Flows in Oriented Matroids

Winfried Hochstättler Robert Nickel

Discrete Mathematics and Optimization FernUniversität Hagen

Cologne-Twente Workshop on Graphs and Combinatorial Optimization 2005

Outline

Decomposition into 2-sums and direct sums

Numerical Results

▶ < ∃ >

Classes of Oriented Matroids Matroid Decomposition Numerical Results Oriented Matroids The Flow Lattice

Outline

Classes of Oriented Matroids Matroid Decomposition Numerical Results Oriented Matroids The Flow Lattice

Oriented Matroids. Some Terminology

• Let $E = \{1, \ldots, n\}$, the ground set.

- A signed subset of $C \subseteq E$ is a partition $C = (C^+, C^-)$.
- A family *C* of signed subsets is the set of signed circuits of an oriented matroid *O* if it satisfies the circuit axioms.
- By forgetting the signs we get the underlying matroid.

Classes of Oriented Matroids Matroid Decomposition Numerical Results Oriented Matroids The Flow Lattice

Oriented Matroids. Some Terminology

- Let $E = \{1, \ldots, n\}$, the ground set.
- A signed subset of $C \subseteq E$ is a partition $C = (C^+, C^-)$.
- A family *C* of signed subsets is the set of signed circuits of an oriented matroid *O* if it satisfies the circuit axioms.
- By forgetting the signs we get the underlying matroid.

Classes of Oriented Matroids Matroid Decomposition Numerical Results Oriented Matroids The Flow Lattice

Oriented Matroids. Some Terminology

- Let $E = \{1, \ldots, n\}$, the ground set.
- A signed subset of $C \subseteq E$ is a partition $C = (C^+, C^-)$.
- A family C of signed subsets is the set of signed circuits of an oriented matroid O if it satisfies the circuit axioms.
- By forgetting the signs we get the underlying matroid.

Classes of Oriented Matroids Matroid Decomposition Numerical Results Oriented Matroids The Flow Lattice

Oriented Matroids. Some Terminology

- Let $E = \{1, \ldots, n\}$, the ground set.
- A signed subset of $C \subseteq E$ is a partition $C = (C^+, C^-)$.
- A family C of signed subsets is the set of signed circuits of an oriented matroid O if it satisfies the circuit axioms.
- By forgetting the signs we get the underlying matroid.

Circuit Axioms
(C1) $C = -C$
$(C2) C_1 \subseteq C_2 \Rightarrow C_1 = \pm C_2$
(C3) $\boldsymbol{e} \in C_1^+ \cap \boldsymbol{C_2}^- \Rightarrow \exists \boldsymbol{Z} \in \mathcal{C}:$
$Z^+ \subseteq (C_1^+ \cup C_2^+) \setminus e$
$Z^- \subseteq (C_1^- \cup C_2^-) \setminus e$

Classes of Oriented Matroids Matroid Decomposition Numerical Results Oriented Matroids The Flow Lattice

Oriented Matroids. Some Terminology

- Let $E = \{1, \ldots, n\}$, the ground set.
- A signed subset of $C \subseteq E$ is a partition $C = (C^+, C^-)$.
- A family C of signed subsets is the set of signed circuits of an oriented matroid O if it satisfies the circuit axioms.
- By forgetting the signs we get the underlying matroid.

Circuit Axioms
(C1) $C = -C$
$(C2) C_1 \subseteq C_2 \Rightarrow C_1 = \pm C_2$
(C3) $\mathbf{e} \in \mathbf{C}_1^+ \cap \mathbf{C}_2^- \Rightarrow \exists \mathbf{Z} \in \mathcal{C}$:
$Z^+ \subseteq (C_1^+ \cup C_2^+) \setminus e$
$Z^- \subseteq (C_1^- \cup C_2^-) \setminus e$

Classes of Oriented Matroids Matroid Decomposition Numerical Results Oriented Matroids The Flow Lattice

Oriented Matroids. Some Terminology

- Let $E = \{1, \ldots, n\}$, the ground set.
- A signed subset of $C \subseteq E$ is a partition $C = (C^+, C^-)$.
- A family C of signed subsets is the set of signed circuits of an oriented matroid O if it satisfies the circuit axioms.
- By forgetting the signs we get the underlying matroid.

