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1 Overview

Let O be an oriented matroid on a ground set E with n elements and C its
set of signed circuits. We identify a circuit C ∈ C with its signed characteristic
vector χC ∈ {0,±1}n. In this paper we will discuss some questions concerning
the integer lattice of C denoted by L(C) which are quite natural in the context
of integer lattices:

1. What is the dimension of L(C)?

2. Is there a discrepancy between L(C) and the integral points of the linear hull
of C, i. e. is L(C) regular and therefore L(C) = lin C ∩ Zn?

3. Has L(C) a short characterization?

4. Does C contain a basis of L(C)?

For the signed circuits of a regular oriented matroid (and more particular of a
digraph) the above questions have been studied very well in past. From graph
theory it is known that the dimension of the circuit space of a connected digraph
is |E| − |V | + 1, that the circuit space L(C) is regular and that the elementary
circuits {C(B, e)}e∈E\B form a basis of L(C) for any basis B of O. For gen-
eral oriented matroids question 1 is a known problem (see Björner et al. [1,
4.45(d)]) but the other problems have not been considered in the literature yet.
Furthermore, we extend the set of questions by a fifth, coming from the theory
of nowhere-zero flows in a digraph:

5. What is the smallest number k, so that there is a vector x ∈ L(C) satisfying
0 < |xi| < k for all i = 1, . . . , n?
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We completely analyze the circuit lattice for uniform oriented matroids and
general oriented matroids of rank 3. It will turn out that there is a gap in the
dimension between regular and non-regular oriented matroids of the considered
types, e. g. there is no simple and co-simple rank 3 oriented matroid O with
|E| − 3 < dimF(O) < |E| − 1 while the values |E| − 1 and |E| are obtained.
Furthermore, there is only one case beyond the considered types where a circuit
lattice is not regular (which exactly holds for non-neighborly uniform oriented
matroids of odd rank).

Table 1 shows the results presented in this paper. The case of a non-regular
circuit lattice is marked with a box.

Table 1. Results of the paper concerning the circuit lattice of a connected simple and
co-simple oriented matroid O with more than r + 3 elements

non-regular regular

non-uniform uniform

rank 3 r even r odd

dimFO |E| |E| |E| − 1 |E| |E| − r

FO Z|E| Z|E|
{v}⊥ ∩ Z|E|

v ∈ {1,−1}|E|
{xT1 even} regular

ΦL 2 2
2 if |E| even

3 if |E| odd

2 if |E| even

3 if |E| odd
χ(O∗)

Section 2 provides the necessary terminology and Section 3 summarizes the
current situation for regular matroids. In Sections 4 and 5 we analyze the cir-
cuit lattice for uniform and rank 3 oriented matroids by answering the raised
questions. The last section concludes with possible future research on this topic.

2 Notation

Regular Lattices

Let C ⊂ Zn be a finite set of integral vectors. We define by

L(C) := {
∑

x∈C
λx · x : λx ∈ Z}

the integer lattice of C. The dimension of L(C) is the rank of the matrix containing
the elements of C as rows and is denoted by dimL(C). A lattice L(C) is called
regular if for each x ∈ L(C) there are x1, . . . , xm ∈ {0,±1}n such that supp(xi) ⊆
supp(x) and x =

∑
i xi. Vectors of minimal support in L(C) are called elementary

and vectors in L(C) ∩ {0,±1}n are called primitive.
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Oriented Matroids

We use standard notation for oriented matroids as in Björner et al. [1]. Let C be
the set of signed characteristic vectors of circuits of an oriented matroid O. We
denote by F(O) := L(C) the circuit lattice of O. An oriented matroid is called
regular if it can be represented by a totally unimodular matrix. It can be checked
easily that the primitive vectors of a lattice L satisfy the circuit axioms of an
oriented matroid which we will denote by O(L) (see Tutte [7]).

Proposition 1. The following conditions are known to be equivalent:

· L is regular.
· O(L) is regular.
· L = F(O(L)).
· L = linL ∩ Zn.

Flows

If O is a graphic oriented matroid of a digraph D(V, E) the vectors in F(O)
correspond to circular flows in D. The flow number ϕ(D) of D is defined as
the smallest k such that there exists a nowhere-zero k-flow (note that ϕ(D) only
depends on the underlying graph). For a survey on nowhere-zero flows in a graph
see Seymour [6].

This approach to define a flow number of a digraph recently has been gen-
eralized to oriented matroids by Hochstättler and Nešetřil [3]. They defined the
flow number ΦL(O) of an oriented matroid O as the minimum k such that there
is a vector x ∈ F(O) satisfying 0 < |xe| < k for all e ∈ E. Although the com-
putation of ϕ(D) is known to be an NP-hard problem the determination of the
generalized flow number turns out to be trivial for uniform oriented matroids
and matroids of rank 3.

