynomial
if we bound β, mj and mj ∀j = 1..β. After that we present a simple heuristic procedure
and extend it to further types of constraints appearing in automobile industry.

1 Introduction

We focus on a problem that arises in automobile industry when painted car bodies are put on
an assembly line to build in all options such as engines, transmissions, sun-roofs, etc. Different
bodies may have different options to build in, therefore they are grouped in body types bi with
a quantity qi (for i = 1..α if we have α such types). For each option there is a team at the
assembly line to build in this part which takes a known amount of time. During that time no
car with the same option should enter the line to avoid conveyor stopping. Furthermore each
option should appear as regular as possible in the sequence to minimize idle-time of the teams.

Since cars are put on the line in a regular manner (say one car per minute) we can simplify
the problem to sequencing the cars such that between two cars with the option j at least mj

and at most mj other cars without option j are sequenced where mj is the time to build in
option j and mj some upper bound to avoid longer idle-times of the team for option j. In this
way each body type bi can be simplified to a bitvector of size β if there are β options, having a
one in component j if the car body has option j and zero otherwise. This yields a more formal
description of the problem.

Distance-Constraint-Bitvector-Sequencing (DCBS):

• Given a finite multiset F = {b1, ..., b1, b2, ..., b2, ..., bα, ..., bα} of β-dimensional 0-1-vectors
and bounds mj , mj ∈ N with mj < mj (j = 1..β).

• Find a sequencing bi1 , bi2 , ..., bin
of the vectors of F such that in each component j there

are at least mj and at most mj zeroes between two ones.

∗
nickel@math.tu-cottbus.de

†hochstaettler@math.tu-cottbus.de

1

After the problem is formulated as a mixed integer constrained satisfaction problem we focus on
the complexity of this problem and therefore formulate it as a decision problem: “Is there such
a sequencing?”. We will prove NP-completeness in the general case and two simplified cases.
Furthermore we present a dynamic program to prove the polynomiality of the problem when β
as well as all upper bounds mj can be assumed to be bounded by a fixed constant.

2 A Mixed Integer Program

Let n be the length of the sequence indexed by k and α the number of different bitvectors
indexed by i. We introduce decision variables xik which will be one if and only if bi is sequenced
at position k. If F contains α different bitvectors bi (i = 1..α) we assign to each bi it’s quantity
Ni. Now we can formulate this problem in terms of mixed integer constraint satisfaction:

α
∑

i=1

xik = 1 ∀k = 1..n (1)

n
∑

k=1

xik = Ni ∀i = 1..α (2)

Xj,0 = 0 ∀j = 1..β (3)

Xj,k = Xj,k−1 +

P
∑

i=1

xikbij ∀j = 1..β ∀k = 1..n (4)

Xj,k − Xj,k−mj
≤ 1 ∀j = 1..β ∀k = mj + 1..n (5)

Xj,k − Xj,k−mj
≥ 2 ∀j = 1..β ∀k = mj + 1..n (6)

xik ∈ {0, 1}

Equations (1) and (2) make sure that at each position k exactly one vector is sequenced
and that each vector bi appears exactly Ni times in the sequence. The other two equations
simply count the occurance of each commodity j up to position k. (5) and (6) are the distance
constraints for the problem. In sum we now have a constraint satisfaction problem with about
n+α+3βn constraints and αn+βn variables. Mixed integer constraint satisfaction is known to
be NP-hard, therefore we now focus on the complexity of that problem and it’s simplifications.

3 Complexity Results

We will analyse (DCBS), prove it’s NP-completeness and find simplifications that belong to
P . The combinatorial problems used for reduction are taken from [3].

3.1 NP-complete cases

3.1.1 The general case

We give a pseudopolynomial reduction of (DCBS) from the Three-Partition-Problem (3P)
which is known to be NP-complete in the strong sense:

• Given A = {a1, ..., a3m} and b ∈ Z with b
4

< aj < b
2

∀j = 1..3m and
∑3m

j=1
aj = bm.

• Is there a partitioning A1∪̇...∪̇Am = A of A with
∑

a∈Ai
a = b ∀i = 1..m?

2

Given an instance of (3P). Without loss of generality assume b to be a multiple of 4. Otherwise
multiplying each number aj and b yields the same. An instance of (DCBS) is derived in the
following way:

• F contains (2b + 6) m + 1 vectors with 3m + 4 components:

◦ 3m vectors represent the aj and have a 1 in their jth and (3m + 1)st component
(j = 1..m) and a zero otherwise. These vectors are called element vectors (ej).