Circuit Axioms
(C1) $C = -C$
$(C2) C_1 \subseteq C_2 \Rightarrow C_1 = \pm C_2$
(C3) $\mathbf{e} \in \mathbf{C}_1^+ \cap \mathbf{C}_2^- \Rightarrow \exists \mathbf{Z} \in \mathcal{C}$:
$Z^+ \subseteq (C_1^+ \cup C_2^+) \setminus e$
$Z^- \subseteq (C_1^- \cup C_2^-) \setminus e$

(日)

Classes of Oriented Matroids Matroid Decomposition Numerical Results Oriented Matroids The Flow Lattice

Oriented Matroids. Some Terminology

- Let $E = \{1, \ldots, n\}$, the ground set.
- A signed subset of $C \subseteq E$ is a partition $C = (C^+, C^-)$.
- A family C of signed subsets is the set of signed circuits of an oriented matroid O if it satisfies the circuit axioms.
- By forgetting the signs we get the underlying matroid.

Circuit Axioms
(C1) $C = -C$
$(C2) C_1 \subseteq C_2 \Rightarrow C_1 = \pm C_2$
(C3) $\mathbf{e} \in \mathbf{C}_1^+ \cap \mathbf{C}_2^- \Rightarrow \exists \mathbf{Z} \in \mathcal{C}$:
$Z^+ \subseteq (C_1^+ \cup C_2^+) \setminus e$
$Z^- \subseteq (C_1^- \cup C_2^-) \setminus e$

(日)

Classes of Oriented Matroids Matroid Decomposition Numerical Results Oriented Matroids The Flow Lattice

Oriented Matroids. Some Terminology

- Let $E = \{1, \ldots, n\}$, the ground set.
- A signed subset of $C \subseteq E$ is a partition $C = (C^+, C^-)$.
- A family C of signed subsets is the set of signed circuits of an oriented matroid O if it satisfies the circuit axioms.
- By forgetting the signs we get the underlying matroid.

Circuit Axioms
(C1) $C = -C$
$(C2) C_1 \subseteq C_2 \Rightarrow C_1 = \pm C_2$
(C3) $\mathbf{e} \in \mathbf{C}_1^+ \cap \mathbf{C}_2^- \Rightarrow \exists \mathbf{Z} \in \mathcal{C}$:
$Z^+ \subseteq (C_1^+ \cup C_2^+) \setminus e$
$Z^- \subseteq (C_1^- \cup C_2^-) \setminus e$

< □ > < 同 > < 三 > < 三

Classes of Oriented Matroids Matroid Decomposition Numerical Results Oriented Matroids The Flow Lattice

Oriented Matroids. Some Terminology

- Let $E = \{1, \ldots, n\}$, the ground set.
- A signed subset of $C \subseteq E$ is a partition $C = (C^+, C^-)$.
- A family C of signed subsets is the set of signed circuits of an oriented matroid O if it satisfies the circuit axioms.
- By forgetting the signs we get the underlying matroid.

Circuit Axioms
(C1) $C = -C$
(C2) $C_1 \subseteq C_2 \Rightarrow C_1 = \pm C_2$
(C3) $\mathbf{e} \in \mathbf{C}_1^+ \cap \mathbf{C}_2^- \Rightarrow \exists \mathbf{Z} \in \mathcal{C}$:
$Z^+ \subseteq (C_1^+ \cup C_2^+) \setminus e$
$Z^- \subseteq (C_1^- \cup C_2^-) \setminus e$

Classes of Oriented Matroids Matroid Decomposition Numerical Results Oriented Matroids The Flow Lattice

Oriented Matroids. Some Terminology

- The rank of \mathcal{O} is the largest cardinality of a subset of *E* which does not contain a circuit.
- Reorienting $e \in E$ means changing the sign of e in every circuit
- Some important classes of oriented matroids:

Classes of Oriented Matroids Matroid Decomposition Numerical Results Oriented Matroids The Flow Lattice

Oriented Matroids. Some Terminology

- The rank of \mathcal{O} is the largest cardinality of a subset of *E* which does not contain a circuit.
- Reorienting $e \in E$ means changing the sign of e in every circuit
- Some important classes of oriented matroids:

Classes of Oriented Matroids Matroid Decomposition Numerical Results Oriented Matroids The Flow Lattice

Oriented Matroids. Some Terminology

- The rank of \mathcal{O} is the largest cardinality of a subset of *E* which does not contain a circuit.
- Reorienting $e \in E$ means changing the sign of e in every circuit
- Some important classes of oriented matroids:

Classes of Oriented Matroids Matroid Decomposition Numerical Results Oriented Matroids The Flow Lattice

Outline

Numerical Results

Classes of Oriented Matroids Matroid Decomposition Numerical Results Oriented Matroids The Flow Lattice

The Flow Lattice of an Oriented Matroid.

