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Abstract

Recently Hochstättler and Nešetřil [3] introduced the flow lattice of an oriented ma-
troid as generalization of the lattice of all integer flows of a digraph or more general
a regular matroid. This lattice is defined as the integer hull of the characteristic
vectors of signed circuits.

We describe the structure and the dimension of the flow lattice for uniform and
rank 3 oriented matroids and construct a basis of signed circuits. Furthermore,
we analyze the behaviour of the dimension of the flow lattice under the 2-sum of
oriented matroids and present some quesions based on computational results on
catalogs of oriented matroids.
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1 Overview

Let O be an oriented matroid on a ground set E with n elements and C its set
of signed circuits. We identify a circuit C ∈ C with its signed characteristic
vector χC ∈ {0,±1}n. We use standard notation for oriented matroids as in
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Björner et al. [1], denote by

FO :=

{∑
C∈C

λCχC ∈ ZE : λC ∈ Z
}

the integer lattice of signed circuits of O and by ΦL(O) the flow number of O,
i. e. the smallest k so that there is an x ∈ FO satisfying 0 < |xe| < k for all
e ∈ E. A(C) is the matrix containing the signed characteristic vectors of C as
rows.

If O is a graphic oriented matroid of a digraph D(V, E) the vectors in F(O)
correspond to circular flows in D. The flow number ϕ(D) of D is then equal
to ΦL(O). Note that ϕ(D) only depends on the underlying graph.

In this paper we will discuss some questions concerning the integer lattice of
C (i. e. the flow lattice FO):

(1) What is the dimension of FO?

(2) Has FO a short characterization?

(3) Does C contain a basis of FO?

(4) What is the smallest number k, so that there is a vector x ∈ FO satisfying
0 < |xi| < k for all i = 1, . . . , n?

For the signed circuits of a regular oriented matroid (and more particular of a
digraph) the above questions have been studied very well in past. From graph
theory it is known that the dimension of the circuit space of a connected
digraph is |E|− |V |+1 and more general |E|− rank(O) for a regular matroid.
The elementary circuits {C(B, e)}e∈E\B form a basis of FO for any basis B
of O. Concerning the last question it is known that k ≤ 6 and conjectured
that k ≤ 5 for every bridge-less digraph (Tutte’s 5-flow conjecture) but the
computation of ΦL is an NP-complete problem for regular oriented matroids,
as the flow number of a cographic matroid is the chromatic number of the
corresponding graph. For general oriented matroids Question 1 was stated in
a slightly different context as research problem in Björner et al. [1, 4.45(d)].
The other problems seem not to have been considered in the literature yet.

We completely analyze the flow lattice for uniform oriented matroids and
general oriented matroids of rank 3. It will turn out that there is a surprising
gap in the dimension between regular and non-regular oriented matroids of
the considered types, e. g. there is no simple and co-simple rank 3 oriented
matroid O with |E| − 3 < dimF(O) < |E| − 1 while the values |E| − 1 and
|E| are obtained.
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In Sections 2 and 3 we analyze the flow lattice for uniform and rank 3 ori-
ented matroids by answering the raised questions. In the last section we define
the 2-sum of oriented matroids which, surprisingly, we could not find in the
literature. Using this 2-sum we can construct for an arbitrary gap g ∈ N a
connected oriented matroid that satisfies dimFO = |E| − r + g. Finally, we
briefly report on and draw some conclusions from computational results on
the flow lattices of catalogs of oriented matroids.

2 Uniform Oriented Matroids

In the recent work of Hochstättler and Nešetřil [3] which introduces the flow
number of an oriented matroid the flow lattice turns out to be trivial (i. e.
F(O) = Zn) for the case of even rank. It was also observed that the component
sum for odd rank always must be even. Our analysis of the dimension in this
case requires the consideration of balanced circuits (i. e. |C+| = |C−|). It turns
out that F(O) does not have full dimension if and only if O is reorientation
equivalent to a neighborly matroid polytope. We call such a uniform oriented
matroid of odd rank neighborly. This leads to a complete characterization:

Theorem 1 Let O be a uniform oriented matroid on n elements. Then

F(O) =


Zn if r is even

{v}⊥ ∩ Zn for some v ∈ {1,−1}n if r is odd and O is neighborly

{x ∈ Zn : 2|1T x} otherwise.

This easily implies the result of [3]

ΦL(O) =

 2 if nr is even

3 if nr is odd.

Theorem 2 If C is the set of signed circuits of a uniform oriented matroid
O then C contains a basis of FO.