◦ m + 1 vectors have a 1 in each component except the (3m + 1)st and are called
partition vectors (p) because they have to separate the partitions.

◦ 2m vectors have a 1 in each component except the last and the (3m + 1)st and are
called separation vectors (s) because they have to separate two element vectors from
each other.

◦ The remaining 2bm all-zero-vectors only fill the gaps between the other vectors and
are therefore called gap vectors (g).

• Each component is assigned a lower and upper bound that forces the vectors on the correct
positions in a sequence.

◦ For the partition vectors to build up correct partitions the (3m + 4)th component is
assigned the bounds m3m+4 = 2b + 5 and m3m+4 = 2b + 6.

◦ The (3m + 3)rd component aims to sequence exactly two separation vectors between
two partition vectors. Hence let m3m+3 = b

2
− 1 and m3m+3 = b − 1.

◦ The bounds of component 3m + 2 make sure that all non-zero vectors are sequenced
with a safety distance. Let therefore m3m+2 = b

4
+ 1 and m3m+2 = b

2
− 1.

◦ For two element vectors not to follow directly after each other (i.e. they are separated
by gap vectors only) the (3m+1)st component is sequenced with the bounds m3m+1 =
b
2

+ 3 and m3m+1 = b − 1.

◦ An element vector ej is forced to have a distance of aj to it’s neighboring partition
or separation vector respectively by the bounds mj = aj and mj = b − 1.

Lemma 1. Given a feasible sequencing of F the following statements hold:

1. Partition vectors are sequenced with an exact distance of 2b+5. Furthermore the sequence
starts and ends with a partition vector.

2. Exactly two separation vectors are sequenced between two partition vectors.

3. Between two vectors of the kind separation or partition vector exactly two element vectors
are sequenced. Ignoring the gap vectors the sequence looks as follows:

p, ei1 , s, ei2 , s, ei3 , p, ei4 , s, ei5 , s, ei6 , p, ...

4. An element vector is enclosed by two aj-blocks of gap vectors.

Proof. If the vectors are sequenced such that no distance constraint mj or mj for j = 1..3m+ 4
is violated we can conclude:

1. Component 3m + 4 makes sure that two partition vectors are sequenced with a distance
of at least 2b + 5. Since there are m + 1 of those vectors and the sequence has a length of
(2b + 5) m + m + 1, there’s only one possibility.

3

2. Assume that only one separation vector s is sequenced between two partition vectors.
Then s has a distance of more than

⌊

2b+5

2

⌋

to at least one of the neighboring partition
vectors which is a contradiction to the upper bound m3m+3 = b−1. The partition vectors
induce m partitions in each of which at least two of 2m separation vectors are sequenced.
This proves the assumption.

3. Per partition (the space between two partition vectors) exist three intervalls induced by
two separation vectors in which the element vectors have to be put. In sum there are 3m
of these intervalls.
At first we show that one partition contains exactly three element vectors. In case one
partition contains 4 element vectors at least two of those follow directly after each other
(separated only by gap vectors) with a distance of at least b

2
+ 3 because of component

3m + 1. The remaining five non-zero vectors (3 element vectors and 2 separation vectors)
are sequenced with a minimum distance of b

4
+ 1 due to component 3m + 2. Furthermore

we have to add at least once a minimum distance of b
4

+ 1 to the pair of element vectors.

It follows that in one partition safety distances of 6
(

b
4

+ 1
)

+ b
2

+3 = 2b+9 > 2b+5 have
to be kept which leads to a contradiction to the length of one partition.
Now it is clear that all ej are uniformly distributed over the partitions (i.e. each partition
contains 3 element vectors and 2 separation vectors). We show by contradiction that a
partition (ignoring the gap vectors) is of the form p, ei1 , s, ei2 , s, ei3 , p for if two element
vectors follow directly after each other (minimum distance of b

2
+ 3) two vectors of kind

partition or separation vector must follow after each other dirctly, too (minimum distance
of b

2
− 1). A partition then would look like: p, ei1 , ei2 , s, s, ei3 , p. Between two vectors of

differend kind component 3m + 2 ensures the sequencing of at least b
4

+ 1 gap vectors. In

sum we than have at least 4
(

b
4

+ 1
)

+ b
2

+ 3 + b
2
− 1 = 2b + 6 > 2b + 5 which contradicts

the size of a partition.
Now we have shown that each partition is of the form p, ei1 , s, ei2 , s, ei3 , p.