Circuits and Flows:

• A signed circuit $C = (C^+, C^-) \in C$ yields characteristic vector (e. g. $\chi_C = (+1, -1, 0, 0, -1, -1, +1)$)

We define the Flow Lattice of O as

$$\mathcal{F}_{\mathcal{O}} := \{ \mathbf{x} = \sum_{\mathbf{C} \in \mathcal{C}} \lambda_{\mathbf{C}} \chi_{\mathbf{C}} \, | \, \lambda_{\mathbf{c}} \in \mathbb{Z} \}$$

and the Flow Number as

$$\phi(\mathcal{O}) := \min_{x \in \mathcal{F}_{\mathcal{O}}} \{ k : 0 < |x_i| < k \}$$

Classes of Oriented Matroids Matroid Decomposition Numerical Results Oriented Matroids The Flow Lattice

The Flow Lattice of an Oriented Matroid.

Circuits and Flows:

- A signed circuit $C = (C^+, C^-) \in C$ yields characteristic vector (e. g. $\chi_C = (+1, -1, 0, 0, -1, -1, +1)$)
- We define the Flow Lattice of \mathcal{O} as

$$\mathcal{F}_{\mathcal{O}} := \{ \mathbf{x} = \sum_{\mathbf{C} \in \mathcal{C}} \lambda_{\mathbf{C}} \chi_{\mathbf{C}} \, | \, \lambda_{\mathbf{c}} \in \mathbb{Z} \}$$

and the Flow Number as

$$\phi(\mathcal{O}) := \min_{\mathbf{x} \in \mathcal{F}_{\mathcal{O}}} \{ \mathbf{k} : \mathbf{0} < |\mathbf{x}_i| < \mathbf{k} \}$$

Classes of Oriented Matroids Matroid Decomposition Numerical Results Oriented Matroids The Flow Lattice

The Flow Lattice of an Oriented Matroid.

Circuits and Flows:

- A signed circuit $C = (C^+, C^-) \in C$ yields characteristic vector (e. g. $\chi_C = (+1, -1, 0, 0, -1, -1, +1)$)
- We define the Flow Lattice of \mathcal{O} as

$$\mathcal{F}_{\mathcal{O}} := \{ \mathbf{x} = \sum_{\mathbf{C} \in \mathcal{C}} \lambda_{\mathbf{C}} \chi_{\mathbf{C}} \, | \, \lambda_{\mathbf{c}} \in \mathbb{Z} \}$$

and the Flow Number as

$$\phi(\mathcal{O}) := \min_{\mathbf{x} \in \mathcal{F}_{\mathcal{O}}} \{ \mathbf{k} : \mathbf{0} < |\mathbf{x}_i| < \mathbf{k} \}$$

Introduction Classes of Oriented Matroids Numerical Results

Matroid Decomposition

The Flow Lattice

Why Does It Make Sense? Flows in Digraphs

If O is graphic, F_O consists of all circular flows

• $\phi(\mathcal{O})$ is the known flow number of the corresponding digraph G • If \mathcal{O} is co-graphic, $\phi(\mathcal{O}^*)$ is the chromatic number of $G(\mathcal{O}^*)$

- Elementary circuits of a spanning tree form a basis of \mathcal{F}_{G}

Oriented Matroids The Flow Lattice

Why Does It Make Sense? Flows in Digraphs

- If \mathcal{O} is graphic, $\mathcal{F}_{\mathcal{O}}$ consists of all circular flows
- $\phi(\mathcal{O})$ is the known flow number of the corresponding digraph G
- If \mathcal{O} is co-graphic, $\phi(\mathcal{O}^*)$ is the chromatic number of $G(\mathcal{O}^*)$

