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Oriented Matroids.
Some Terminology

Let E = {1, . . . , n}, the ground set.

A signed subset of C ⊆ E is a partition C = (C+, C−).

A family C of signed subsets is the set of signed circuits of an
oriented matroid O if it satisfies the circuit axioms.

By forgetting the signs we get the underlying matroid.

Circuit Axioms

(C1) C = −C
(C2) C1 ⊆ C2 ⇒ C1 = ±C2

(C3) e ∈ C1
+ ∩ C2

− ⇒ ∃Z ∈ C :
Z+ ⊆ (C1

+ ∪ C2
+) \ e

Z− ⊆ (C1
− ∪ C2

−) \ e
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Oriented Matroids.
Some Terminology

The rank of O is the largest cardinality of a subset of E which
does not contain a circuit.

Reorienting e ∈ E means changing the sign of e in every circuit

Some important classes of oriented matroids:

re
gu

la
r

uniformplanar

graphic

Q−representable

co−graphic
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The Flow Lattice of an Oriented Matroid.

Circuits and Flows:

A signed circuit C = (C+, C−) ∈ C yields characteristic vector
(e. g. χC = (+1,−1, 0, 0,−1,−1,+1))

We define the Flow Lattice of O as

FO := {x =
∑
C∈C

λCχC |λc ∈ Z}

and the Flow Number as

φ(O) := min
x∈FO

{k : 0 < |xi | < k}

Hochstättler, Nickel Flows in Oriented Matroids
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Why Does It Make Sense?
Flows in Digraphs

If O is graphic, FO consists of all circular flows

φ(O) is the known flow number of the corresponding digraph G

If O is co-graphic, φ(O∗) is the chromatic number of G(O∗)

Flow Lattice Structure of a Digraph

dimFG = |E | − |V |+ comp(G)

Characterization of FG uses vertices (Kirchhoff’s law)

Determination of φ(G) is NP-hard.

φ(G) does not depend on the orientation (is graph invariant)

Elementary circuits of a spanning tree form a basis of FG

Hochstättler, Nickel Flows in Oriented Matroids
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What We Want to Know.

Questions:

Determine dimFO
Is there a simple characterization of FO?

Can φ(O) be determined for other classes?

Is φ(O) a matroid invariant?

Is there a basis of FO containing circuits only?

Hochstättler, Nickel Flows in Oriented Matroids
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Some Examples.

dimFO = n − 1 dimFO = n dimFO = n − 1

The first example is a neighborly polytope
In Rd : Every set of at most d/2 vertices forms a facet.

The third example is a reorientation of a the 6-gon

Only neighborly matroid polytopes have balanced circuits only

Hochstättler, Nickel Flows in Oriented Matroids
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The Structure of FO for Uniform Oriented Matroids.

Let O be a uniform rank r oriented matroid on a ground set
E = {1, . . . , n}.

Theorem

O has a reorientation such that

FO =


Zn if r is even
{1}⊥ ∩ Zn if r is odd and O is neighborly
{xT 1 is even} otherwise.

Hochstättler, Nickel Flows in Oriented Matroids
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Answers for Uniform Oriented Matroids.

Our Results:

The co-dimension is either 0 or 1

FO is trivial or can be characterized by an orthogonality condition
or a modular equation

φ(O) is either 2 or 3 but matroid invariant

dimFO is not matroid invariant

A basis B ⊂ C of FO can be constructed

Hochstättler, Nickel Flows in Oriented Matroids
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The Flow Lattice of Rank 3 Oriented Matroids.
...is trivial

Consists of regular and uniform OMs as well

O(K4) is maximum regular (has 6 elements)

Theorem

Let O a simple and co-simple non-uniform rank 3 oriented matroid
over E = {1, . . . , n} with n > 6. Then FO = Zn.

Hochstättler, Nickel Flows in Oriented Matroids
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The Flow Lattice of Rank 3 Oriented Matroids.
...is trivial

Proof.

O5 is contained in any non-regular, non-uniform rank 3 oriented
matroid with more than 5 elements.

Any co-simple extension of O5 yields a trivial flow lattice

+ - + 0 0
+ + 0 - -
+ 0 + - -
0 + - - -

1 2 3

4

5
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Answers for Rank 3 Oriented Matroids.