3 Regular Oriented Matroids

Regular oriented matroids have been studied a lot in the literature so that the
dimension of the circuit lattice is well-known:

O regular ⇐⇒ dimF(O) = n− r.

Concerning the structure of the lattice it is known that F(O) is regular. A basis
of signed circuits can be constructed easily as the set of elementary circuits
{C(B, e) | e ∈ E} of a basis B of O. The problem of computing the flow number
ΦL(O) is known to be NP-hard.
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4 Uniform Oriented Matroids

In the recent work of Hochstättler and Nešetřil [3] which introduces the flow
number of an oriented matroid the flow lattice turns out to be trivial (i. e.
F(O) = Zn) for the case of even rank. The case of odd rank requires the con-
sideration of balanced circuits (i. e. |C+| = |C−|) and leads to an exception
concerning neighborly matroid polytopes. For this we call a uniform oriented
matroid of odd rank neighborly if it is reorientation equivalent to a neighborly
matroid polytope.

Theorem 1. Let O be a uniform oriented matroid with n ≥ r + 2 elements.
Then dimF(O) < n if and only if there is a reorientation IO of O such that all
circuits of IO are balanced. In particular we then have F(IO) = {1}T ∩Zn and
dimF(O) = n− 1.

The proof of this theorem proceeds by induction on the number of elements of
O starting from the unique uniform oriented matroid with r + 2 elements.

We remark that the class of uniform oriented matroids with circuit lattice
dimension of n − 1 is exactly the class of neighborly oriented matroids of odd
rank.

The above statements characterize the circuit lattice of uniform oriented
matroids almost completely:

Theorem 2. Let O be a uniform oriented matroid on n elements. Then

F(O) =




Zn if r is even
{v}⊥ ∩ Zn for some v ∈ {1,−1}n if r is odd and dimFO = n− 1
{x ∈ Zn : xT1 is even} if r is odd and dimFO = n.

In particular, the circuit lattice of O is not regular if and only if O has odd rank
and is not neighborly.

For the case of even rank and full dimension we investigate that if O is not
neighborly then there is an element i ∈ E such that O \ i is not neighborly or O
has r + 3 elements. Therefore, we can proceed by induction and show that

F(O) = L({ei ± ej | i 6= j ∈ E})
= {x ∈ Zn : xT1 is even}.

From the structure we easily conclude with the known result ([3]) that

ΦL(O) =
{

2 if nr is even
3 if nr is odd

The construction of a basis proceeds as follows: We start with a basis of
an orientation of Ur,r+2 which is a restriction of any uniform oriented matroid
having more than r+2 elements. This restriction Or+2 is neighborly and unique
up to reorientation. If O has odd rank and is neighborly we can extend Or+2

by successively adding elements and the basis of Or+2 is extended by adding
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corresponding new circuits. We proceed similarly ifO has even rank. IfO has odd
rank and is not neighborly we extend a basis of Or+2 by two new circuits so that
the dimension increases by 2. These two circuits can be selected by considering
the dual of the extension which has rank 3 and is therefore representable as
a pseudo-line arrangement. This extension of Or+2 now has full flow lattice
dimension and a basis can be extended to a basis of O as in the other cases.

For further details on the flow lattice of uniform oriented matroids see [4].

5 Non-uniform Oriented Matroids with Rank 3

While in the last section O was assumed to have a special structure we now
turn to general oriented matroids but limit the rank to be 3. Note that this case
contains regular and uniform oriented matroids as well. Precisely, we will show
among other things that any rank-preserving non-regular simple and co-simple
extension of a regular oriented matroid increases the dimension of the lattice by
4 (instead of at most two in the uniform case).

While in the uniform case we did not have to deal with loops, co-loops,
parallels or co-parallels we now have to consider these cases separately.

Proposition 2. Let O be an oriented matroid on the ground set E.

· dimF(O) = dimF(O \ e) + 1 for a loop e ∈ E
· dimF(O) = dimF(O \ e) + 1 if e is parallel to some f ∈ E
· dimF(O) = dimF(O/e) for a co-loop e ∈ E
· dimF(O) = dimF(O/e) if e is co-parallel to some f ∈ E

The following oriented matroid (which we call O5) is contained in almost any
non-regular and non-uniform oriented matroid of rank 3:

4

5

31
2

+-+00
+-0++
+0-++
0+-++

O5, being a coextension of the 4-point line by a coparallel, has a circuit lattice
dimension of 4 and

F(O5) = L({e1, e2, e3, e4 − e5}).
At first, we point out that the flow lattice is trivial for any U2,4-free restriction

of O5.