Flow Lattice Structure of a Digraph

- dim $\mathcal{F}_G = |E| |V| + \operatorname{comp}(G)$
- Characterization of \mathcal{F}_G uses vertices (Kirchhoff's law)
- Determination of $\phi(G)$ is \mathcal{NP} -hard.
- $\phi(G)$ does not depend on the orientation (is graph invariant)
- Elementary circuits of a spanning tree form a basis of \mathcal{F}_G

Oriented Matroids The Flow Lattice

Why Does It Make Sense? Flows in Digraphs

- If \mathcal{O} is graphic, $\mathcal{F}_{\mathcal{O}}$ consists of all circular flows
- $\phi(\mathcal{O})$ is the known flow number of the corresponding digraph G
- If *O* is co-graphic, φ(*O**) is the chromatic number of *G*(*O**)

Flow Lattice Structure of a Digraph

- dim $\mathcal{F}_G = |E| |V| + \operatorname{comp}(G)$
- Characterization of \mathcal{F}_G uses vertices (Kirchhoff's law)
- Determination of $\phi(G)$ is \mathcal{NP} -hard.
- $\phi(G)$ does not depend on the orientation (is graph invariant)
- Elementary circuits of a spanning tree form a basis of \mathcal{F}_G

Oriented Matroids The Flow Lattice

Why Does It Make Sense? Flows in Digraphs

- If \mathcal{O} is graphic, $\mathcal{F}_{\mathcal{O}}$ consists of all circular flows
- \$\phi(\mathcal{O})\$ is the known flow number of the corresponding digraph G
- If *O* is co-graphic, φ(*O**) is the chromatic number of *G*(*O**)

Flow Lattice Structure of a Digraph

- dim $\mathcal{F}_G = |\mathbf{E}| |\mathbf{V}| + \operatorname{comp}(\mathbf{G})$
- Characterization of \mathcal{F}_G uses vertices (Kirchhoff's law)
- Determination of $\phi(G)$ is \mathcal{NP} -hard.
- \$\phi(G)\$ does not depend on the orientation (is graph invariant)
- Elementary circuits of a spanning tree form a basis of \mathcal{F}_{G}

Classes of Oriented Matroids Matroid Decomposition Numerical Results Oriented Matroids The Flow Lattice

What We Want to Know.

Questions:

- Determine dim $\mathcal{F}_{\mathcal{O}}$
- Is there a simple characterization of \$\mathcal{F_O}\$?
- Can \u03c6(\u03c6) be determined for other classes?
- Is φ(O) a matroid invariant?
- Is there a basis of \(\mathcal{F}_\mathcal{O}\) containing circuits only?

Uniform Oriented Matroids Rank 3 Oriented Matroids

Outline

Numerical Results

• • • • • • • • • • • •

Uniform Oriented Matroids Rank 3 Oriented Matroids

Some Examples.

 $\dim \mathcal{F}_{\mathcal{O}} = n-1$

 $\dim \mathcal{F}_{\mathcal{O}} = n$

 $\dim \mathcal{F}_{\mathcal{O}} = n-1$

- The first example is a neighborly polytope In ℝ^d: Every set of at most d/2 vertices forms a facet.
- The third example is a reorientation of a the 6-gon
- Only neighborly matroid polytopes have balanced circuits only

Uniform Oriented Matroids Rank 3 Oriented Matroids

The Structure of $\mathcal{F}_{\mathcal{O}}$ for Uniform Oriented Matroids.

Let O be a uniform rank r oriented matroid on a ground set $E = \{1, ..., n\}.$

Theorem

 $\ensuremath{\mathcal{O}}$ has a reorientation such that

$$\mathcal{F}_{\mathcal{O}} = \begin{cases} \mathbb{Z}^n & \text{if } r \text{ is even} \\ \{\mathbf{1}\}^{\perp} \cap \mathbb{Z}^n & \text{if } r \text{ is odd and } \mathcal{O} \text{ is neighborly} \\ \{x^T \mathbf{1} \text{ is even}\} & \text{otherwise.} \end{cases}$$

Uniform Oriented Matroids Rank 3 Oriented Matroids

Answers for Uniform Oriented Matroids.