4. There exist 2bm gap vectors 2b of which have to be sequenced in each partition (2b + 5
vectors fit into each partition, two separation vectors, three element vectors and 2bm gap
vectors). Each element vector ej has a minimum distance of aj (jth component) to it’s

left and right non-zero neighbor (partition or separation vector). Since
∑3m

j=1
aj = bm we

need 2bm gap vectors to fill theese gaps. Considering the overall length of the sequence
each ej is enclosed by two aj-blocks of gap vectors. If the element vectors ei1 , ei2 , ei3 are
sequenced in the same partition then ai1 + ai2 + ai3 = b must hold which completes the
proof.

Theorem 2. Given an instance of (3P). There exists a solution if and only if the derived
instance of (DCBS) has a solution. (DCBS) is therefore NP-complete.

Proof. Lemma 1 yields a short argumentation:

• Given an instance of (3P) with a solution Ai = {ai,1, ai,2, ai,3} i = 1..m. We derive an
instance of the modified sequencing problem and order the vectors such that each partition
is of the form

p,
ai,1

g, ..., g, ei,1,
ai,1

g, ..., g, s,
ai,2

g, ..., g, ei,2,
ai,2

g, ..., g, s,
ai,3

g, ..., g, ei,3,
ai,3

g, ..., g, p

We now check the lower and upper bounds for each component. The distance for the
components j = 1...3m is always mj = aj because before and behind an element vector ej

4

are sequenced exactly aj gap vectors which also ensures the upper bound for j = 1...3m.
Looking at component 3m+1 we see that the assumption b

4
< aj < b

2
∀j = 1..3m ensures

that the distance between two element vectors is at least b
2

+ 3 and at most b − 1 (which
exactly are the bounds m3m+1 and m3m+1). For the same reason component 3m+2 cannot

violate it’s bounds (m3m+2 = b
4

+ 1 and m3m+2 = b
2
− 1). Between two vectors of the

kind partition or separation vector one element and 2aj gap vectors are sequenced which
conforms with the bounds of component 3m + 3 (m3m+3 = b

2
− 1 and m3m+3 = b − 1).

Since
∑3

j=1
ai,j = b we have exactly 2b gap vectors, two separation vectors and three

element vectors in each Partition i. Therefore the ones in component 3m + 4 always have
a distance of 2b + 5. The sequence is feasible and we have found a solution of (DCBS).

• As shown in Lemma 1 a feasible sequence for (DCBS) implies that in each partition i the
containing element vectors ei1 , ei2 , ei3 belong to values ai1 , ai2 , ai3 that sum up to b and
we have found a solution of (3P).

3.1.2 Fixing bounds and forgetting the upper bounds

We will now show that even strong simplifications of (DCBS) remain NP-complete by giving a
reduction from the Hamiltonian-Path-Problem:

• Given a graph G(V, E).

• Does G contain a path that uses each node of V ?

Theorem 3. (DCBS) remains NP-complete if we make the following simplifications:

1. The bounds for each component are equal and fixed to m = 1 and m = 3.

2. The upper bounds are ignored and the lower bound is fixed to m = 1.

Proof. Let G = G(V, E) with E = (V × V) \ E the complementary graph of G and m :=
∣

∣E
∣

∣

the number of edges.

1. For each node v ∈ V we create a node vector bv ∈ {0, 1}m+2
with be

v =

1 v /∈ e
0 v ∈ e
1 e = m + 1
0 e = m + 2

.

Furthermore we need |V | − 1 gap vectors g with ge =

{

1 e = m + 2
0 otherwise

. Components

m + 1 and m + 2 make sure that node and gap vectors always alternate. Furthermore two
node vectors v1 and v2 are sequenced after each other (in order ..., g, bv1

, g, bv2
, g, ...) only

if there is an edge from v1 to v2 in G which means that there is no edge from v1 to v2 in
G and therefore bv1

and bv2
do not both have a zero in components e = 1..m.

