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Abstract

The following article is the working out of a talk in a seminar about the
ellipsoid method and it’s consequences in combinatorial optimization at Bran-
denburg Technical University Cottbus. It deals with the ellipsoid method used
as a tool for proving polynomial time solvability of combinatorial optimization
problems. In 1970 SHOR ([24],[23]) gave a first outline of this method and it
first explicitly appears in 1977 in one of his papers about convex nondifferential
programming ([25]). Two years later L.G. KHACHIYAN ([17]) showed that the
ellipsoid method is a polynomial algorithm to solve linear optimization prob-
lems (in theory) and gave a proof in 1980 ([18]). In the following years many
new algorithms appeared which solve linear optimization problems in time poly-
nomially bounded but that require the complete knowledge of the constraint
system in opposite to the ellipsoid method which is therefore applicable to those
problems of combinatorial optimization which lead to a linear programming
description with a potentionally exponential number of constraints. This ap-
plicability was discovered by KARP and PAPADIMITRIOU ([16]-1980), PAD-
BERG and RAO ([21]-1981) and GR̈ı¿ 1

2SCHEL, LOVı̈¿ 1
2Z and SCHRIJVER

([11]-1981) who showed that many combinatorial problems can be formulated
as an optimization of a linear functional over a polytope.

I decided to focus on graph coloring as a very famous problem of graph the-
ory since it has many practical and academic applications. It will be shown that
minimum graph coloring is polynomially solvable for a subclass of undirected
graphs by applying the ellipsoid method.

1 Motivation

A minimum coloring of a graph G with vertices V and edges E is a labeling of the
vertices in a way that no connected two vertices have the same label such that a
minimum number of labels is used. The minimum coloring problem (even calculating
the minimum number of colors needed) for general undirected graphs is NP-hard.

The most popular application of graph coloring is the coloring of a map. Here each
country is given a color such that no neighbouring contries have the same color (to
make the borders recognizable) and a minimum number of colors is used. Identifying
each country with a vertex and connecting two neighbouring countries with an edge
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leads to a vertex coloring problem. Another academic example of graph coloring is
the problem to accommodate a number of children in a minimum number of rooms
such that no room contains two children that dislike each other. Here the children
are the vertices and they are connected with an edge whenever they dislike each
other.

But also in real world applications graph coloring is of big relevance:

• Time tabling and scheduling In scheduling problems one often has a set of
pairwise restrictions on which jobs can be done simultaneously. For instance
scheduling classes at a university such that no two courses involving the same
teacher or a similar group of students are scheduled for the same time period.
The problem of finding the minimum number of time periods needed subject
to these restrictions is a graph coloring problem.

• Frequency assignment A number of mobile radio transmitters have to be
assigned a frequency such that two transmitters that are close to each other are
assigned different frequencies and a minimum number of frequencies is used.

• Register allocation The problem is to assign variables to a limited number
of hardware registers during a program execution. Since there are typically far
more variables in a program than registers it is necessary to assign multiple
variables to registers such that they do not conflict with each other.

For an extensive introduction into the theory of graph coloring and existing coloring
algorithms see [15] and [10].

I will first give an outline of the ellipsoid method to show that it can be used
to optimize a linear functional over a bounded convex set with nonempty interior
whenever a polynomial algorithm is known to solve the separation problem. After
that a section about graph theory and perfect graphs follows in which the color-
ing problem is formulated in terms of independent sets. Then the ellipsoid method
will be used to show the polynomial solvability of a semidefinite optimization prob-
lem which leads to the Lov̈ı¿1

2z number (or sandwich number) that is equal to the
chromatic number (minimum number of colors needed to color a graph) for perfect
graphs. From the calculation of the chromatic number follows an algorithm that
evaluates a minimum covering of the perfect graph with disjoint independent sets
which is exactly a minimum coloring. The proofs given for several theorems are
often taken from papers or books listed as references at the end of the paper and
those citations are always explicitly pointed out. I tried to choose only those proofs
that are of a special need for understanding the conclusions (e.g. it might be useful
to point out exactly why the ellipsoid method is applicable to graph coloring). On
the other hand it is often necessary to look into several areas of optimization which
are of discrete, linear and semidefinite kind. Some knowledge (particular the dual-
ity theorems of linear and semidefinite optimization) is required or at least useful.
Especially the section about semidefinite programming requires some background
information but it seemed useful to me not to leave LOVı̈¿1

2Z’ sandwich theorem
unproved. For an introduction into semidefinite programming with applications in
combinatorial optimization see [14].
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2 The ellipsoid method

Consider the following two simple problems for a convex set B ⊆ Rn:

• Optimization: Given a vector c ∈ Rn. Find a vector x ∈ B such that
cT x ≥ max{cT x|x ∈ B} − ε for a given ε > 0.

