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1 Introduction

Self-service bike hire systems gain increasing attention in both theory and practice. Con-

sider for instance the service “call a bike”, offered by the Deutsche Bahn AG subsidiary

DB Rent GmbH. Customers of call a bike can hire bikes, pick them up at a station of

their choice and return them at another station of their choice. This enables customers to

reach their short-distance destinations on-demand often even faster than through public

transportation. Hiring bikes is thus considered a promising solution to the last-mile-

transportation problem [8], a sustainable means for urban mobility, and socially equitable

[16]. As a consequence, many major cities world wide provide self-service bike hire sys-

tems, for instance Vélib in Paris [2], Capital Bikeshare in Washington, DC, [17], Hubway

in Boston, MA, [17], or Barclays Cycle Hire in London [15].

In spite of the autonomy of users, providers must take care of balancing such systems.

Indeed, when users systematically move bikes away from certain stations to others, the

provider must ensure both that there are always sufficient bikes where demanded and

that there are sufficient free racks where customers want to drop their bikes. Typically

trucks are used for that matter. The increasing popularity of bike hire systems leads to

significant sizes. Vélib, for instance, operates more than 20,000 bikes in over 1,200 stations

[4]. Therefore, balancing stations efficiently is an important and large challenge.

In recent publications, this problem is commonly modeled through graphs [2, 16, 17].

Consider a graph G = (V,E) whose vertices are stations and edges are routes that a truck

may use in order to move bikes between stations. Moving the truck along edge e ∈ E

costs ce ∈ R+. Each station v has an initial number of bikes denoted by xv and a desired

number of bikes denoted by yv. Moving trucks typically occurs during the night when no

bikes are moved by customers [2, 9]. Each unbalanced station can be either in default

(xv < yv) or excess (xv > yv). Denote the start station of the truck by p and the terminal

station by q.

The objective of the STATIC STATIONS BALANCING PROBLEM (SSBP) is to find a

sequence of moves such that the total costs of balancing is minimal [2]. Static refers to
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the assumption of customers not moving any bikes during ongoing balancing operations.

In general, this problem is NP-hard as it comprises the traveling salesmen problem as a

special case. Benchimol et al. [2] study the SSBP and provide several heuristics. Interest-

ingly, they find that the SSBP is solvable in linear time when G is a tree. Central to their

algorithm is that trees are cycle free and thus there is always only one path connecting two

vertices. Therefore their algorithm is independent of ce (∀e ∈ E). If G contains cycles,

however, this is does not hold because there are at least two vertices connected by two

distinct paths such that even when moving to an adjacent station costs of either route

need to be considered. Benchimol et al. [2] state that the computational complexity class

of G being a cycle is still open.

The special case of G being a cycle is interesting for three reasons. First, geographically

this may relate to stations around park or a lake, for instance around Central Park in New

York City, NY, or Lake Harriet in Minneapolis, MN. Second, to model stations as a line

relies on the assumption that the costs between both end stations are sufficiently high such

that no truck would ever use another path than the path modeled by the line. By studying

the cycle, some theoretical thresholds can be obtained which allow to quantify sufficiently

high. Finally, many graphs have subgraphs which are cycles. Thus understanding cycles

better may be a step towards providing better solutions to general graphs.

1.1 Objectives and results

The objective of is this bachelor thesis is to derive structural insights on the problem of

balancing circular stations of a self-service bike hire system, that is, when G is a cycle. This

includes both characterizing the optimal solution to the circular balancing problem as well

as identifying additional requirements which allow to solve the circular balancing problem

efficiently. Research questions answered in this thesis include: If the truck exclusively

drove in one direction, how often would it need to circle the entire cycle? What is a

lower bound on balancing costs of a circular system when a certain edge must be used?

And when can the circular balancing problem be solved efficiently by adapting the tree

algorithm by Benchimol el al. [2]?
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The thesis provides several results. First, for each edge there is one direction in which

bikes never need to be shipped in the optimal solution, which can be either clockwise

or anti-clockwise. Second, for the case that a truck balances stations by simple moving

forward an upper bound on the number of times it needs to circle around the entire cycle

is provided. This already provides a first upper bound on the balancing costs. This thesis

also provide a lower bound on balancing costs if the truck uses certain edges. Third, the

algorithm to balance a tree in [2] is applied to the case of a line and a further upper bound

on the costs of balancing a cycle is provided. Finally, this upper bound is compared to

the aforementioned lower bound to decide when treating the cycle as line and omitting

one edge is optimal. Several examples are provided to illustrate structural insights.

1.2 Definitions and CSSBP model

Some related basic concepts of graph theory will be defined next before describing the

model.

1.2.1 Related graph theory concepts

Based on Gross et al. [11],

Definition 1 (graph) A graph G = (V,E) consists of two sets V and E. The elements

of V are called vertices and the elements of E are called edges. Each edge has a set of one

or two vertices associated to it.

Vertices will also be referred to as stations interchangeably. The following notation is

adapted from [2]. For any subset of vertices U , denote by δ(U) the set of edges having

exactly one endpoint in U and if U = {v} write δ(v) instead of δ({v}). Related to graphs

are subgraphs which can be defined according to Gross et al. [11] as follows,

Definition 2 (subgraph) A subgraph of a graph G = (VG, EG) is a graph H = (VH , EH)

such that VH ⊂ VG and EH ⊂ EG. If H is a subgraph of G write H ⊂ G.
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A concept that is implicitly of importance in several statements in this thesis is that of

isomorphism as defined by [18].

Definition 3 (isomorphism) Two graphs G = (V,E) and H = (W,F ) are called iso-

morph, if there is a bijection φ : V −→ W such that for all v, w ∈ V the number of edges

between v and w in G are the same as the number of edges between φ(v) and φ(w) in H.

An immediate consequence is that indices of vertices and edges can be changed to simplify

the analysis because it is sufficient to solve a given problem on some isomorph graph since

one could use the inverse of bijection φ to map the optimal sequence to the original problem

in linear time.

There are particularly three special graphs of interest, namely lines, cycles, and trees.

Following the terminology of [2] the term line is used whereas others refer to these graphs

as path graphs [11, 18].

Definition 4 (line) A graph G is called a line if it consists of a vertex set {1, . . . , n} and

edge set {{1, 2}, {2, 3}, . . . , {n− 1, n}}.

By connecting both ends of a line, a cycle is obtained. More formally, based on [18],

Definition 5 (cycle) A graph G is called a cycle if it consists of a vertex set {1, . . . , n}

and edge set {{1, 2}, {2, 3}, . . . , {n− 1, n}, {n, 1}}.

Therefore, each cycle has some subgraphs which are lines. Based on [18] define,

Definition 6 (tree) A graph G is called a tree if there is no subgraph H ⊂ G that is a

cycle and if G is connected, which means that there is a path between each pair of vertices.

1.2.2 CSSBP model

Now turn the attention to definitions specifically related to the static station balancing

problem of a self-service bike hire system expressed by a graph G = (V,E). The following

formal definitions are adapted from [2].
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Definition 7 (state) Let G = (V,E) be a graph. A state s is a couple (x, p) where

x ∈ RV+ and p a vertex in V .

Moreover, the following definition is particularly useful for shorthand notations.

Definition 8 (sets of balanced stations) Let G = (V,E) be a graph and let U ⊂ V .

Define x (U) :=
∑
v∈U

xv and y (U) :=
∑
v∈U

yv. Define the set of balanced stations, B(x,y),

as B(x,y) = {v ∈ V |xy = yv}. If x(U) = y(U) call the set U balanced.

Note that u ∈ U ⊂ V and U balanced is not sufficient to conclude u ∈ B(x,y). For a truck

with capacity C, the states s = (x, p) and s′ = (y, q) are called adjacent if simultaneously

xy = yv for all v /∈ {p, q}, pq ∈ E, xp − yp = yq − xq and |xp − yp| ≤ C. While a move

is the transition from a state to an adjacent state with costs c(pq), a sequence of moves

consists of several moves.

In this thesis the CIRCULAR STATIC STATIONS BALANCING PROBLEM (CSSBP)

is studied formulated as follows.

Instance: A cycle G = (V,E), a cost function c ∈ RE+, a capacity C and two states

i = (x, p) and t = (y, q).

Task: Find the minimal cost of a sequence of moves that allows to go from the state i to

the state t and the first move of such an optimal sequence.

In most of the analysis it will be assumed that all stations are unbalanced which does

not restrict much generality, because whenever there are unbalanced stations which are

neither p nor q, one could simply remove them and add up the costs of the edges to form

a new edge and close the cycle again. Moreover, it is assumed that it is always possible to

drop all bikes from the truck at any station, which Benchimol et al. [2] call the preemptive

version. An important assumption throughout this thesis is x(V ) = y(V ). If this did not

hold, the CSSBP would be infeasible.
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1.3 Plan

Related literature is reviewed in the Section 2. In particular, the relationship to the work

by Benchimol et al. [2] will be elaborated on by showing how their results differ from

and relate to the special case of circular stations. In Section 3, several properties that

characterize the optimal solution of the CSSBP will be derived. In Section 4, conditions

will be derived under which the CSSBP can be solved in polynomial time. Finally, results

are discussed in Section 5.