Our Results:

- The co-dimension is either 0 or 1
- $\mathcal{F}_{\mathcal{O}}$ is trivial or can be characterized by an orthogonality condition or a modular equation
- $\phi(\mathcal{O})$ is either 2 or 3 but matroid invariant
- $\dim \mathcal{F}_{\mathcal{O}}$ is not matroid invariant
- A basis $B \subset C$ of $\mathcal{F}_{\mathcal{O}}$ can be constructed

Uniform Oriented Matroids Rank 3 Oriented Matroids

Outline

Classes of Oriented Matroids
 Uniform Oriented Matroids

- Rank 3 Oriented Matroids
- Matroid Decomposition
 - A 2-sum for Oriented Matroids
 - Decomposition into 2-sums and direct sums

Numerical Results

• • • • • • • • • • • • •

Uniform Oriented Matroids Rank 3 Oriented Matroids

The Flow Lattice of Rank 3 Oriented Matroids.

- Consists of regular and uniform OMs as well
- *O*(*K*₄) is maximum regular (has 6 elements)

Theorem

Let \mathcal{O} a simple and co-simple non-uniform rank 3 oriented matroid over $E = \{1, ..., n\}$ with n > 6. Then $\mathcal{F}_{\mathcal{O}} = \mathbb{Z}^n$.

Uniform Oriented Matroids Rank 3 Oriented Matroids

The Flow Lattice of Rank 3 Oriented Matroids.

- O₅ is contained in any non-regular, non-uniform rank 3 oriented matroid with more than 5 elements.
- Any co-simple extension of O₅ yields a trivial flow lattice

Uniform Oriented Matroids Rank 3 Oriented Matroids

The Flow Lattice of Rank 3 Oriented Matroids.

- O₅ is contained in any non-regular, non-uniform rank 3 oriented matroid with more than 5 elements.
- Any co-simple extension of O₅ yields a trivial flow lattice

Uniform Oriented Matroids Rank 3 Oriented Matroids

The Flow Lattice of Rank 3 Oriented Matroids.

- O₅ is contained in any non-regular, non-uniform rank 3 oriented matroid with more than 5 elements.
- Any co-simple extension of O₅ yields a trivial flow lattice

Uniform Oriented Matroids Rank 3 Oriented Matroids

The Flow Lattice of Rank 3 Oriented Matroids.

- O₅ is contained in any non-regular, non-uniform rank 3 oriented matroid with more than 5 elements.
- Any co-simple extension of O₅ yields a trivial flow lattice

Uniform Oriented Matroids Rank 3 Oriented Matroids

Answers for Rank 3 Oriented Matroids.

Our Results:

- The co-dimension of $\mathcal{F}_{\mathcal{O}}$ is 0
- *F*_O is trivial whenever O is simple, co-simple, non-regular and non-uniform with more than 4 elements
- $\phi(\mathcal{O}) = 2$ and therefore matroid invariant
- A basis $B \subset C$ of $\mathcal{F}_{\mathcal{O}}$ can be constructed

A 2-sum for Oriented Matroids Decomposition into 2-sums and direct sums

• • • • • • • • • • • •

Outline

Introduction
Oriented Matroids
The Flow Lattice

Classes of Oriented Matroids
 Uniform Oriented Matroids
 Rank 3 Oriented Matroids

Matroid Decomposition
 A 2-sum for Oriented Matroids

Decomposition into 2-sums and direct sums

Numerical Results

A 2-sum for Oriented Matroids Decomposition into 2-sums and direct sums

The General Case. Direct Sum and 2-Sum.

- Any co-dimension of $\mathcal{F}_{\mathcal{O}}$ can be constructed.
- Let C_1 and C_2 be circuits of two oriented matroids \mathcal{O}_1 and \mathcal{O}_2 on $E_1 \cap E_2 = \emptyset$.

Direct Sum

Let $C_{\oplus} := C_1 \cup C_2$. Then C_{\oplus} is the set of signed circuits of an oriented matroid \mathcal{O}_{\oplus} .

- $\dim \mathcal{F}_{\mathcal{O}} = \dim \mathcal{F}_{\mathcal{O}_1} + \dim \mathcal{F}_{\mathcal{O}_2}$
- Problem: The resulting oriented matroid is not connected
- Define a 2-sum similar to the 2-sum of graphs

The General Case. Direct Sum and 2-Sum.