• Separation: Given a vector x ∈ Rn. Verify that x ∈ B or find a vector
c ∈ Rn such that cT x > max{cT b|b ∈ B} which means that c describes a
separating hyperplane.

Definition 1. Let B a class of convex sets. B is called solvable if there exists an
algorithm that solves the optimization problem for each c ∈ Rn over any B ∈ B in
time polynomially bounded.

In that case the algorithm is ment to be polynomial in the input data used to
describe the convex set and in the encoding length of the vector c. We will use graphs
to describe those convex sets which means that the algorithm must be polynomial
in the number of vertices of the graph.

Now I want to show that with the ellipsoid method a polynomial algorithm for
the optimization problem follows directly from an algorithm solving the separation
problem in polynomial time over B whenever B contains an interior point a0 ∈ Qn

and there exist numbers r and R such that S(a0, r) ⊆ B ⊆ S(a0, R) where S(a0, ρ)
denotes the sphere centered at a0 with radius ρ. Furthermore the inner and outer
radii r and R must be explicitly known and neither dominator nor denominator
occuring in a0, r ∈ Q and R ∈ Q should be larger than a constant T ∈ N.

The ellipsoid method now produces a sequence of ellipsoids {Ak} such that the
sequence of their centers {ak} converges to an optimal solution of min cT x, x ∈ B:

• Let A0 = S(a0, R), k := 0

• repeat

– if ak ∈ B construct a smaller ellipsoid Ak+1 that contains the level set
L(ak) = {x ∈ B|cT ak > cT x}

– if ak /∈ B construct a separating hyperplane b and a smaller ellipsoid
Ak+1 that contains Ak ∩ {x ∈ Rn|bT x < 0}

– Let ak+1 = center(Ak+1)

• until stopping criterion is met.

In [11] it is shown that the ellipsoids Ak can be chosen in a way such that the
following theorem holds:

Theorem 2. Given an algorithm for the separation problem the ellipsoid method (if
applicable) solves the optimization problem for a given ε > 0 in N = 4n2

⌈
log 2R2‖c‖

rε

⌉
iterations.

Corollary 3. If a polynomial separation algorithm for a class B exists then B is
solvable.
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3 Graph theory

Let V = {1, ..., n} a finite set and E ⊆ {{u, v}|u, v ∈ V }. Then G = G(V,E) is called
an undirected graph with vertices V and edges E (or simply graph). The comple-
mentary graph is denoted by Ḡ = G(V, Ē) where Ē = {{u, v}|{u, v} /∈ E, u, v ∈ V }.
G′ = G(V ′, E′) with V ′ ⊂ V and E′ ⊂ E such that ({u, v} ∈ E′) ⇔ ({u, v} ∈ E)
and u, v ∈ V ′ is called an induced subgraph of G. A clique C ⊆ V is a vertex set such
that {u, v} ∈ E ∀u, v ∈ C and an independent set (or stable set) S ⊆ V is a vertex
subset such that {u, v} /∈ E ∀u, v ∈ S. It follows directly that the cliques of G are
exactly the independent sets of Ḡ.

Now a coloring can be defined in terms of graph theory:

Definition 4. A coloring is a covering of V with disjoint independent sets S1, ..., Sk

of G = G(V,E), i.e.
⋃k

i=1 Si = V .

This leads to the following problems:

Problem 5. Find the minimum number of colors needed for a coloring of G that
means computing χ(G) = min{k|S1, ..., Sk is a coloring}. χ(G) is called the chro-
matic number of G.

Problem 6. Find a minimum coloring S1, ..., Sχ(G).

A simple lower bound for the chromatic number χ(G) is the cardinality of the
maximum clique in G denoted by ω(G) because each vertex in such a maximum
clique has to be assigned a different color.

4 Perfect graphs

Definition 7. A graph G = G(V,E) is perfect ⇔ ω(G′) = χ(G′) for any induced
subgraph G′ of G.