2 Relation to previous work

Station balancing problems are increasingly gaining importance in literature. In this

section, first a review of some recent work will be provided before turning to a paper by

Benchimol et al. in depth, as this is closest related to this thesis. While not all publications

related to station balancing problems can be referenced in this review, please refer to [15]

for a good and recent overview.

2.1 Related balancing problems

The problem of balancing stations of bike hire systems is closely related to the one-

commodity pickup-and-delivery traveling salesman problem (1-PDTSP) as introduced by

Hernández-Pérez and Salazar-González and studied in [12, 13]. This problem, in turn, is

a generalization of the traveling salesmen problem so that a truck in the 1-PDTSP must

visit each station exactly once and each station is either a pick-up customer or a delivery

customer. Also, the truck has some capacity limit. Clearly, even without capacity limit

this problem is NP-hard since it generalizes the traveling salesmen problem. Hernández-

Pérez and Salazar-González [13] provide a 0-1 formulation and a branch-and-cut procedure

for deriving solutions.

Chemla et al. [5] study a related version, the single vehicle one-commodity capacitated

pick-up and delivery problem. They first provide an intractable mixed integer program

formulation before providing some structural insights for better understanding decisions in
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balancing problems. Chemla et al. [4] focus a dynamic version of the balancing problem,

namely one where the truck seeks to balance the stations during day time so that cus-

tomers may move bikes before the balancing is completed. They show that this problem

is NP-hard and provide solution heuristics. They also derive a pricing scheme seeking to

incentivize customers to choose stations that reduce balancing costs.

Erdoğan et al. [9] study a static bicycle relocation problem with demand intervals closely

related to [12]. However, in their case any amount of bikes per station between a lower

and an upper bound is sufficient, which is easier and usually less expensive than an exact

amount. They provide an integer formulation and derive several valid inequalities to

strengthen it. An interesting version of the static bike balancing problem is considered

by Raviv et al. [16], whose objective is not only to reduce balancing costs but also to

minimize dissatisfaction of users.

Finally, Schuijbroek et al. [17] consider an integrated problem related to the static stations

balancing problem. Their problem is to identify the optimal service level at each station

such that neither stock-outs occur to often nor that there are too many bikes at each

station available leaving insufficient free racks available for customers who want to return

their bikes. Besides the focus on the service level, Schuijbroek et al. [17] also take the cost

of balancing into account. They provide a heuristic and apply it to data obtained from

bike hire systems in two US east coast cities to show the effectiveness.

While the problems addressed by the aforementioned literature are related and focus

the balancing problem in general, all authors concur that related versions of the static

balancing problem are NP-hard and, therefore, for arbitrary networks no efficient solutions

are known. However, the special case of circular stations, which may warrant efficient

solutions at least under certain conditions, has so far not been addressed to the best of

the author’s knowledge.
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2.2 Benchimol et al.: Balancing the stations of a self-service bike hire

system

The work closest related to this thesis is Benchimol et al. [2]. They study the problem of

balancing the stations of a self-service bike hire system on a graph G = (V,E) which is not

restricted to be a circle. They contribute several interesting results. In the remainder of

this section, these results and their relationship to the special case of a cycle are discussed.

Benchimol et al. [2] formulate the following research version of the SSBP.

Instance: A graph G = (V,E), a cost function c ∈ RE+, a capacity C and two states

i = (x, p) and t = (y, q).

Task: Find the minimal cost of a sequence of moves that allows to go from the state i to

the state t and the first move of such an optimal sequence.

Benchimol et al. [2] first provide insights into the complexity of the SSBP. Since the

seminal work of [6], many problems have been shown to be NP-hard, particularly by

means of reducing an NP-complete problem to the new problem. Indeed, Benchimol et

al. [2] proceed in a similar fashion. Since this thesis is concerned with a special case

of their SSBP, it seems appropriate to review their proofs in depth and decide whether

the same NP-complete problems could be reduced to the CSSBP. As Arora and Barak [1]

observe, this often turns out to be a fruitful approach to study the complexity of restricted

instances. Benchimol et al.’s main complexity result is that the SSBP is NP-hard even

for a complete graph with unit costs and a y constant on V . The idea of their proof is

to reduce the PARTITION PROBLEM, which is known to be an NP-complete problem

[10], to the SSBP in polynomial time. They construct a capacity constraint C and initial

distribution of bikes x based on the input parameters of the PARTITION problem such

that, if and only if the answer to PARTITION is yes, the optimal solution to the SSBP

requires exactly n+ 2 moves. While this proof works well for complete graphs, this logic

cannot be related to the CSSBP because it strictly requires a complete graph. If cycles

are balanced within n + 2 moves, the truck moved about once along each of the n − 1

edges. Attempting to relate this to PARTITION, one would need to know upfront which

vertices should be adjacent in the cycle. This, however, is the essence of the PARTITION
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problem itself and thus there is no straight polynomial time reduction.

A further complexity result in [2] is that the SSBP is NP-hard even for a bipartite graph

with unit costs, fixed C (even C = 1) and yv = 1 for all v ∈ V . This time Benchimol et

al. show how the HAMILTONIAN CYCLE IN BIPARTITE GRAPHS PROBLEM, also a

known NP-complete problem [10], can be reduced in polynomial time. The decision prob-

lem of the HAMILTONIAN CYCLE IN BIPARTITE GRAPHS PROBLEM is whether

there is a simple circuit that includes all vertices in G [10]. The core idea of the proof by [2]

is to use the color classes A and B for the bipartite graph and to have xv = 2 if v ∈ A and

xv = 0 else while p = q is any vertex in A and yv = 1 for all v ∈ V . Now, it is clear to see

that if and only if the optimal solution to the SSBP is n there exists a Hamiltonian Cycle.

While the CSSBP is concerned with cycles and cycles with an even number of vertices are

bipartite graphs [18], the question of whether there exists a Hamiltonian Cycle within a

cycle is trivial. At the flip side, the HAMILTONIAN CYCLE IN BIPARTITE GRAPHS

PROBLEM, in general, cannot be reduced to the CSSBP in polynomial time to decide

whether CSSBP is NP-hard.

Finally, for the case that G is a tree and the preemptive version is considered, [2] provide

a solution in linear time implying that this case is in the complexity class P. However,

by the definition of trees, trees are cycle free [18]. Therefore, a possible driver of the

complexity of general cases of the SSBP are cycles. In relation to the complexity of cycles,

Benchimol et al. [2] state that “the complexity status of this case is open” (p. 17).

Besides complexity results, Benchimol et al. [2] also suggest a series of algorithms and

heuristics for the SSBP. For the general case they adapt an algorithm by Chalasani and

Motwani [3] and show that it provides a 9.5-approximation algorithm. For complete graphs

with unit costs they show that a greedy algorithm provides a 2-approximation algorithm.

While these results are of general interest, they are not further summarized here in detail

because the case of a tree with the special case of lines is closer related to and reflected

in some aspects within this thesis.
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2.2.1 The case of a tree

Benchimol et al. [2] provide an efficient algorithm for the case of a tree. Key idea of this

algorithm is to consider the connected components K1, . . . ,Kh of G − {p}. Since G is a

tree, there are no edges between either pair of Ki and Kj (i 6= j). The algorithm is depicted

in Figure 1. In order to provide an expression for the optimal costs, several definitions

and notations are required, which are partly directly adopted from [2]. First, for an edge

e ∈ E let Ue denote the subset of vertices such that δ (Ue) = e and x (Ue) ≥ y (Ue). In

cases of equality, make arbitrary choices.

(1) All stations are balanced.

(a) p 6= q
move along the edge stemming from p in direction of q.

(b) p = q
don’t move (it is finished).

(2) There are unbalanced stations.

(a) There is a component Ki in excess.
take no bike and enter the component Ki in excess.

(b) There is no a component in excess.

(i) There are several components Ki such that we have simultaneously
x (Ki) ≤ y (Ki) and at least one unbalanced station in Ki.
Choose such a Ki such that q /∈ Ki, take min (C, y (Ki)− x (Ki)) bikes,
enter Ki and put the bikes on the first vertex of the component.

(ii) There is only one components Ki such that we have simultaneously
x (Ki) ≤ y (Ki) and at least one unbalanced station in Ki.
Take min (C, y (Ki)− x (Ki)) bikes, enter Ki and put the bikes on the
first vertex of the component.