Our Results:

The co-dimension of FO is 0

FO is trivial whenever O is simple, co-simple, non-regular and
non-uniform with more than 4 elements

φ(O) = 2 and therefore matroid invariant

A basis B ⊂ C of FO can be constructed
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A 2-sum for Oriented Matroids
Decomposition into 2-sums and direct sums

The General Case. Direct Sum and 2-Sum.

Any co-dimension of FO can be constructed.

Let C1 and C2 be circuits of two oriented matroids O1 and O2 on
E1 ∩ E2 = ∅.

Direct Sum

Let C⊕ := C1 ∪ C2. Then C⊕ is the
set of signed circuits of an oriented
matroid O⊕.

dimFO = dimFO1 + dimFO2

Problem: The resulting oriented matroid is not connected

Define a 2-sum similar to the 2-sum of graphs
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A 2-sum for Oriented Matroids
Decomposition into 2-sums and direct sums

The General Case. Direct Sum and 2-Sum.

Now let E1 ∩ E2 = {f} and f not a co-loop.

A 2-Sum

Let C⊕2 := C(O1 \ f ) ∪ C(O2 \ f )
∪{(C1∪C2)\f : Ci ∈ Ci , f ∈ C+

1 ∩C−
2 }.

Then C⊕2 is the set of signed circuits
of an oriented matroid O⊕2 .

Theorem

dimFO⊕2
= dimFO1 + dimFO2 −

{
2 if ef ∈ lin C1 and ef ∈ lin C2

1 otherwise

The co-dimension of FO can become arbitrary large

But: O⊕2 is not 3-connected.
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A Decomposition Theorem for Oriented Matroids.

Theorem

Let O be an oriented matroid. Then O can be decomposed into direct
sums and 2-sums of 3-connected oriented matroids.

It suffices to consider
3-connected
simple
co-simple
non-regular
non-uniform

oriented matroids
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Numerical Results.

Questions:

Under the above assumptions:
1 Is the co-dimension always 0 or 1 ?
2 Is FO always trivial or has a characterization by an orthogonality

condition or an integral modular equation (mod 2 ?) ?
3 Is φ(O) ≤ 3?
4 Is φ(O) matroid invariant?
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Numerical Results.

Our Test Sets:

We evaluated FO for the following test sets of oriented matroids:

The entire catalogue of small OMs from Lukas Finschi
http://www.om.math.ethz.ch

All orientations of the examples of James G. Oxley ("Matroid
Theory")

All projective incidence structures from Jürgen Richter-Gebert’s
Darmstadt-dissertation
(On the Realizability Problem of Combinatorial Geometries)

Hochstättler, Nickel Flows in Oriented Matroids
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Some Answers and Corrections.

Question

Is the co-dimension always 0 or 1 ?

NO

odd line

odd line

n − 2

Correction

Can the co-dimension of a 3-connected non-regular OM become
arbitrary large?
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odd line

odd line
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Some Answers and Corrections.

Question

Is FO always trivial or has a characterization by an orthogonality
condition or an integral modular equation (mod 2 ?) ?

FOVamos =
{3|(2, 2, 2, 2, 1, 1, 2, 1)T x}

FOPappus∗ ={
2|(1, 1, 1, 0, 0, 0, 1, 0, 1, 1)T x
(0, 0, 1, 1, 1, 1, 1, 1, 0)T x = 0

}
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Some Answers and Corrections.

Question

Is FO always trivial or has a characterization by an orthogonality
condition or an integral modular equation (����

mod 2 ?) ?

FOVamos =
{3|(2, 2, 2, 2, 1, 1, 2, 1)T x}

FOPappus∗ ={
2|(1, 1, 1, 0, 0, 0, 1, 0, 1, 1)T x
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Matroid Decomposition
Numerical Results

Some Answers and Corrections.

Question

Is FO always trivial or has a characterization by an orthogonality
condition or an integral modular equation (����

mod 2 ?) OR BOTH?

FOVamos =
{3|(2, 2, 2, 2, 1, 1, 2, 1)T x}

FOPappus∗ ={
2|(1, 1, 1, 0, 0, 0, 1, 0, 1, 1)T x
(0, 0, 1, 1, 1, 1, 1, 1, 0)T x = 0

}
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Summary

The current state:

The flow lattice and the flow number are known for uniform and
rank 3 OMs

The co-dimension of FO is "actually" 0 or 1
(the single counterexample could not be generalized)

φ(O) ≤ 3 and remains matroid invariant for the considered
classes

FO has a simple characterization
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