The idea of perfect graphs appeared first in an article of T. GALLAI ([7]-1958/[8]-
1959) who proved (in a different terminology) that the complement of a bipar-
tite graph is perfect again. Other early results where obtained by HAJNAL and
SUR̈ı¿1

2YI ([13]-1958), BERGE ([1]-1960/[2]-1961), DIRAC ([6]-1961) and GAL-
LAI ([9]-1962). Anyway the first definition of perfect graphs was given by BERGE
([3]-1963, [4]-1966) whose articles are generally mentioned as the official sources for
perfect graphs. In [4] he made the following conjectures:

Theorem 8 (Perfect Graph Theorem). G is perfect ⇔ Ḡ is perfect.

Theorem 9 (Strong Perfect Graph Theorem). G and respectively Ḡ is perfect if
and only if it does not contain an odd hole or antihole with at least five vertices as
an induced subgraph.

The perfect graph theorem was proved by LOVı̈¿1
2Z ([19]-1972) and the strong

perfect graph theorem was just proved by M.CHUDNOVSKY and P. SEYMOUR
building on an earlier work with N. ROBERTSON and R. THOMAS ([5]). But
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although BERGE’s conjectures have been proved now it is still open, whether perfect
graphs can be recognized in polynomial time even if it is easy to prove that G is
not perfect (by guessing an odd hole / antihole with at least five vertices). BFS can
shurely find a minimum odd circle in a graph but if that circle is not an induced
subgraph of G it might be necessary to look at any circle in the graph which leads
to a non-polynomial algorithm.

Now semidefinite optimization can be used to calculate ω(G) respectively χ(G)
for perfect graphs.

5 Semidefinite optimization

The existence of a number ϑ such that ω(G) ≤ ϑ ≤ χ(G) that can be computed in
polynomial time would directly lead to an algorithm for the chromatic number of
perfect graphs. Such a sandwich number was introduced by LOVı̈¿1

2Z in 1979 ([20])
as the solution of the following semidefinite optimization problem1:

ϑ(G) := max
n∑

i,j=1

bij = max eT Be

s.t. bij = 0 if {i, j} /∈ E, i 6= j

Tr(B) ≤ 1
B � 0 (symmetric and positiv semidefinite)

(1)

For an optimum solution B∗ of (1) the equality Tr(B∗) = 1 must hold (otherwise
multiplying B∗ with 1

TrB∗ would lead to a better solution. Taking the equality trace
condition as a constraint the semidefinite dual of (1) has the following form (see [22]
for further details):

minλ

s.t. λI − Y − eeT � 0
yij = 0 if {i, j} ∈ E or i = j

(2)

Now all preparations are done to prove the so-called sandwich theorem introduced
by LOVı̈¿1

2Z ([20]-1979). The proof is taken from [22]:

Theorem 10 (The Lov̈ı¿1
2z sandwich theorem).

ω(G) ≤ ϑ(G) ≤ χ(G)

Proof. I will show both inequalities seperately:

1. Left inequality: Let V = {1, ..., n} such that C = {1, ..., k} is a clique (with-
out loss of generality because vertices can be enumerated arbitrarily). Set
xC = (1, ..., 1, 0, ..., 0) with k ones and n− k zeros. Then

Bk :=
1
k
xCxT

C

1ϑ(G) is defined in many different ways. I follow the definition of [22]. For a variety number of
different definitions see [12] 286-290 or [14]
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is primal feasible for (1) with eT Bke = k. The clique was arbitrarily chosen.
Chosing a maximum clique (k = ω(G)) leads to

ω(G) ≤ ϑ(G).

2. Right inequality: Let (S1, ..., Sk) a coloring of G with k colors and γi := |Si|.
For i = 1, ..., k define

Mi := k (Jγi − Iγi)

where Jγi denotes the all one matrix of size γi× γi and Iγi the identity matrix
of the same size.

Then the block matrix

Yk :=


−M1 0 · · · 0

0 −M2
...

...
. . . 0

0 · · · 0 −Mk


is dual feasible with λ = k. Chosing S1, ..., Sk such that k = χ(G) leads to

ϑ(G) ≤ χ(G).

6 Application of the ellipsoid method

Now I will give a proof that the ellipsoid method is applicable to the class of feasible
sets of (1) induced by arbitrary undirected graphs.