Figure 1: Rule to balance stations of a tree. Adopted from Benchimol et al. [2].
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A useful notation according to [2] is

µ (p, q, Ue,x,y) :=



0 if p, q ∈ Ue and U e ⊂ B (x,y)

0 if p, q ∈ U e and Ue ⊂ B (x,y)

1 if p ∈ Ue and q ∈ U e

1 if p ∈ U e and q ∈ Ue

2 if p, q ∈ Ue and U e \B (x,y) 6= ∅

2 if p, q ∈ U e and Ue \B (x,y) 6= ∅ ,

(1)

which relates to the minimal amount edge e is used and transcends into the subtour

elimination constraint of the related traveling salesmen problem. Indeed, µ (p, q, Ue,x,y)

states that edge e has to be traversed at least twice if both p and q are on one side of e but

some stations on the other side require balancing. In case p and q are on different sides of

e, e needs to be traversed at least once. Finally, only if p and q are on the same side and

all stations on the other side are balanced, it is possible never to use edge e. Note that

these numbers are independent of capacity. Furthermore define

η (p, q, Ue) :=



−1 if p ∈ Ue and q ∈ U e

0 if p ∈ Ue and q ∈ Ue

0 if p ∈ U e and q ∈ U e

1 if p ∈ U e and q ∈ Ue .

(2)

The function η (p, q, Ue) serves as a correction to account for the location of the truck

when calculating how often an edge needs to be traversed under capacity considerations.

Finally, define

ze (p, q,x,y) := max

(
2

⌈
x (Ue)− y (Ue)

C

⌉
+ η (p, q, Ue) , µ (p, q, Ue,x,y)

)
(3)

Then Benchimol et al. [2] derive and prove the following result.
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Proposition 1 (Theorem 5 in [2]) The rule described above provides a first move of

an optimal sequence for the SSBP on a tree (and hence, if repeated, provides an optimal

sequence) and the optimal cost is:

∑
e∈E

ceze (p, q,x,y) (4)

This result merits two interesting insights. Not only is a myopic algorithm possible, but

also is it independent of the actual costs of each edge (cf. Figure 1, where decisions never

depend on costs). Benchimol et al. prove this result in several steps. First, they provide an

integer linear program which provides a lower bound on balancing all stations. Essentially

this integer linear program states that
∑
e∈E

ceze (p, q,x,y) already provides a lower bound.

The main part of the proof is then to show that, indeed, the algorithm in Figure 1 leads

to the correct amount ze (p, q,x,y) of using each edge.

This is done by induction on γ (p, q,x,y) :=
∑
e∈E

ze (p, q,x,y). The first step is clear,

if γ (p, q,x,y) = 0 then the algorithm is in step 1b and Equation (3) leads correctly to

ze (p, q,x,y) = 0.

In the induction step it is assumed that γ (p, q,x,y) > 0 has been correct so far and that

a move towards state (x′, p′) is the next move according to their algorithm. Then it needs

to be shown that using Equation (3) leads to

ze (p, q,x,y) =


1 + ze (p′, q,x′,y) if e = pp′

ze (p′, q,x′,y) if not

(5)

because this would imply that each increase of γ (p, q,x,y) by one is due to increasing

the right ze through the algorithm and by induction proves their result. In order to show

that Equation (5) actually results from applying the algorithm, Benchimol et al. show its

validity through all cases. For the sake of brevity, this is not repeated here but rather case

1a is shown as an example. Indeed, in case 1a, x = y because no bikes are moved anymore.

For any edge e 6= pp′ clearly ze (p, q,x,x) = ze (p′, q,x,x) because moving from p to p′
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affects neither µ nor η. Moreover, for e = pp′, η (p, q, Ue) = 1, µ (p, q, Ue,x,x) = 1 and

η (p′, q, Ue) = 0, µ (p′, q, Ue,x,x) = 0 and hence ze (p, q,x,x) = 1 and ze (p′, q,x,x) = 0

satisfying Equation (5).

Equation (3) can also be interpreted in a more intuitive (and less formalized) way. The

idea here is that µ (p, q, Ue,x,y) provides a lower bound on the amount of required passes

through e. Now, the term 2
⌈
x(Ue)−y(Ue)

C

⌉
reflects how often the truck must pass through

the edge because of capacity constraints. The factor 2 stems from the fact that the truck

always needs an inbound and an outbound move. Yet, this term must be corrected by the

term η (p, q, Ue) which is 1 if p ∈ U e, that is the truck first needs to pass e to enter Ue,

and q ∈ Ue, that is the trucks needs to finish in Ue. If p ∈ Ue, that is the truck is already

in Ue, and q ∈ U e, that is outside of Ue, the truck requires 1 time less traversing edge e.

2.2.2 The case of a line

A line is a special case of a tree [18]. Therefore, it is possible to apply the aforementioned

algorithm on lines, too. Benchimol et al. [2] provide a different approach for the case

of a line when q is not fixed. However, the description appears ambiguous. Indeed, the

algorithm seems to suggest that neither costs nor the potential location of q need to be

taken into account. Consider the line in Figure 2a. An optimal solution is the sequence

depicted through gray arrows, where only in moves 2 and 6 a bike is transported, leading

to costs of 1. This is optimal because clearly edge 2 has to be traversed at least once to

balance stations 3 and 4 which suggests a lower bound of 1. Whether the truck ends at

station 3 or 4 is inconsequential because of c3 = 0. Note that given the costs it cannot be

optimal to end at station 1 or 2, because this would lead to minimal costs of 2.

Now consider the line in Figure 2b. The initial task is the same but costs are slightly

different. In this case, an optimal solution (again depicted in gray arrows) requires the

truck to transport a single bike only in moves 4 and 6 and the truck terminates at station

1. Note that edge 1 has to be traversed at least twice to balance station 1, hence 2 is

a lower bound. Moreover, note that any q 6= 1 implies traversing edge 1 three times,

increasing the costs to 3. Therefore, both figures illustrate that costs need to be taken
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1 2 3 4p

x1 = 0
y1 = 1
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x3 = 0
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c1 = 0 c2 = 1 c3 = 0

(a) optimal q ∈ {3, 4}.

1 2 3 4p

x1 = 0
y1 = 1

x2 = 2
y2 = 1

x3 = 0
y3 = 1

x4 = 2
y4 = 1

1

6

2

5

3

4

c1 = 1 c2 = 0 c3 = 0

(b) optimal q = 1.

Figure 2: Illustration of minimal costs on a line with free q with unit capacity. Bold lines
indicate when a bike is transported.

into consideration when q is free because otherwise the same sequence would be suggested

leading to higher than optimal costs at least in one case. Indeed, the problem with free

q can still be solved in polynomial time, for instance by applying the tree algorithm for

each of the n stations as candidates for q and picking the cheapest one. In this thesis,

a simple formulation for the case of the line is required when q is fixed. Therefore, the

tree algorithm reviewed above will be adjusted to the case of a line instead of the line

algorithm in [2]. This adjustment is described in Section 4.2.

3 Characterization of the optimal CSSBP solution

Even though the difference between a line and cycle is only manifested through a single

edge, the solution can differ significantly. For instance, a truck may require to circle

several times the cycle. This way it could traverse some edges consecutively in the same

direction; this is impossible on a line. Other than in the tree where only one path exists
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between each pair of vertices, in the case of the cycle there are always two paths such that

costs have to be taken into account even when visiting an adjacent station. To get some

first insight, one way of formulating the CSSBP is to formulate it as dynamic program

[7, 14] which primarily serves here as illustration of the size of the associated state space.

Consider cycle G = (V,E) where stations are such that p− 1 is left of p and p+ 1 is right

of p. Then a cost-to-go function for the state (x, p) is given by

J (x, p) := min
{
cpp+1 + min

0≤k≤C

k≤xp

{J ((x1, . . . , xp − k, xp+1 + k, . . . , xn) , p+ 1)} ,

cp−1p + min
0≤k≤C

k≤xp

{J ((x1, . . . , xp−1 + k, xp − k, . . . , xn) , p− 1)}
}

with J (y, q) = 0. This formulation captures the intuition of a truck that has to take two

decisions on each station: how many of the xp bikes to load and whether to move them left

or right. Even only the latter choice indicates 2N possible decisions for a fixed sequence

length N . In addition, the number of bikes to be transported leads to prohibitively large

solution spaces because technically up to
∑
v∈V

xv bikes could be put onto each of the

stations. Solving the dynamic program thus appears too tedious to provide a meaningful

answer to the question of the first move and the costs of the optimal solution. Nevertheless,

this does not imply that nothing can be learned about the optimal sequence.

Rather than providing an efficient algorithm, the objective of this section is to derive

some characteristics of the optimal solution to gain structural insights. Answers will be

provided to questions such as: Will it be required for an optimal solution to sometimes

ship bikes along some edge e first in one direction but then other bikes along e into the

reversed direction or may some bikes be unloaded during the first pass without adding

additional costs? If the solution requires strictly more bikes to be shipped anti-clockwise

along a certain edge than clockwise, does this prescribe how many bikes have to be moved

along other edges? In other words, if, in the optimal solution, one must ship a certain

number of bikes along a specific edge, does this require the use of a specific other edge,

too? Moreover, the following scheme to balance all stations would always work: Always
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load as many bikes as possible as long as xp > yp and unload as many bikes as possible

as long as xp < yp. Then simply move the truck forward, always in the same direction. If

such as scheme is followed, how often does the truck need to circle the cycle and what are

the maximal costs? Besides providing structural insights by answering these questions,

several results will be derived in this section which are required later on.