Lemma 1. Any connected single element extension of O5 which does not con-
tain a 4-point line has trivial flow lattice.
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Proof. Consider a single element extension O6 of O5 which does not contain a
4-point line. Hence, 4 and 5 are not coparallel. We show that the circuits of O6

generate {ei}i=1,...,6. Obviously this holds for e1, . . . , e3. Therefore, we can skip
the first three coordinates from our considerations. Choose a reorientation so
that

∗ ∗ ∗ + + 0
∗ ∗ ∗ α 0 +
∗ ∗ ∗ β γ +

are circuits of O6 where α, β, γ ∈ {+, -}. Note that O6 must contain the third
circuit because 4 and 5 do not form a three-element basis with one of the first
three elements. For any choice of α, β and γ which does not violate the circuit
axioms the rows of 


+ + 0
α 0 +
β γ +




span Z3. Consequently, any one-element extension ofO5 has trivial circuit lattice.
On the other hand, any orientation of P6, R6, Q6 or W3 contains O5 as a minor.

ut

By considering the enumeration of oriented matroids of Finschi and Fukuda [2]
we remark that any 4-line-free connected single element extension of O5 is an
orientation of one of P6, R6, Q6 or W3 and on the other hand, any orientation
of P6, R6, Q6 or W3 contains a reorientation of O5 as a minor (see Oxley [5]).

Lemma 2. Let O be a non-uniform oriented matroid on more than 5 elements
which does not contain the deletion minors P6, R6, Q6 or W3. Then O must be
either an orientation of M(K4) or contains an (n− 2)-point line.

Proof. Assume that U2,n−2 is not a deletion minor and O 6∼= M(K4). Then we
can find a deletion minor O6 of O with 6 elements which contains a 3-point
line but not a 4-point line and is not isomorphic to M(K4) (Note that only the
non-orientable Fano plane has no other minor than M(K4)). This matroid must
be an orientation of P6, R6, Q6 or W3. ut

Theorem 3. Let O be a simple non-uniform oriented matroid of rank 3 on a
ground set E with n > 6 elements. Then FO = Zn if and only if there is a
deletion minor O\X isomorphic to P6, R6, Q6 or W3. Furthermore, the circuit
lattice of any simple and co-simple non-uniform oriented matroid of rank 3 is
regular.

Proof. The “if” case is Lemma 1 together with the fact that any extension
of a trivial flow lattice again must be trivial. The “only if” case is Lemma
2. Obviously, trivial lattices are regular, as well as circuit lattices of regular
oriented matroids. Any other rank 3 non-uniform oriented matroid must contain
an (n− 2)-line and therefore either has a co-loop or a co-parallel. ut
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As an obvious consequence the flow number of non-regular non-uniform simple
and co-simple matroids of rank three is 2. The construction of a basis is done by
starting from a basis of P6, R6, Q6 or W3 and extending the basis by a circuit
containing only some of the current elements plus one new element.

6 Open Questions

Is there a possibility to determine the circuit lattice dimension of an arbitrary
oriented matroid (this question is raised in Björner et al. [1, 4.45(d)]) by de-
composing the matroid into direct sums and 2-sums of 3-connected oriented
matroids? While for a direct sum of two oriented matroids the dimensions are
simply added we conjecture the dimension to be d1 + d2 − {1, 2} for 2-sums.

Another interesting question involves the gap in the flow lattice dimension
between regular and non-regular oriented matroids: Does the dimension always
increase rapidly when extending a regular oriented matroid non-regularly? To
be more offensive, is the flow lattice of a non-regular extension of a (maximum)
regular oriented matroid always trivial?

As we could see in the considered cases, the flow number is invariant with
respect to the reorientation class of an oriented matroid, i. e. it is a matroid
invariant for regular, rank 3, and uniform oriented matroids. Hochstättler and
Nešetřil [3] ask whether this holds in general even if it was shown above that
different orientations of the same underlying matroid can lead to a significantly
different flow lattice structure. Furthermore, we look for other cases where the
dimension differs between reorientation classes of the same underlying matroid
as found for uniform oriented matroids of odd rank.

By combining the last two open questions we could also ask whether the flow
number is a matroid invariant only because the flow lattice is trivial for almost
any connected non-regular oriented matroid.



Bibliography

[1] Anders Björner, Michel Las Vergnas, Bernd Sturmfels, Neil White, and
Günter M. Ziegler. Oriented matroids. Cambridge University Press, Cam-
bridge, 2nd edition, 1999.

[2] Lukas Finschi and Komei Fukuda. Generation of oriented matroids — a
graph theoretical approach. To appear in Discrete Comput. Geom., 2001.

[3] Winfried Hochstättler and Jaroslav Nešetřil. Antisymmetric flows in ma-
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