If there is a Hamiltonian Path v1, ..., v|V | in G then b1, g, b2, g, ..., b|V |−1g, b|V | is obviously
a feasible sequence. And on the other hand, if b1, g, b2, g, ..., b|V |−1g, b|V | is a feasible
sequence then v1, ..., v|V | must be a Hamiltonian Path.

2. The proof is similar to 1. but we can drop off the gap vectors and the components m + 1
and m + 2. Then a Hamiltonian Path in G induces a sequence which is feasible when
considering the bounds m = 0 and m = 1. We can now finish the proof by inverting each
bitvector logicaly.

5

3.2 Polynomial cases

If we assume β ≤ β for a fixed β (DCBS) becomes “easier”. First we show that considering only
the lower bound m = 1 yields a dynamic program to solve the problem in time bounded by a
polynomial in n = |F |. Then it is easy to show that (DCBS) generaly is in P for bounded upper
bounds.

If β is bounded by β then α is bounded, too, since α ∈ O(2β). The idea for a dynamic
program is simple. Consider a node set

V = {0, ..., N1} × ... × {0, ..., Nα} × {0, ..., α} ∪ {s}

and add arcs

(n1, ..., ni, ..., nα, l) → (n1, ..., ni − 1, ..., nα, i) ∀n1 = 0...N1, ..., nα = 0...Nα, l = 1...α

whenever bl and bi do not have a 1 in the same component. Adding further arcs

s → (N1, ..., Ni − 1, ..., Nα, i) ∀i = 1..α

yields a tree rooted by s with at most O(αnα) nodes. A path from s to a leaf of heigth n
represents a feasible sequence of the vectors.

The nodes of height k are called γk(...). The following dynamic program finds such a path:

create γ0 (N1, ..., Nα, 0)
for k = 1..n do

for all γk−1 do

for i = 1..α do

if (γk−1

i > 0 and (bi and b
γ

k−1

α+1

do not conflict)) then

create γk = γk−1(..., γk−1

i − 1, ..., i)
add arc from γk−1 to γk

if (k = n) then return true

return false

Here “bi and b
γk−1

α+1

do not conflict” means that the two bit vectors do not have a 1 in the

same component. This will help us later to extend the program to general upper and lower
bounds.

Theorem 4. If m = 1 for all components and β is bounded by a constant β then (DCBS)
belongs to P and can be solved in O(nα) using the above dynamic program.

Proof. It suffices to show by induction that the dynamic program works well. I show the
following assumtion:

• In the kth iteration of the outer for-loop the paths from γ0 to any γk−1 yield feasible
sequences of the available vectors of length k (considering the last component of each
node). The first α components represent how many items of each vector are still available.

Creating node γ0 does not cause any confilicts. Each of the first α components show the
availability of each vector type and the sequence has length 0. Now assume that each node
of height k − 1 represents a sequence (following the path to the root and considering the last

6

component). If a node for the vector type i and an arc is being created in the innermost block
of the program γk−1

i > 0 ensures that the vector type is still available and that the vectors bi

and b
γ

k−1

α+1

can be sequenced after each other. The created node then keeps the information that

one vector less of type i is available. The program returns false if no node of height n can be
constructed and true otherwise.

Corollary 5. (DCBS) belongs to P for bounded β and bounded mj j = 1..β.

Proof. The idea is to hold the last M = max {mj |j = 1..β } vector types in each node to make
sure that the next vector bi does not conflict with the last M sequenced vectors. The node

set then is V = {0, ..., N1} × ... × {0, ..., Nα} × {0, ..., α}max{mj+1|j=1..β } ∪ {s} which is still
polynomial in n.

4 A Parameterized Heuristic Procedure

Returning to practice we say that “bi has option j” if bi has a one in component j. The main
idea (derived from [2]) is simple and is shown best in a small block of pseudocode:

S = ∅
while not all vectors sequenced do

set pmin = min {pi |S + bi violates pi constraints, i = 1..α}
set b∗ to that element of {bi |S + bi violates pmin constraints, i = 1..α}

which ensures the most regular flow of ones in each component
put b∗ into the sequence

end while

In each iteration of the while-loop the set of those vectors is considered which cause the
least conflicts. As in other greedy strategies the problem could arise that “better” vectors are
sequenced first and leave the rest of the sequence to vectors that are harder to sequence. To
avoid this we try to keep the rate an option enters the sequence as near to the average as possible.