3.1 Clockwise and anti-clockwise shipments

The first result observes the shipments of bikes along each edge.

Proposition 2 In the CSSBP, there exists an optimal sequence of moves such that each

edge has one direction (clockwise or anti-clockwise) in which the truck never ships bikes.

Proof (Proposition 2). Certainly, there is always at least one optimal sequence of moves to

balance the stations of a given cycle in the preemptive version of the CSSBP. This follows

immediately from
∑
v∈V

xv =
∑
v∈V

yv. Let this sequence be denoted by S. If according to S

each edge has one direction (clockwise or anti-clockwise) in which the truck never ships

bikes, then it is already done. If not, there exist at least two adjacent stations p and q and

two pairs of adjacent states s = (x, p) and t = (y, q) as well as s′ = (x′, p) and t′ = (y′, q)

such that there is a move from s to t and later on from t′ to s′ with x 6= y and x′ 6= y′.

Let the edge between p and q be denoted by e and let N := xp − yp and M := x′q − y′q be

the number of bikes shipped in the moves from s to t and t′ to s′, respectively. Without

loss of generality, define the direction from s to t to be clockwise. Assume that, physically,

no bike shipped from p to q will be among the bikes shipped back later on from q to p.

Otherwise, simple drop those bikes at p and adjust N and M accordingly. This is possible

because the preemptive version is considered here.

Let sequence S be expressed by the states s1, . . . , sn with si = (xi, pi) (i = 1, . . . , n). In

this proof a similar sequence S′ will be constructed which consists of the states s′1, . . . , s
′
n

such that s′i = (x′i, pi) (i = 1, . . . , n), which means the truck takes the same tour as in

S leading to the same costs but may differ in terms of load. It will be shown that S′

will satisfy (xi)pi − (xi+1)pi ≥ (x′i)pi −
(
x′i+1

)
pi

for all i = 1, . . . , n − 1 and in particular
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that the truck is either empty when moving from s to t or from t′ to s′. By induction on

the edges where bikes are shipped in both directions, an optimal sequence is constructed

which ensures that each edge has one direction (clockwise or anti-clockwise) in which the

truck never ships bikes.

Let K := min{M,N}. To construct S′, let s′i = si for all states i reached before state s.

Now, instead of transporting N bikes in the move from s to t, drop immediately K bikes

at station p. Index these bikes by k = 1, . . . ,K and denote their destination under S,

that is the station where they are supposed to be dropped according to S, by ω1, . . . , ωK .

Likewise, note that the truck would later on move bikes indexed by K + 1, . . . , 2K from

t′ to s′. Denote the origin stations of these bikes as αK+1, . . . , α2K .

Since the truck first moves along e clockwise and later anti-clockwise, there must be a

station where it reverses its direction. Let r be the station with the greatest clockwise

distance to p that the truck reaches before returning. Then αK+1, . . . , α2K and ω1, . . . , ωK

are between q and r or they are either q or r. Now, pick any pair of bikes, bike k and

bike K + k, and adjust the loading and dropping procedure of S as follows. If αK+k = ωk

do nothing. If the truck reaches αK+k before reaching ωk on its way to towards r, load

bike K + k at station αK+k and unload it at station ωk. By this approach, the truck has

loaded one less bike while moving from p to q (and vice-versa) and also on its way from

q to αK+k while otherwise the load is the same as under S. The latter aspect ensures

(xi)pi − (xi+1)pi ≥ (x′i)pi −
(
x′i+1

)
pi

. Yet this leads to the same bike distribution as under

S. If, on the other hand station αK+k would be reached after ωk, the truck passes by αK+k

and on its return from station r at the last time it visits station αK+k it should load the

bike K + k and drop it at ωk. Again, by this approach, the truck has loaded one less bike

while moving from p to q (and vice-versa) and on its way from q to ωk while never having

more bikes than according to S. This, again, ensures (xi)pi − (xi+1)pi ≥ (x′i)pi −
(
x′i+1

)
pi

.

Again this leads to the same bike distribution as under S. Now, repeat this procedure for

the remaining K − 1 pairs of bikes. Then the number of bikes moved between p and q has

been reduced by K and the load of the truck has not been increased for any move. Since

K = min{M,N}, either the truck moves empty from s to t or from t′ to s′. Finally, let
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s′i = si for all states i reached after state s′.

Now, repeat this procedure as long as there is an edge along which the truck moves

bikes clockwise and anti-clockwise. Note that each application of the procedure re-

duces the occasions of bikes being shipped in both directions strictly by one and since

(xi)pi − (xi+1)pi ≥ (x′i)pi −
(
x′i+1

)
pi

it will never create a sequence S′ where a bike on

another edge e′ 6= e is shipped that is not shipped according to S. �

Figures 3a and 3b illustrate the construction described in the proof. In Figure 3a, a

sequence is depicted that requires moving bikes along the edge (12) into two directions,

which is changed in Figure 3b where only one bike is moved along edge (12) and thus only

in one direction. This is the result of the aforementioned procedure, to be more precise,

with K = min(M,N) = 2 there are two pairs of bikes, namely (1,3) and (2,4). Bike 4

should be shipped while the truck moves from p towards r = 6, bike 3 while the truck

returns from r towards p. The illustration shows that the number of bikes are on each

edge is reduced while the same truck movements are required. Intuitively this captures

the idea to move bikes shorter distances if possible.

3.2 Required use of special edges

Proposition 2 states that along each edge bikes only need to be moved clockwise or anti-

clockwise but this Proposition only looks at edges in isolation. Ceteris paribus, it is thus

far not clear whether the decision to ship some bikes along a certain edge e in at least

one direction may limit the decision whether to ship bikes along certain other edges e′.

In a complete graph, for instance, this is hardly the case since there are always enough

alternatives. But what about the cycle? Does the use of certain edges only qualify to

decide whether adjacent edges have to be used or does it warrant more implications? To

capture some structural insights about the cycle, several definitions are required first. The

aim is to make use of certain patterns induced by the vectors x and y.
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1 2 3 4 5 6p
0

2
1

4

3

(a) Transporting bikes in two directions along (12), N = 3,M = 2.

1 2 3 4 5 6p

Unload bikes
1 & 2.

0 4

3

(b) Transporting bikes in one direction along (12) trough revised scheme, N = 3,M = 2.

Figure 3: Ilustration of proof of Proposition 2. Effectively, both sequences lead to the
same bike distributions and same costs.

Definition 9 (balanced line) Let line L = (VL, EL) be a subgraph of cycle G = (V,E).

L is called balanced if
∑
v∈VL

(xv − yv) = 0.

Clearly, only if a line is balanced, a truck could balance each station of this line without

either adding or removing any bikes from the line.

Definition 10 (partition) Let G = (V,E) be a cycle and let Li = (Vi, Ei) ⊂ G be

balanced lines where i ∈ {1, . . . ,m} and m ≥ 2. If V = ∪mi=1Vi, and Vi ∩ Vj = ∅ for i 6= j,

then call P := {L1, . . . , Lm} a partition of balanced lines.

There can be many different partitions for the same cycle. Particularly, if there is at least

one balanced station, there is at least one partition.

Definition 11 (set of connecting edges) Consider cycle G = (V,E) with partition

P = {L1, . . . , Lm} and balanced lines Li = (Vi, Ei) ⊂ G, i ∈ {1, . . . ,m}. The set of

connecting edges is defined by WP := E \ ∪mi=1Ei.
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3 4

x1 = 1
y1 = 0

x2 = 0
y2 = 1

x3 = 1
y3 = 0

x4 = 0
y4 = 1

(a) Partition P in bold lines.

12

3 4

x1 = 1
y1 = 0

x2 = 0
y2 = 1

x3 = 1
y3 = 0

x4 = 0
y4 = 1

(b) Partition P ′ in bold lines.

Figure 4: Consider a truck that moves straight from 1 to 4 and moves a bike from 1 to 2
and one from 3 to 4. It balances P -local but strictly P ′-global.

And finally, a distinction between different types of balancing schemes can be made.

Definition 12 (P -local and P -global balancing) Consider graph G with partition P .

The truck balances all balanced lines P -locally if the truck is empty whenever it moves

along an edge e ∈ WP . Otherwise the truck balances the stations P -globally. The truck

strictly balances all balanced lines P -globally if there exists an edge e ∈ WP such that the

total number of bikes moved clockwise and those moved anti-clockwise along e are different.

P -local balancing thus implies that each bike remains in the same balanced line, hence

the term local. Note that the reference to the partition is made explicit, because, given

a partition P , balancing might occur locally whereas through the same moves and the

same cycle but a different partition, this would be considered global balancing. Figure 4

illustrates this.

The result of Proposition 2 can now be expressed in terms of the type of balancing used.