- Any co-dimension of $\mathcal{F}_\mathcal{O}$ can be constructed.
- Let C_1 and C_2 be circuits of two oriented matroids \mathcal{O}_1 and \mathcal{O}_2 on $E_1 \cap E_2 = \emptyset$.

Direct Sum

Let $\mathcal{C}_{\oplus} := \mathcal{C}_1 \cup \mathcal{C}_2$. Then \mathcal{C}_{\oplus} is the set of signed circuits of an oriented matroid \mathcal{O}_{\oplus} .

- $\dim \mathcal{F}_{\mathcal{O}} = \dim \mathcal{F}_{\mathcal{O}_1} + \dim \mathcal{F}_{\mathcal{O}_2}$
- Problem: The resulting oriented matroid is not connected
- Define a 2-sum similar to the 2-sum of graphs

A 2-sum for Oriented Matroids Decomposition into 2-sums and direct sums

The General Case. Direct Sum and 2-Sum.

- Any co-dimension of $\mathcal{F}_{\mathcal{O}}$ can be constructed.
- Let C_1 and C_2 be circuits of two oriented matroids \mathcal{O}_1 and \mathcal{O}_2 on $E_1 \cap E_2 = \emptyset$.

Direct Sum

Let $\mathcal{C}_{\oplus} := \mathcal{C}_1 \cup \mathcal{C}_2$. Then \mathcal{C}_{\oplus} is the set of signed circuits of an oriented matroid \mathcal{O}_{\oplus} .

• $\dim \mathcal{F}_{\mathcal{O}} = \dim \mathcal{F}_{\mathcal{O}_1} + \dim \mathcal{F}_{\mathcal{O}_2}$

- Problem: The resulting oriented matroid is not connected
- Define a 2-sum similar to the 2-sum of graphs

A 2-sum for Oriented Matroids Decomposition into 2-sums and direct sums

The General Case. Direct Sum and 2-Sum.

- Any co-dimension of $\mathcal{F}_{\mathcal{O}}$ can be constructed.
- Let C_1 and C_2 be circuits of two oriented matroids \mathcal{O}_1 and \mathcal{O}_2 on $E_1 \cap E_2 = \emptyset$.

Direct Sum

Let $\mathcal{C}_{\oplus} := \mathcal{C}_1 \cup \mathcal{C}_2$. Then \mathcal{C}_{\oplus} is the set of signed circuits of an oriented matroid \mathcal{O}_{\oplus} .

• $\dim \mathcal{F}_{\mathcal{O}} = \dim \mathcal{F}_{\mathcal{O}_1} + \dim \mathcal{F}_{\mathcal{O}_2}$

- Problem: The resulting oriented matroid is not connected
- Define a 2-sum similar to the 2-sum of graphs

A 2-sum for Oriented Matroids Decomposition into 2-sums and direct sums

The General Case. Direct Sum and 2-Sum.

- Any co-dimension of $\mathcal{F}_{\mathcal{O}}$ can be constructed.
- Let C_1 and C_2 be circuits of two oriented matroids \mathcal{O}_1 and \mathcal{O}_2 on $E_1 \cap E_2 = \emptyset$.

Direct Sum

Let $\mathcal{C}_{\oplus} := \mathcal{C}_1 \cup \mathcal{C}_2$. Then \mathcal{C}_{\oplus} is the set of signed circuits of an oriented matroid \mathcal{O}_{\oplus} .

- dim $\mathcal{F}_{\mathcal{O}} = \dim \mathcal{F}_{\mathcal{O}_1} + \dim \mathcal{F}_{\mathcal{O}_2}$
- Problem: The resulting oriented matroid is not connected
- Define a 2-sum similar to the 2-sum of graphs

A 2-sum for Oriented Matroids Decomposition into 2-sums and direct sums

The General Case. Direct Sum and 2-Sum.

- Any co-dimension of $\mathcal{F}_{\mathcal{O}}$ can be constructed.
- Let C_1 and C_2 be circuits of two oriented matroids \mathcal{O}_1 and \mathcal{O}_2 on $E_1 \cap E_2 = \emptyset$.

Direct Sum

Let $\mathcal{C}_{\oplus} := \mathcal{C}_1 \cup \mathcal{C}_2$. Then \mathcal{C}_{\oplus} is the set of signed circuits of an oriented matroid \mathcal{O}_{\oplus} .