We construct a basis of circuits as follows: We start with a basis of an orien-
tation of Ur,r+2 which is a restriction of any uniform oriented matroid having
more than r + 2 elements. This restriction Or+2 is neighborly and unique up
to reorientation. If O has odd rank and is neighborly we can extend Or+2

by successively adding elements and the basis of Or+2 is extended by adding
corresponding new circuits. We proceed similarly if O has even rank. If O has
odd rank and is not neighborly we can show that O has a restriction minor
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Or+3 with r +3 elements that is not neighborly. We extend a basis of Or+2 by
two new circuits so that the dimension increases by two to a basis of F(Or+3).
We have to take some care selecting these two circuits. In order to find them
it turns out to be helpful to consider the dual O∗

r+3 which is of rank 3 and
therefore representable as a pseudo-line arrangement. The basis of F(Or+3)
now can be extended to a basis of O as in the other cases.

3 Non-uniform Oriented Matroids with Rank 3

While in the last section O was assumed to be uniform we now turn to general
oriented matroids but limit the rank to be 3. Note that this case contains
regular and uniform oriented matroids as well. Precisely, we will show that
FO is trivial (up to co-loops and co-parallels) whenever O has at least 6
elements and is neither M(K4) nor uniform. Consequently, any non-regular
simple and co-simple extension of a regular rank 3 oriented matroid increases
the dimension of the lattice by 4 (instead of at most two in the uniform case).

Theorem 3 Let O be a simple co-simple non-uniform oriented matroid of
rank 3 on a ground set E with n ≥ 6 elements. Then FO = Zn if and only if
O 6∼= M(K4).

To prove this theorem we consider the single element extensions of an oriented
matroid that is contained in almost any non-uniform oriented matroid of rank
3 as a deletion minor (a co-extension of the 4-point line) and show that all of
its co-simple extensions have trivial flow lattice.

Corollary 4 Let O be a non-regular non-uniform simple and co-simple ori-
ented matroid of rank 3. Then ΦL(O) = 2.

The construction of a basis is done by starting from a basis of P6, R6, Q6 resp.
W3 and extending the basis by a circuit containing only some of the current
elements plus one new element.

4 General Oriented Matroids

It suffices to study 3-connected oriented matroids which is a consequence of
an analogue to a decomposition theorem from matroid theory. We introduce
the 2-sum of oriented matroids O1(E1, C1) and O2(E2, C2) (E1 ∩E2 = {f}) as
O((E1 ∪ E2) \ f, C⊕2) with the circuit set

C⊕2 = Cf0

1 ∪ Cf0

2 ∪ {(C1 ∪ C2) \ f : Ci(f) = −C2(f) 6= 0}.
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C⊕2 can be shown to satisfy the circuit axioms of oriented matroid theory. By
the definition of this 2-sum and the direct sum we derive

Lemma 5 Every oriented matroid O can be decomposed into direct sums and
2-sums of 3-connected oriented matroids.

Aiming to determine the dimension of FO for general oriented matroids we
analyze the flow lattice dimension of 1- and 2-sums. While the dimension of
FO1⊕O2 does not depend on the structure of O1 and O2 (i. e. dimFO1⊕O2 =
dimFO1 + dimFO2) there are two possibilities for dimFO1⊕2O2 :

Lemma 6 If i (resp. j) is the column index in A(C1) (resp. A(C2)) corre-
sponding to f , then

dimFO1⊕2O2 = dimFO1 + dimFO2 −

 2 for ei ∈ lin (C1) and ej ∈ lin (C2)

1 otherwise.

As a consequence we get for the flow number of the 2-sum

Corollary 7 ΦL(O1 ⊕2 O2) ≤ max{ΦL(O1), ΦL(O2)}.

To get an idea of the structure of the flow lattice of general oriented matroids
we determined FO for small oriented matroids from Finschi [2] and Oxley [4].
Based on these results we raise the following questions:

(1) Is dimFO ∈ {n− 1, n} for any simple co-simple non-regular 3-connected
oriented matroid?

(2) Can FO be characterized (similar to the uniform case) by either an or-
thogonality condition, an integral linear modular equation, or both? The
most complicated lattice we encountered was that of an orientation of
the dual of the Pappus matroid with the flow lattice

FO =

{
x ∈ Zn : 2|(1, 1, 1, 2, 2, 2, 1, 2, 1, 1)T x and

8∑
i=3

xi = 0

}
.

(3) Does C always contain a basis of FO?
(4) Is FO trivial if O is a single element extension of a maximum regular

oriented matroid?
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