Corollary 1 If there is a cycle G = (V,E) endowed with Partition P such that all stations

are balanced P -globally but not strictly P -globally, then the same solution can be obtained

by P -local balancing.
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Proof (Corollary 1). If G is not balanced strictly P -global, then there is no e ∈ WP

along which more bikes are shipped into one direction than reverse. Therefore, for all

e ∈ WP either no bikes are shipped at all or the same number is shipped reversely. By

Proposition 2 it is possible to adjust the sequence such that through those edges bikes are

shipped only in one direction. Since the same number of bikes would have been shipped

in both directions, no bikes are shipped along each e ∈WP which is local balancing. �

Now the initially raised questions as to whether the use of certain edges requires the use

of certain other edges can be addressed.

Proposition 3 Consider cycle G with partition P and a set of connecting edges WP . If

the truck balances the stations of G strictly P -globally it must move along each e ∈WP at

least once.

Proof (Proposition 3). Let P = {1, . . . , Lm}. Since the truck balances strictly P -global,

there exists an edge e ∈ WP such that the difference between the total number of bikes

shipped clockwise and the total number of bikes shipped anti-clockwise 6= 0. Let e = pq

and let ∆pq be the total number of bikes shipped from p to q minus the total number of

bikes shipped from q to p. Since e ∈ WP , p and q are in different lines. Let these be

denoted by Lp and Lq, respectively. If ∆pq > 0 then Lq would be in excess, which means

that at least one station is not balanced, unless ∆pq bikes are shipped to its other adjacent

line. Therefore, ∆pq have to be shipped to its other adjacent line to ensure balancing Lq.

By induction on the number of lines, ∆pq bikes have to be shipped until they finally arrive

at line Lp. If, instead, ∆pq < 0, the same logic applies but in the other direction of the

cycle. Therefore, in both cases the truck has to move along each e ∈WP at least once to

ship ∆pq bikes along each of such edges. �

Note that Proposition 3 holds for any Partition P . Hence, it can be iterated through

all partitions to come up with sets of WP . Then, whenever a solution would require to

use an e ∈ WP for some P , this indicates how many bikes have to be shipped along the

remaining edges in WP . In a certain sense, partitions are sets of subsets, which leads to
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the question as to how many partitions there are – whether the number of partitions grows

exponentially or linearly – and how they can be identified.

Definition 13 Let P = {L1, . . . , Lm} and P ′ = {L′1, . . . , L′m′} be two different partitions

of cycle G. If ∀i′ ∈ {1, . . . ,m′} ∃i ∈ {1, . . . ,m} satisfying V ′i′ ⊂ Vi, then P ′ is called a

refinement of P .

Now, of primary interest are non-refineable partitions, which are partitions for which no

refinement exists, because if P ′ is a refinement of P , WP ⊂WP ′ follows from the definition.

Hence the implications of Proposition 3 are strongest when P is non-refineable.

Lemma 1 Cycle G = (V,E) has at most |V | partitions which cannot be further refined.

Proof (Lemma 1). This claim can be proven constructively. Indeed, enumerate all vertices

in G by 1, . . . , |V | clockwise. Then start constructing partition P1 by moving from vertex

1 clockwise. Include all vertices into the first line until there is a vertex i which satisfies∑i
v=1 (xv − yv) = 0. If i < |V |, include all vertices starting by i + 1 into line 2 until

reaching a vertex j that satisfies
∑j

v=i+1 (xv − yv) = 0 and continue by repeating this

until all vertices are in balanced lines and the first partition is completed. Else (i = |V |),

P1 is not a partition, simply drop it and move on. Next, construct P2 through the same

routine starting at vertex 2. Continue until the starting vertex is |V |, afterwards at most

|V | partitions have been created.

Now the created partitions cannot be further refined. Assume the opposite, that is, there

was a partition that could be further refined. Then there would be a line from some

vertex v1 to vertex vk which can be split into two lines such that
∑vl

v=v1
(xv − yv) = 0

and
∑vk

v=vl+1
(xv − yv) = 0 where v1 < vl < vk. However, this is impossible because by

construction this first line from v1 to vl would have already been included in the partition

and then the second as a separate line.

Indeed, this approach identifies all partitions which cannot be further refined. Assume

the construction approach would be alternated in an attempt to find further partitions.

Since all stations on each line must be connected, the only way to alternate the approach
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is to start with some arbitrarily station v and add some stations to its left and some to

its right, instead of strictly moving into one direction. However, let w be the left-most

station added to the line including v. Then there is also a partition whose construction

started with station w as obtained by the routine above. Therefore, the proposed construc-

tion leads to the construction of all possible partitions that cannot be further refined. �

Based on this lemma additional constraints related to the use of edges in WP for all of the

at most |V | partitions can be created. Furthermore, besides deriving restrictions on the use

of certain special edges, Proposition 3 provides a first lower bound on the optimal solution.

Indeed, under strict P -global balancing, costs are bounded from below by
∑

e∈WP

ce.

3.3 Maximal number of complete circles

The optimal solution may require the truck to drive several times around the cycle. To

capture this more formally, define,

Definition 14 (complete circle) Let G = (V,E) be a cycle with a current position of

the truck p ∈ V . A complete circle is a series of moves between adjacent states such that

the truck uses each edge exactly once and returns to p.

An interesting characteristic of the optimal solution is the maximal number of complete

cycles. In fact, a solution where the truck simply drives forward provides an intuitive upper

bound. Economically there might be situations when an upper bound can be sufficient.

Think of the question whether balancing a certain cycle is economically viable, then the

upper bound on costs may already provide a positive answer. To formulate an upper

bound on the number of complete circles a further definition is needed.

Definition 15 (connected vertices, end point) Let G = (V,E) be a cycle. U ⊂ V is

called a set of connected vertices if ∃F ⊂ E such that (U,F ) is a line. A vertex u ∈ U

where U is a connected set is called an end point of U if in G ∃e ∈ E\F such that e ∈ δ(u).
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Let Umax be a set of connected vertices which satisfies x (Umax)−y (Umax) ≥ x (U)−y (U)

for all sets U of connected vertices. This relates to the path with the largest excess in

supply. Since x(V ) = y(V ), x (V \ Umax)−y (V \ Umax) = − (x (Umax)− y (Umax)) which

means that the aggregated default of the remaining stations is the same. Therefore, the

larger x (Umax)−y (Umax), the more the truck needs to balance. Hence x (Umax)−y (Umax)

is a measure of overall unbalancedness. The following proposition relates the overall

unbalancedness with the upper bound on complete circles.

Proposition 4 In the optimal solution to the CSSBP, the truck will never require more

than
⌈
x(Umax)−y(Umax)

C

⌉
complete circles.

Proof (Proposition 4). Indeed, it is possible to construct a sequence such that the truck can

balance all stations after at most
⌈
x(Umax)−y(Umax)

C

⌉
complete circles. Any sequence with

more complete circles than this will lead to strictly greater costs and is thus suboptimal.

If all stations are balanced, that is x(Umax)− y(Umax) = 0, simply move the truck on the

cheapest route from p to q which requires
⌈
x(Umax)−y(Umax)

C

⌉
= 0 complete cycles and thus

is in line with the proposition. Else, find all sets Umax such that x(Umax) − y(Umax) ≥

x(U) − y(U) for all sets of connected stations U . Move the truck from p to the closest

station p′ which is an end point of some set Umax. If there is a tie make a random choice.

Now, the truck is at station p′. Let m :=
⌈
x(Umax)−y(Umax)

C

⌉
. It will be shown that if

m > 1 and the truck completes a circle with appropriate loading and unloading of bikes,

the initial status is almost the same except for when m is calculated it is reduced by 1. By

the principle of induction this will be repeated m−1 times requiring the truck to complete

m− 1 circles until
⌈
x(Umax)−y(Umax)

C

⌉
= 1. In this case it can be shown that the truck can

complete a final circle to balance all stations and then move to q. Adding the distance

from p′ to q to the distance from p to p′ does not result in a complete circle, hence it is

possible to balance all stations with at most m complete circles. Clearly, if m complete

circles are enough and the path to p′ and to q have been the shortest, it is not possible

to find a better solution requiring more complete circles. So, what is left to prove is (a)

if m > 1 a complete circle with appropriate loading strategy reduces m by 1 and (b) if
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m = 1 a complete circle leads to balancing all stations.

Consider first the latter case. When m = 1 then x(Umax) − y(Umax) ≤ C. Now, index

the stations beginning with p′ = 1 such that the next station of Umax is 2 until the last

station of the circle is n. Let z be the last station of Umax so that {1, . . . , z} = Umax

and z + 1 /∈ Umax. Then load x1 − y1 bikes into the truck and balance station 1. Clearly

x1−y1 ≥ 0 because if instead x1−y1 < 0 then
z∑
i=2

(xi − yi) >
z∑
i=1

(xi − yi) which contradicts

that 1 ∈ Umax. Also there is enough capacity since x1 − y1 ≤ C because if this was not

the case, Umax = {1} with m > 1. Now, move straight towards z and for each station k

do the following. If xk−yk ≥ 0 load all bikes at this station and else unload yk−xk bikes.