- dim $\mathcal{F}_{\mathcal{O}} = \dim \mathcal{F}_{\mathcal{O}_1} + \dim \mathcal{F}_{\mathcal{O}_2}$
- Problem: The resulting oriented matroid is not connected
- Define a 2-sum similar to the 2-sum of graphs

A 2-sum for Oriented Matroids Decomposition into 2-sums and direct sums

The General Case. Direct Sum and 2-Sum.

• Now let $E_1 \cap E_2 = \{f\}$ and f not a co-loop.

A 2-Sum

Let $C_{\oplus_2} := C(\mathcal{O}_1 \setminus f) \cup C(\mathcal{O}_2 \setminus f)$ $\cup \{ (C_1 \cup C_2) \setminus f : C_i \in C_i, f \in C_1^+ \cap C_2^- \}.$ Then C_{\oplus_2} is the set of signed circuits of an oriented matroid $\mathcal{O}_{\oplus_2}.$

$$\dim \mathcal{F}_{\mathcal{O}_{\oplus_2}} = \dim \mathcal{F}_{\mathcal{O}_1} + \dim \mathcal{F}_{\mathcal{O}_2} - \begin{cases} 2 \text{ if } e_f \in \lim \mathcal{C}_1 \text{ and } e_f \in \lim \mathcal{C}_2 \\ 1 \text{ otherwise} \end{cases}$$

- The co-dimension of $\mathcal{F}_{\mathcal{O}}$ can become arbitrary large
- But: \mathcal{O}_{\oplus_2} is not 3-connected.

A 2-sum for Oriented Matroids Decomposition into 2-sums and direct sums

The General Case. Direct Sum and 2-Sum.

• Now let $E_1 \cap E_2 = \{f\}$ and f not a co-loop.

A 2-Sum

Let $C_{\oplus_2} := C(\mathcal{O}_1 \setminus f) \cup C(\mathcal{O}_2 \setminus f)$ $\cup \{ (C_1 \cup C_2) \setminus f : C_i \in C_i, f \in C_1^+ \cap C_2^- \}.$ Then C_{\oplus_2} is the set of signed circuits of an oriented matroid $\mathcal{O}_{\oplus_2}.$

$$\dim \mathcal{F}_{\mathcal{O}_{\oplus_2}} = \dim \mathcal{F}_{\mathcal{O}_1} + \dim \mathcal{F}_{\mathcal{O}_2} - \begin{cases} 2 \text{ if } e_f \in \lim \mathcal{C}_1 \text{ and } e_f \in \lim \mathcal{C}_2 \\ 1 \text{ otherwise} \end{cases}$$

- The co-dimension of $\mathcal{F}_{\mathcal{O}}$ can become arbitrary large
- But: \mathcal{O}_{\oplus_2} is not 3-connected.

A 2-sum for Oriented Matroids Decomposition into 2-sums and direct sums

The General Case. Direct Sum and 2-Sum.

• Now let $E_1 \cap E_2 = \{f\}$ and f not a co-loop.

A 2-Sum

Let $C_{\oplus_2} := C(\mathcal{O}_1 \setminus f) \cup C(\mathcal{O}_2 \setminus f)$ $\cup \{ (C_1 \cup C_2) \setminus f : C_i \in C_i, f \in C_1^+ \cap C_2^- \}.$ Then C_{\oplus_2} is the set of signed circuits of an oriented matroid $\mathcal{O}_{\oplus_2}.$

$$\dim \mathcal{F}_{\mathcal{O}_{\oplus_2}} = \dim \mathcal{F}_{\mathcal{O}_1} + \dim \mathcal{F}_{\mathcal{O}_2} - \begin{cases} 2 \text{ if } e_f \in \lim \mathcal{C}_1 \text{ and } e_f \in \lim \mathcal{C}_2 \\ 1 \text{ otherwise} \end{cases}$$

- The co-dimension of *F*_O can become arbitrary large
- But: \mathcal{O}_{\oplus_2} is not 3-connected.

A 2-sum for Oriented Matroids Decomposition into 2-sums and direct sums

The General Case. Direct Sum and 2-Sum.