Let Ni the quantity of bi and N =
∑α

i=1
Nibi the vector containing the quantities of the

options j = 1..β in F . Then with Xj,k being the number of sequenced vectors with option j in
the kth step of the while-loop we want to minimize

∥

∥

∥

∥

Xk−1

k
+ bi −

N

|F |

∥

∥

∥

∥

(7)

This approach was first introduced by Monden [4] but without further constraints. Here the
presented heuristic follows both goals, avoid distance violation and try to keep average option
consuming. A similar approach (considering car-sequencing) was made in [1]. They also pre-
sented a column-generation approach to solve small instances of the problem up to the size of
about 50. The instances that we have to cope with (arising in automobile production) have a
size of about 2000.

The approach to calculate optimum sequences of smaller size containing a fraction of each
vector type and combining the small sequences afterwards could be used to get aproximate so-
lutions for bigger problems but this would still imply to calculate many small instances since
vectors with lower occurance have still to be considered (they cannot be put into the sequence
afterwards). Furthermore in automobily production it is hard to ensure a specific input sequence
at the assembly line anyway since there could occure many failures during the previous produc-
tion process which would alter the sequence. Therefore it is suitable to assume that in each

7

time step a limited number of vectors (say in a choice-free memory) is available for sequencing.
The heuristic presented above follows this just-in-time apparoach.

We now extend the distance constraints to a more general class of constraints which arise in
car production. Consider the expression

β
∑

j=1

Wj,ρ

(

Xj,k − Xj,k−Lρ

)

≤ Mρ ∀k = Lρ + 1..n

where Wj,ρ is some weight for option j and restriction ρ and Mρ is a constant for constraint ρ.
We can now cope with more than just distance constraints:

• lower bound distance constraints (Wρ is the jth unity vector, Lρ = mj and Mρ = 1)

• upper bound distance constraints (as above with −Wρ and Mρ = −2 and Lρ = mj)

• at most xj vectors in every subsequence of length yj should contain option j, known as
Car-Sequencing-Problem (Wρ is the jth unity vector, Lρ = yj and Mρ = xj)

• sequence at most x1 cars with option j1 out of y but if they have option j2, too only x2

out of y are allowed

• combine options, i.e. measure the distance between options of a specified set

We remark that even banning restrictions that do not allow vectors in special positions of the
sequence are possible but not suitable for the heuristic because too much global knowledge about
the already built sequence and the remaining vectors is necessary.

In automobile industry it often occurs that some options should be handled with higher
priority. This can be done by a higher penalty for a broken constrained and by replacing the
norm in 7 by a weighted norm like

‖x‖∗ =

√

√

√

√

β
∑

j=1

wjx2
j

where more important options j get a higher weight wj .

Open Issues of the Heuristic

The procedure above causes some problems that we want to point out here

• The restrictions must be chosen relatively soft because otherwise the sequence is not

leveled anymore (consider the instance with vector types

(

1
0

)

,

(

0
1

)

and

(

1
1

)

and

minimum distance 1. The all-one vectors will always be sequenced last causing double
penalty)

• Although the options are leveled over the sequence it can still occur that “better” vector
types are sequenced first while others are left for the end of the sequence (see example
above)

• Other important constraints for automobile production are not being considered (banning,
parallel assembly lines on which other restrictions have to hold)

8

5 Concluding Remarks

Since the presented heuristic procedure is not completely new the main result of this paper lies
in the complexity analysis of (DCBS). It is still left open, how to get results that overcome the
open problems of the heuristic. It has been shown that the complexity of the problem is high
and that even strong simplifications still remain hard to solve. By loosening the requirement
of optimality we get a just-in-time heuristic procedure that copes with sudden variations of the
incoming sequence that can occur in car production having a choice-free memory prior to the
line which holds the available cars.

References

[1] A. Drexl and A. Kimms, Sequencing JIT Mixed-Model Assembly Lines Under Station-Load
and Part-Usage Constraints, Managment Science 47 (2001).

[2] J. P. Garcia-Sabater, The Problem of JIT Dynamic Sequencing. A Model and a Parametric
Procedure, ORP3, Paris, September 26–29 (2001).

[3] M. R. Garey and D. S. Johnson, Computers and Intractability. A Guide to the Theory of
NP-Completeness, W. H. Freeman and Company, 1979.

[4] Y. Monden, Toyota Production System, Institute of Industrial Engineers Press, 1983.

9