In both ways all stations 1, . . . , z will be balanced. Now it can be shown that this, indeed,

is feasible given the capacity and non-negativity constraint.

At station k = 1 this was possible as shown before. Now assume it is also possible for

stations 1, . . . , k−1. Case 1: xk−yk ≥ 0. Assume adding xk−yk lead to
k∑
i=1

(xi − yi) > C.

This would imply x ({1, . . . , k}) − y ({1, . . . , k}) > x (Umax) − y (Umax), a contradiction.

Hence the additional xk − yk bikes can be loaded and station k can be balanced. Case 2:

xk − yk < 0. Assume the truck has not loaded sufficient to unload yk − xk bikes. Then
k∑
i=1

(xi − yi) < 0. But since
k∑
i=1

(xi − yi)+
z∑

i=k+1

(xi − yi) = x (Umax)−y (Umax) this would

imply x ({k + 1, . . . , z}) − y ({k + 1, . . . , z}) =
z∑

i=k+1

(xi − yi) > x (Umax) − y (Umax), a

contradiction to the definition of Umax. Therefore, the truck can immediately balance

station k by unloading yk − xk bikes. By the principle of induction it follows that all

stations k = 1, . . . , z can be balanced by a single forward transition from k = 1 to z.

When the truck moves from z to z + 1 it has loaded x (Umax)− y (Umax) bikes.

Now, the truck will do the following. It passes straight on from station z + 1 to station

n and at any station k it loads xk − yk bikes if xk − yk ≥ 0 and unloads yk − xk bikes

else. This will balance all stations k = z + 1, . . . , n with the truck terminating at station

n such that a final move towards p′ completes the circle. Now the actual feasibility of this

procedure is shown.

Begin with station z + 1. Clearly, xz+1 − yz+1 < 0 because else x ({1, . . . , z + 1}) −

y ({1, . . . , z + 1}) > x (Umax) − y (Umax), a contradiction. Moreover, since the entire cy-

25



cle can be balanced 0 =
n∑
i=1

(xi − yi) =
z∑
i=1

(xi − yi) + xz+1 − yz+1 +
n∑

i=z+2
(xi − yi) ⇔

yz+1 − xz+1 =
z∑
i=1

(xi − yi) +
n∑

i=z+2
(xi − yi). Recall that stations 1 and n are adjacent,

hence
n∑

i=z+2
(xi − yi) ≤ 0 because else

z∑
i=1

(xi − yi) +
n∑

i=z+2
(xi − yi) >

z∑
i=1

(xi − yi), a con-

tradiction to the construction of Umax. Therefore yz+1 − xz+1 ≤
z∑
i=1

(xi − yi), implying

that z + 1 can be balanced.

Now, assume that all stations up to station k − 1, z + 1 ≤ k − 1 ≤ n have been bal-

anced. Then there are 2 cases related to station k. Case 1: yk − xk > 0. Recall

0 =
n∑
i=1

(xi − yi) =
z∑
i=1

(xi − yi) +
k−1∑
i=z+1

(xi − yi) + xk − yk +
n∑

i=k+1

(xi − yi) ⇔ yk − xk =

z∑
i=1

(xi − yi) +
k−1∑
i=z+1

(xi − yi) +
n∑

i=k+1

(xi − yi). By construction of Umax,
z∑
i=1

(xi − yi) ≥

z∑
i=1

(xi − yi) +
n∑

i=k+1

(xi − yi) hence yk − xk ≥
z∑
i=1

(xi − yi) +
k−1∑
i=z+1

(xi − yi) and hence the

demand of station k can be satisfied by unloading yk − xk bikes. Case 2: xk − yk ≥ 0.

Since by definition of Umax it follows
k∑
i=1

(xi − yi) ≤
z∑
i=1

(xi − yi) ≤ C and it was possible

to balance all stations until station k − 1, there is sufficient space in the truck to load

xk − yk bikes and thus to balance station k. By the principle of induction this can be

repeated until station n is reached and thus all stations are balanced. Therefore, if m = 1

the truck can drive around the entire cycle and balance all stations straight.

Now, the case of m > 1 is left to be shown and the truck is at the first station of Umax.

Index all stations in increasing order so that p′ = 1 and Umax = {1, . . . , z} as before.

Again a procedure of loading and unloading bikes at the first z stations will be described

and subsequently its feasibility proven and a reduction of m by 1. Move the truck straight

from station 1 to station z. If at any station k = 1, . . . , z there is xk − yk ≥ 0, load so

many bikes that the truck is filled with min

{
C,

k∑
i=1

(xi − yi)
}

bikes. If xk−yk < 0 unload

min {yk − xk, C} bikes. Then move on to the next station. When moving from station z

to z + 1, the truck is filled with C bikes.

Note that for station 1 this is feasible because x1 − y1 ≥ 0 otherwise 1 /∈ Umax. Now,

assume some station k with 2 ≤ k ≤ z is reached and that the procedure was so far

feasible. Then, the current load of the truck is min

{
C,

k−1∑
i=1

(xi − yi)
}

. Again there are
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two cases. Case 1: xk − yk ≥ 0. Then simply try to load as many excess bike of station

k as possible which results in in a truck filled with min

{
C,

k∑
i=1

(xi − yi)
}

bikes. Case 2:

xk−yk < 0. Note that if yk−xk < C the truck will always have sufficient bikes to balance

this station straight analog to the aforementioned contradiction with the definition of

Umax. If yk − xk > C this implies that currently C bikes are in the truck which can be

unloaded. By induction it follows that this procedure is feasible for all following stations

until z. Indeed, note that xz−yz ≥ 0 because otherwise z /∈ Umax. Now, the truck is filled

with min

{
C,

z∑
i=1

(xi − yi)
}

= min {C, x (Umax)− y (Umax)} = C bikes. Since by moving

from z to z + 1 C bikes are moved out of Umax, x (Umax) − y (Umax) is decreased by C

which causes
⌈
x(Umax)−y(Umax)

C

⌉
to decrease by 1.

So the truck arrives at station z + 1 with C bikes. Now the balancing procedure is

essentially analog to the case of m = 1 as discussed above. Therefore, whenever the truck

hits a station in default it will unload bikes and whenever it hits a station in excess it will

seek to load all bikes until it is filled up to capacity. What is left to show is that after

completing its circle there is no set of adjacent stations U such that
⌈
x(U)−y(U)

C

⌉
> m− 1

and that, after completing the circle by moving from station n to 1, the truck is at a station

p′ which is an endpoint of some set of adjacent stations which satisfies the requirement of

Umax so that the next induction step can continue.

Recall the situation before the induction step,
⌈
x(Umax)−y(Umax)

C

⌉
= m. Assume there is

another set Ũ such that
⌈
x(Ũ)−y(Ũ)

C

⌉
= m, that is x(Ũ)− y(Ũ) ≥ mC. Define two integers

a and b such that the stations of this set are Ũ = {a, a + 1, . . . , b}. Then there must be

some stations separating the sets Umax and Ũ because otherwise the set Umax ∪ Ũ would

contradict the definition of Umax in the first place. These stations are z + 1, . . . , a − 1

and b + 1, . . . , n. Moreover,
a−1∑
i=z+1

(xi − yi) ≤ −mC and
n∑

i=b+1

(xi − yi) ≤ −mC because

otherwise, still one could form a larger set comprising Umax and Ũ contradicting the def-

inition of Umax. But due to the fact that
a−1∑
i=z+1

(xi − yi) ≤ −mC and that the truck will

drop bikes whenever possible on its way from z to a, the truck will be empty when it

arrives at station a. If this is not the case, it is simple to see that the set Ũ could be

extended such that the truck arrives empty and x(Ũ)− y(Ũ) is even larger. Now, exactly
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the same routine applies to the stations of Ũ that applied to Umax and thus the number

of bikes of this set is reduced by C. Finally, there can be an arbitrary number of sets

like Ũ . But by induction on the number of sets satisfying x(Ũ) − y(Ũ) ≥ mC it can

be shown that for each set the same result holds and that after the truck has completed

the round and the new Umax is observed,
⌈
x(Umax)−y(Umax)

C

⌉
= m − 1. Indeed, since the

number of bikes removed from each set with the properties of Ũ is the same, all stations

that have been in the set Umax will also be in a set Umax defined based on the updated

x. In particular, there is a set Umax with endpoint p′. Therefore, the truck has completed

a complete circle and by the logic of induction the statement of the proposition is true. �

Proposition 4 can be extended to provide an upper bound on the costs of the solution for

any cycle.

Corollary 2 Balancing costs of any cycle G = (V,E) are bounded from above by(⌈
x(Umax)−y(Umax)

C

⌉
+ 1
) ∑
e∈E

ce.