Let Bϑ(G) the feasible region of (1).

Theorem 11. Bϑ(G) is convex and bounded with nonempty interior which means

that there are
(

n2+n
2 − |Ē|

)
-dimensional spheres with radii r and R and an interior

point B0 such that S(B0, r) ⊆ Bϑ(G) ⊆ S(B0, R).2

Proof. Let B1, B2 ∈ Bϑ(G) and B3 = tB1 + (1 − t)B2 for some t ∈ [0, 1]. B3 is
symmetric and positive semidefinite. It’s trace is less or equal to one and each zero
components of B1 and B2 remain zero.

⇒ Bϑ(G) is convex

B0 := 1
2nI is an interior point of Bϑ(G) and it can be verified easily that Bϑ(G)

contains the sphere S(B0, r) with r := 1
2n2+1

.

2Construct such a sphere as follows: Ignore all coordinates for {i, j} ∈ Ē and all coordinates
below the main diagonal of the matrix B0. The remaining coordinates build a vector in the“

n2+n
2

− |Ē|
”
-dimensional euklidean space.
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An outer radius can be constructed as follows: Let ‖x‖p := (
∑n

i=1 |xi|p)
1
p , ‖x‖∞ :=

maxi=1,...,n |xi| and ‖B‖p and ‖B‖∞ the induced matrix norms. By definition it
follows that

‖x‖∞ ≤ ‖x‖2 =

√√√√ n∑
i=1

x2
i ≤

√
n max

i=1,...,n
|xi|2 =

√
n‖x‖∞

which means that these norms are equivalent. Now the constants for the equivalence
of the corresponding matrix norms can be given:

||B||2 = max
x∈Rn

‖Bx‖2

‖x‖2
≤ max

x∈Rn

√
n‖Bx‖∞
‖x‖∞

=
√

n‖B‖∞

||B||∞ = max
x∈Rn

‖Bx‖∞
‖x‖∞

≤ max
x∈Rn

√
n‖Bx‖2

‖x‖2
=
√

n‖B‖2

⇒ 1√
n
‖B‖∞ ≤ ‖B‖2 ≤

√
n‖B‖∞

It follows from Tr(B) =
∑n

i=1 λi ≤ 1 and B � 0 that 0 ≤ λmin ≤ λmax ≤ 1, where
λi denotes the ith eigenvalue of B and λmin = minλi, λmax = maxλi.

Hereby one can easily find that

max
i,j

|bij | ≤ ‖B‖∞ ≤
√

n‖B‖2 =
√

nλmax ≤
√

n

because ‖ · ‖∞ is the matrix norm of row sums and ‖ · ‖2 is the spectral norm. This
means that R = 2

√
n is a candidate for an outer radius and

Bϑ(G) ⊆ S(B0, R).

The following theorem points out the applicability of the ellipsoid method and
proves that the class of feasible reagions of (1) is solvable for any graph G (see [11]
for further details).

Theorem 12. For any undirected graph G the separation problem is solvable on
Bϑ(G).

Proof. Given a symmetric n × n-matrix B with bij = 0 if {i, j} /∈ E (otherwise
we would have to operate in an n2+n

2 -dimensional space while we have shown the
applicability of the ellipsoid method for n2+n

2 − |E| dimensions) we have to verify in
polynomial time whether B ∈ Bϑ(G). If not we have to give a separating hyperplane
C. C separates B from Bϑ(G) iff

C •B =
n∑

i,j=1

cijbij > max{C • B̃|B̃ ∈ Bϑ(G)}.

1. Tr(B) ≤ 1 is verified in polynomial time. If Tr(B) > 1 then C := 1
nI is a

separating hyperplane.
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2. Now the positive semidefiniteness of B is to be verified and a separating hy-
perplane is to be constructed if B is not positive semidefinite.

Let rg(B) = m and find m linear independent column vectors of B. Without
loss of generallity let these m vectors be the first m columns of B.3 Let further-
more Bt := (bij)n

i,j=1 and compute detBt for t = 1, ...,m which can be done in
polynomial time by the gaussian algorithm. If det Bt ≥ 0 ∀t ∈ {1, ...,m} then
B ∈ Bϑ(G). Otherwise one can construct a separating hyperplane:

Let t the first index with det Bt < 0 and

φi :=
{

(−1)i+t det Bi,t i = 1, ..., t
0 otherwise

where Bi,t denotes the matrix Bt without the ith row and tth column.