• Now let $E_1 \cap E_2 = \{f\}$ and f not a co-loop.

A 2-Sum

Let $C_{\oplus_2} := C(\mathcal{O}_1 \setminus f) \cup C(\mathcal{O}_2 \setminus f)$ $\cup \{ (C_1 \cup C_2) \setminus f : C_i \in C_i, f \in C_1^+ \cap C_2^- \}.$ Then C_{\oplus_2} is the set of signed circuits of an oriented matroid $\mathcal{O}_{\oplus_2}.$

(ロ) (四) (三) (三)

$$\dim \mathcal{F}_{\mathcal{O}_{\oplus_2}} = \dim \mathcal{F}_{\mathcal{O}_1} + \dim \mathcal{F}_{\mathcal{O}_2} - \begin{cases} 2 \text{ if } e_f \in \lim \mathcal{C}_1 \text{ and } e_f \in \lim \mathcal{C}_2 \\ 1 \text{ otherwise} \end{cases}$$

- The co-dimension of *F*_O can become arbitrary large
- But: \mathcal{O}_{\oplus_2} is not 3-connected.

A 2-sum for Oriented Matroids Decomposition into 2-sums and direct sums

• • • • • • • • • • • •

Outline

Classes of Oriented Matroids
 Uniform Oriented Matroids
 Rank 3 Oriented Matroids

Matroid Decomposition
 A 2-sum for Oriented Matroids

Decomposition into 2-sums and direct sums

Numerical Results

A 2-sum for Oriented Matroids Decomposition into 2-sums and direct sums

A Decomposition Theorem for Oriented Matroids.

Theorem

Let \mathcal{O} be an oriented matroid. Then \mathcal{O} can be decomposed into direct sums and 2-sums of 3-connected oriented matroids.

- It suffices to consider
 - 3-connected
 - simple
 - co-simple
 - on non-regular
 - non-uniform

oriented matroids

Numerical Results.

Questions:

Under the above assumptions:

- Is the co-dimension always 0 or 1 ?
- Is *F*_O always trivial or has a characterization by an orthogonality condition or an integral modular equation (mod 2 ?) ?

0 Is
$$\phi(\mathcal{O}) \leq$$
 3?

• Is $\phi(\mathcal{O})$ matroid invariant?

• • • • • • • • • • • •

Numerical Results.

Our Test Sets:

We evaluated $\mathcal{F}_{\mathcal{O}}$ for the following test sets of oriented matroids:

- The entire catalogue of small OMs from Lukas Finschi http://www.om.math.ethz.ch
- All orientations of the examples of James G. Oxley ("Matroid Theory")
- All projective incidence structures from Jürgen Richter-Gebert's Darmstadt-dissertation (On the Realizability Problem of Combinatorial Geometries)

Some Answers and Corrections.

Question

Is the co-dimension always 0 or 1?

큰

Some Answers and Corrections.

Question

Is the co-dimension always 0 or 1 ? NO

Correction

Can the co-dimension of a 3-connected non-regular OM become arbitrary large?

• • • • • • • • • • • •

Some Answers and Corrections.

Question

Is $\mathcal{F}_{\mathcal{O}}$ always trivial or has a characterization by an orthogonality condition or an integral modular equation (mod 2 ?) ?

Some Answers and Corrections.

Question

Is $\mathcal{F}_{\mathcal{O}}$ always trivial or has a characterization by an orthogonality condition or an integral modular equation (mod 2?)?

A (10) > A (10) > A

Some Answers and Corrections.

Question

Is $\mathcal{F}_{\mathcal{O}}$ always trivial or has a characterization by an orthogonality condition or an integral modular equation (mod 2?) OR BOTH?

 $\mathcal{F}_{\mathcal{O}_{Varnos}} = \{3|(2,2,2,2,1,1,2,1)^T x\}$

< ロ > < 四 > < 回 > < 回 > < 回 >

The current state:

- The flow lattice and the flow number are known for uniform and rank 3 OMs
- The co-dimension of \$\mathcal{F}_O\$ is "actually" 0 or 1 (the single counterexample could not be generalized)
- $\phi(\mathcal{O}) \leq$ 3 and remains matroid invariant for the considered classes
- $\mathcal{F}_{\mathcal{O}}$ has a simple characterization

A (10) > A (10) > A (10)