Proof (Corollary 2). By Proposition 4, a truck needs at most
(⌈

x(Umax)−y(Umax)
C

⌉)
com-

plete circles causing costs of
∑
e∈E

ce each. Thus it suffices to show that the costs of moving

the truck from p to some endpoint p′ of Umax and from p′ to q is below
∑
e∈E

ce. In-

deed, the truck may take the shortest path from p to p′ causing costs c1 ≤ 1
2

∑
e∈E

ce

(otherwise the other direction would have been cheaper). Now, q is between p and p′

at least in one direction. The truck should take this route. By moving to q costs are

c2 ≤ max

{∑
e∈E

ce − c1, c1
}

, hence c1 + c2 ≤
∑
e∈E

ce. �

Recall the geographical motivation for considering cycles such as parks or lakes. In the

case of Lake Harriet in Minneapolis, MN, for instance, streets are so that trucks should

not turn around but move straight on instead.

Corollary 3 If the truck is not allowed to turn around, balancing all stations requires

no more than
⌈
x(Umax)−y(Umax)

C

⌉
+ 1 complete circles for a fixed q and no more than⌈

x(Umax)−y(Umax)
C

⌉
complete circles for a non-fixed q.
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Proof (Corollary 3). Consider first the case where q is non-fixed. In this case, the truck

starts at p and moves to the next station of u ∈ Umax such that u is an end point and

such that the station (u − 1) /∈ Umax. This requires less than one complete circle. The

rest of the proof is analog to Proposition 4. Now, in the case of a fixed q the distance

from p to u plus the distance from u to q may exceed an entire circle. The rest is analog

to Proposition 4. �

4 Optimal solution of special CSSBP cases

For a given Cycle G = (V,E) with Partition P Proposition 3 relates the shipment of bikes

along any edge e ∈ WP with the use of all further edges ẽ ∈ WP \ {e}. This provides a

starting point for a lower bound on a solution requiring strict P -global balancing. In this

section, this bound first will be strengthened. Later, an algorithm to balance lines based

on [2] will be formulated, which will be applied to the cycle to derive an upper bound

on P -local balancing. The main result of this section is Proposition 6 which provides a

sufficient condition for solving special cases of the CSSBP efficiently.

4.1 Lower bound on global balancing

Even though the optimal sequence under global balancing cannot be stated in a meaningful

way, at least lower bound on its costs can be provided.

Lemma 2 Consider a cycle G = (V,E) without balanced stations with partition P . A

lower bound on any solution with strict P -global balancing is given by

LBGP :=
∑
e∈E

ce − max
e∈E\WP

{ce}+
∑
v∈V

max

{
2

(⌈
xv − yv
C

⌉
− 1

)
, 0

}
min
e∈δ(v)

{ce} . (6)

Proof (Lemma 2). Indeed, by Proposition 3 it is known that under strict P -global bal-

ancing each edge e ∈ WP must be traversed at least once. Moreover, since all stations

are unbalanced initially each station must be visited at least once which requires n − 1
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different edges to be traversed because there is no path with fewer edges that connects all

vertices in a cycle [18]. So there is one edge e ∈ E \WP which possible can be avoided

reducing the lower bound by ce.

In addition, if xv − yv > C, vertex v ∈ V needs to be visited at least
(⌈xv−yv

C

⌉
− 1
)

additional times in order to remove all excess bikes. Visiting implies two moves, one

ending in v and one departing from v. The truck could use either connected edge for that

purpose, assuming the cheaper one is feasible (which is in line with the construction of a

lower bound). This leads to additional marginal costs of mine∈δ(v) {ce}. Since each time

v is visited, at least the cheaper edge has to be used twice, inbound and outbound, this

leads to costs max
{

2
(⌈xv−yv

C

⌉
− 1
)
, 0
}

mine∈δ(v) {ce}. Summing up both terms the lower

bound of the lemma is obtained. �

4.2 Balancing lines

Cycles and lines are closely related because the removing of an edge transforms a cycle

into a line. In this subsection an algorithm based on the tree algorithm by Benchimol

et al. [2] will be provided. Consider a special case where the truck faces a line with q at

the right end and stations numbered through 1, . . . , q. For the truck’s current position, p,

denote by Kl := {1, . . . , p− 1} and Kr := {p+ 1, . . . , q} the stations left and right of the

truck, respectively. Now the algorithm in Figure 5 is an application of the one in Figure 1.

It is formulated slightly different because the truck has only two directions at each station

where to move next to but does exactly the same. In (2b) the left component is always

the one such that q /∈ Kl, hence the right component is only visited by the truck in case

(2bii) when the left component has been entirely balanced.

Similarly, Equation (3) can be simplified. Consider the situation where the truck starts at

the left end and q is on the right. Enumerate the stations from 1, . . . , q. Index the edge

between stations j and j + 1 as j for all j = 1, . . . , q − 1. Then denote U le := {1, . . . , e}

and U re := {e+ 1, . . . , q} and Ue is either U le or U re . This simplifies to µ (p, q, Ue,x,y) = 1

because in Equation (1) p and q are always in opposed sets. In terms of the subtour

elimination, µ (p, q, Ue,x,y) = 1 implies that each edge has to be traversed at least once.
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(1) All stations are balanced.

(a) p 6= q
move right.

(b) p = q
don’t move (it is finished).

(2) There are unbalanced stations.

(a) x(Kl) > y(Kl) or x(Kr) > y(Kr)
take no bike and if x(Kl) > y(Kl) move left else move right.

(b) Both x(Kr) ≤ y(Kr) and x(Kl) ≤ y(Kl)

(i) There is at least one unbalanced station left of p
Take min (C, y (Kl)− x (Kl)) bikes and put them on station p− 1.

(ii) There is no unbalanced station left of p
Take min (C, y (Kr)− x (Kr)) bikes and put them on station p+ 1.

Figure 5: Rule to balance stations of a line. Adapted from Benchimol et al. [2] tree
algorithm.

Moreover, define

ηe := η (p, q, Ue) =


−1 if

e∑
i=1

(xi − yi) ≥ 0

1 else

(7)

With Equation (3) this leads to

ze (p, q,x,y) = max

2


∣∣∣∣ e∑
i=1

(xi − yi)
∣∣∣∣

C

+ ηe, 1

 =: z̃e (x,y) (8)

Now consider a balanced line L = (V,E) with
e∑
i=1

(xi − yi) 6= 0 for all e ∈ E, hence
∣∣∣∣ e∑
i=1

(xi−yi)
∣∣∣∣

C

 ≥ 1. This leads to,
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Lemma 3 The optimal costs of balancing a balanced line L = (V,E) with p = 1 at one

end and q at the opposed end of the line and with
e∑
i=1

(xi − yi) 6= 0 for all e ∈ E is

∑
e∈E

cez̃e (x,y), where z̃e (x,y) = 2


∣∣∣∣ e∑
i=1

(xi−yi)
∣∣∣∣

C

+ ηe.

Proof (Lemma 3). The proof follows by the discussion above and Proposition 1. �

Yet, the condition
e∑
i=1

(xi − yi) 6= 0, which allows to drop the term related to the subtour

elimination constraint, µ (p, q, Ue,x,y), requires some attention. Indeed, if one is not

interested in a single line but rather in all lines of a partition, it would be quite tedious to

test each time whether this condition holds. The concept of refinement becomes handy.

In fact, if a partition is non-refineable, after adjusting some indices, for each line segment

and each edge thereof,
e∑
i=1

(xi − yi) 6= 0 holds. Consider Cycle G = (V,E) with non-

refineable Partition P. For Li = (Vi, Ei) ∈ P , i = 1, . . . ,m, with sets Vi = {1, . . . , ni} and

Ei = {1, . . . , ni−1} indexed such that edge j connects vertices j and j+1 (j = 1, . . . , ni−1)

denote by ci :=
∑
e∈Ei

ce

2


∣∣∣∣∣ e∑
j=1

(xj−yj)

∣∣∣∣∣
C

+ ηe

. Note that it is important to be careful

when indexing the edges and vertices of each balanced line. In fact, the numbering must

be done such that for each balanced line station q is connected through an edge e ∈ WP

with station p of another balanced line. From now on, it is assumed that indexing is done

correctly.

Corollary 4 Let all stations of Cycle G = (V,E) be unbalanced and let G be endowed

with non-refineable Partition P = {L1, . . . , Lm}. If there is an edge ẽ ∈ WP such that

ẽ = pq, balancing H = (V,E \ {ẽ}) has the optimal solution
m∑
i=1

ci +
∑

e∈WP \{ẽ}
ce which can

be achieved by applying the line balancing rule in Figure 5.

Proof (Corollary 4). Indeed, H = (V,E \{ẽ}) is by definition a line with the truck initially

on one end and q on the other end. Hence the line balancing rule in Figure 5 applies and

Equation (8) provides the number of times each edge is traversed. Note that Lemma 3
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cannot be applied immediately because for the edges e ∈WP \ {ẽ},
e∑
i=1

(xi − yi) = 0.