Then det Bt =
∑t

i=1 bitφi and φt = detBt−1.

Since any B̃ ∈ Bϑ(G) is positive semidefinite the inequality φT B̃φ ≥ 0 must
hold. But for B we can verify that

φφT •B = φT Bφ =
n∑

i=1

n∑
i=1

φiφjbij =
t−1∑
i=1

φi

t∑
j=1

φjbij + det Bt−1 det Bt.

Now
∑t

j=1 φjbij is the determinant of the matrix (B1
t , B2

t , ..., Bi
t, ..., B

t−1
t , Bi

t)
T

where Bk
t denotes the kth row of Bt.

Since this determinant is zero it is shown that

φφT •B = detBt−1 det Bt < 0

and the matrix C := −φφT is a separating hyperplane.

Now the ellipsoid method can be applied and it is possible to approximate the
value ϑ(G) with accuracy ε in time polynomially bounded by |V | and | log ε|. If G
is known to be perfect then ω(G) = ϑ(G) = χ(G) and ε can be chosen 1

2 because
ϑ(G) ∈ N.

7 Constructing a coloring

With the described method we can compute ω(G) in polynomial time for perfect
graphs without evaluating a maximum clique. But knowing ω(G) this can be done
as follows:

1. Let i := 0, V = 1, ..., n

2. Compute ω(G)
3Otherwise swapping columns and corresponding rows which is the same as enumerating the

vertices in a different order leads to such a matrix. Even the positive (in)definiteness of B remains.

8



3. Compute ω(G′) where G′ arises from G by removing vertex i and the corre-
sponding edges

4. If ω(G) = ω(G′) set G := G′

5. i := i + 1, If i ≤ n goto 2

To make this algorithm faster one can remove all adjacent vertices of i if ω(G) =
ω(G′) and all non-adjacent vertices of i otherwise because these cannot belong to
a maximum clique. After less than n iterations the algorithm terminates with a
maximum complete subgraph of G(V,E). The knowledge of such a maximum clique
can be used to construct a minimum covering of G with independent sets:

A vector x ∈ Rn with xi =
{

1 i ∈ V ′ ⊂ V
0 otherwise

is called a characteristic vector of

the vertex set V ′ ⊂ V . Now let A the matrix which has as rows the characteristic
vectors of all independent sets of G and consider the following linear programming
problem:

max eT x

s.t. Ax ≤ 1

x ≥ 0

(3)

If the components of x were additionaly restricted to {0, 1} the solution of the prob-
lem would exactly be a maximum clique with ω(G) as maximum value since Ax ≤ 1
ensures that the vertex set represented by x intersects at most one independent set
and max eT x maximizes the cardinality of the clique.

⇒ ω(G) ≤ max eT x Ax ≤ 1, x ≥ 0

The linear dual problem of (3) can be written down and interpreted, too:

min eT y

s.t. AT y ≥ 1

y ≥ 0

(4)

If again the components of y are additionally restricted to {0, 1} y can be interpreted
as a characteristic vector of a subset of all independent sets of G. Furthermore y
chooses a minimum covering of G with independent sets while AT y ≥ 1 ensures that
each vertex is covered by at least one independent set and min eT y minimizes the
number of sets used. Whenever the resulting sets are not disjoint, i.e. Sk ∩ Sl 6= ∅
this can be corrected by removing Sk ∩ Sl from Sl. Hereby it follows that χ(G) ≥
min eT y, AT y ≥ 1, y ≥ 0.

If now G is perfect we can get a maximum clique of G and by linear programming
duality a covering of G with independent sets which is the coloring we are looking
for.
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8 Conclusion and final remarks

If we can consider a graph G to be perfect it is possible to compute the maximum
clique number ω(G) by applying semidefinite programming and the ellipsoid method.
Afterwards it is easy to determine a maximum clique and by linear programming
duality we also get a solution of the dual problem of (3) which is a coloring if
we make the covering of the graph by independent sets disjoint as described above.
This means that for perfect graphs a coloring can be computed in time polynomially
bounded.

But it is still unknown if it is possible to recognize whether a given graph is perfect
or not although one can prove the imperfectness of a graph.
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