For any e ∈ WP clearly x
(
U le
)
− y

(
U le
)

= 0 and x (U re ) − y (U re ) = 0 implying ηe = −1,

hence ze = 1 according to Equation (8). Now the problem of how often each edge within a

line, Li, is traversed can be reduced to the case of lines where Lemma 3 applies, because the

truck starts empty each time at one end of line Li (i = 1, . . . ,m) and needs to terminate at

the other end to move on towards q and because P is non-refineable. Applying Lemma 3

for each of the i = 1, . . . ,m lines leads to costs of ci, thus in total
m∑
i=1

ci +
∑

e∈WP \{ẽ}
ce.

Finally this procedure leads to local balancing because the truck is always empty when

moving along any edge e ∈WP . �

If there is a cycle G with Partition P such that there is pq ∈WP then Corollary 4 provides

an upper bound on P -local balancing costs on G because it provides a feasible solution.

Note that this is not necessarily the best solution using P -local balancing because it might

be better to use ẽ even with local balancing.

4.3 Optimality of local balancing

Lemma 2 provides a lower bound on balancing costs if strict P -global balancing is used.

Corollary 4 provides an upper bound on P -local balancing. Combining both results,

Proposition 5 Consider a cycle without balanced stations and endowed with non-

refineable partition P = {L1, . . . , Lm} and costs c̄i for i = 1, . . . ,m. If there is an edge

ẽ ∈WP such that ẽ = pq and

LBGP ≥
m∑
i=1

(c̄i) +
∑

e∈WP \{ẽ}

ce (9)

then P -local balancing is optimal.

Proof (Proposition 5). This proposition is a consequence of Lemma 2 and Corollary 4.

Note that Lemma 2 refers to strict P -global balancing, not global balancing. However,

from Corollary 1 it is known that if a solution can be obtained by global balancing which

is not strict then it can also be obtained by P -local balancing which is thus optimal. �
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The Inequality (9) allows for some structural insights into cases where P -local balancing

is optimal. The costs of edge ẽ appear only on the left hand side, whereas other terms may

appear on both sides. Hence, ceteris paribus, as cẽ →∞ P -local balancing becomes more

attractive. Also, the way capacity is accounted for on both sides of this inequality differs

which may imply that certain capacity restrictions are necessary to show the optimality of

local balancing. That is, facing the same cycle a truck with smaller capacity may clearly

prefer local balancing whereas this does not follow for a truck with larger capacity.

To obtain a simpler result, assume the capacity is large enough such that it is not con-

straining, that is, assume |
e∑
i=1

(xi − yi) | ≤ C for all edges in all balanced lines and that

xv−yv ≤ C for all v ∈ V . Then
m∑
i=1

(c̄i) ≤ 3
∑

e∈E\{WP }
ce and max

{
2
(⌈xv−yv

C

⌉
− 1
)
, 0
}

= 0.

Then Inequality (9) is implied by

∑
e∈E

ce − max
e∈E\WP

{ce} ≥ 3
∑

e∈E\{WP }

ce +
∑

e∈WP \{ẽ}

ce

⇔ cẽ − max
e∈E\WP

{ce} ≥ 2
∑

e∈E\{WP }

ce

Now assume that all edges within the lines of P have unit costs except for ẽ. With n := |V |

this equation simplifies to,

cẽ − 1 ≥ 2
∑

e∈E\{WP }

1⇔ cẽ ≥ 2(n−m) + 1

Hence, cẽ would need to be larger when the circle is larger in terms of the number of

stations or when there are fewer balanced lines in P , which provides further support for

the idea of only considering non-refineable partitions in the first place. In other words, in

a small cycle even relatively cheap pq ∈WP is sufficient to indicate that local balancing is

optimal. On the other hand, the factor 2 captures that by using ẽ the truck might reduce

the number of each other edge within balanced lines of P to be traversed by 2.
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4.4 Example

Consider the situation depicted in Figure 6 where bold lines indicate Partition P . Assume

the truck has unit capacity. Using the aforementioned line algorithm by applying Corol-

lary 4 and omitting edge 91 leads to
m∑
i=1

ci +
∑

e∈WP \{ẽ}
ce =

3∑
i=1

4 + (5 + 5) = 22. This is

an upper bound on local balancing. Now, consider the term
∑
e∈E

ce − maxe∈E\WP
{ce} +∑

v∈V
max

{
2
(⌈xv−yv

C

⌉
− 1
)
, 0
}

mine∈δ(v) {ce} = 21 − 1 + 6 = 26. Hence, by Proposition 5,

local balancing is optimal. Now, assume C = 2, then the lower bound on strict P -global

balancing is only 20 so that Proposition 5 cannot be applied to decide whether local bal-

ancing is optimal. The above discussion indicated that with increasing costs of the edge

to be omitted under local balancing local balancing gets more attractive. And, indeed,

in the example in Figure 6 if c91 = 7 and C = 2 there is a lower bound on strict global

balancing of 22 such that local balancing is optimal even with C = 2.

An interesting observation is thus that the benefit stemming from the use of a certain

edge in strict global balancing may also depend on the capacity of the truck, not only on

the cost of the edges.

4.5 Optimal solution for special case

Proposition 5 indicates whether local balancing is optimal without stating how this should

be done. Under slightly stricter conditions, the aforementioned line balancing algorithm

does not only provide a lower bound but is also optimal.
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Figure 6: Example of unbalanced cycle. Bold lines represent Partition P .

Proposition 6 Consider a cycle without any balanced station and with partition P =

{L1, . . . , Lm} and costs c̄i for i = 1, . . . ,m. If there is an edge ẽ ∈WP such that ẽ = (pq)

and

∑
e∈E

ce − max
e∈E\{ẽ}

{ce}+
∑
v∈V

max

{
2

(⌈
xv − yv
C

⌉
− 1

)
, 0

}
min
e∈δ(v)

{ce}

≥
m∑
i=1

(c̄i) +
∑

e∈WP \{ẽ}

ce

then minimal costs are given by
m∑
i=1

(c̄i)+
∑

e∈WP \{ẽ}
ce and the algorithm in Figure 5 provides

the first step to the optimal sequence.

Proof (Proposition 6). From Lemma 3 it is known that the term on the right hand side

provides the costs of balancing the cycle when the algorithm in Figure 5 is applied for each

line in the partition P . This algorithm treats the cycle as a line which means that edge

ẽ is not allowed to be used and because of its optimality on the line, no better solution
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Figure 7: With C = 1 it is optimal to apply the line algorithm. Bold lines indicate when
a bike is shipped, thin lines indicate empty moves. Numbers indicate the sequence.

can be found. Thus it only needs to be shown that no solution strictly using ẽ can lead

to a better solution. The reasoning is essentially analog to Lemma 2. Indeed, except for

one edge, which is not ẽ, each edge must be used at least once to reach each unbalanced

station. Furthermore, the capacity constraint might require the truck to use certain edges

several times. This is entirely analog to Lemma 2. �

When applying Proposition 6 to the example in Figure 7 with C = 1, the line algorithm

leads to an optimal sequence. The solution is illustrated in Figure 7.

5 Conclusion

This thesis was motivated by the increasingly popularity of bike hire systems and the

arising problem of balancing their stations. Particularly, this thesis relates to the recent

paper “balancing stations of a self sservice ‘bike hire’ system” by Benchimol et al. [2].

While Benchimol et al. examined general graphs, here the emphasis was on the special
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case where all stations are circular, which was called the CSSBP.

This thesis provides some insights on the optimal solution. It compares systematically

three balancing schemes, namely local and (strictly) global balancing. When a cycle is

partitioned into balanced lines, the optimal solution could either result from local bal-

ancing, which does not allow to move bikes from one balanced line to another, or global

balancing. The combination of strict global balancing and local balancing is shown to

dominate non-strict global balancing. Furthermore, the truck could use several complete

circles to balance all stations. One result of this thesis provides an upper bound on this

number. Particularly for the case that the truck operates in a one way system, for instance

around a lake in a recreational area, this result approximates the optimal costs quite well,

especially when the terminal station is free and many complete circles are required.

Moreover, the objective was to find conditions under which the CSSBP can be solved by

treating it as a line. In fact, if those conditions hold, the solution is the same as those where

the cycle is opened up by removing a single edge. The conditions identified here indicate,

that this edge would need to be more expensive than a certain threshold. Intuitively

one may think this requires a kind of degenerate cycle G = (V,E) such that there is an

ẽ ∈ E with cẽ ≥
∑

e∈E\{ẽ}
ce. However, an example showed that also with cẽ = 5

8

∑
e∈E\{ẽ}

ce

local balancing and treating the cycle as a line can be optimal. Clearly, even cases with

relatively smaller cẽ which optimally should be balanced like a line can be constructed.

This condition is important as it provides support for treating some cycles as lines, which

simplifies the solution substantially.

Yet, an important open questions related to the CSSBP remains, namely, whether CSSBP

can be solved in polynomial time.
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