
The structure of gB-perfect graphs

Abschlussarbeit
im Studiengang

Bachelor of Science in Mathematik
an der Fakultät für Mathematik und Informatik

der FernUniversität in Hagen

vorgelegt von
Edwin Lock

Matrikel-Nr. 9163921

Betreuer:
Dr. Dominique Andres

Hagen, den 16. Juni 2016

FernUniversität in Hagen
Fakultät für Mathematik und Informatik

Erklärung

Name: Edwin Lock

Matrikel-Nr.: 9163921

Fach: Mathematik

Modul: Bachelorarbeit

Ich erkläre, dass ich die vorliegende Abschlussarbeit mit dem Thema

The structure of gB-perfect graphs

selbstständig und ohne unzulässige Inanspruchnahme Dritter verfasst habe. Ich habe dabei nur
die angegebenen Quellen und Hilfsmittel verwendet und die aus diesen wörtlich, inhaltlich oder
sinngemäß entnommenen Stellen als solche den wissenschaftlichen Anforderungen entsprechend
kenntlich gemacht. Die Versicherung selbstständiger Arbeit gilt auch für Zeichnungen, Skizzen
oder graphische Darstellungen. Die Arbeit wurde bisher in gleicher oder ähnlicher Form weder
derselben noch einer anderen Prüfungsbehörde vorgelegt und auch noch nicht veröffentlicht.
Mit der Abgabe der elektronischen Fassung der endgültigen Version der Arbeit nehme ich zur
Kenntnis, dass diese mit Hilfe eines Plagiatserkennungsdienstes auf enthaltene Plagiate überprüft
und ausschließlich für Prüfungszwecke gespeichert wird.

Datum: Unterschrift:

The structure of gB-perfect graphs

Edwin Lock

Abstract

The focus of this thesis is the class of gB-perfect graphs: graphs G such that for every induced
subgraph H, a variation of Bodlaender’s maker-breaker vertex colouring game played on H ad-
mits a winning strategy for the second player, themaker, using no more than ω(H) colours, where
ω(·) denotes the clique number. Our central result is to characterise gB-perfect graphs in terms
of forbidden induced subgraphs, and then to provide an explicit structural description. In doing
so, we resolve an outstanding open problem posed in [S. D. Andres. On characterizing game-
perfect graphs by forbidden induced subgraphs. Contributions to Discrete Math., 7(1):21–34,
2012], where game-perfect graphs for six variations of Bodlaender’s game are considered.

Our forbidden-graph characterisation is based on the results of an optimised computational search
procedure, which, together with manual verification, yields fifteen induced subgraphs F1, . . . , F15

whose exclusion is necessary for a graph to be gB-perfect. Then, in the converse direction, we
perform a structural analysis on the graphs which conform to the forbidden-subgraph criterion.
In a series of case distinctions, we characterise them into thirteen possible graph classes. Finally,
we prove that all instances G thereof are gB-perfect by providing explicit winning strategies for
the second player with only ω(G) colours, thereby showing that a graph is gB-perfect if and only
if it contains no induced F1, . . . , F15.

The present study of gB-perfect graphs yields as a by-product two further results, which may be
of independent interest. Firstly, we establish that triangle-free graphs are gB-perfect if and only
if they are complete bipartite or almost complete bipartite. Secondly, through the application of
our exhaustive-search algorithm, we obtain a complete list of all minimal forbidden subgraphs
with up to ten vertices for all six variations of Bodlaender’s game, thereby providing a valuable
stepping stone for future work in the field.

Die Struktur gB-perfekter Graphen

Edwin Lock

Zusammenfassung

Das Hauptaugenmerk dieser Arbeit liegt auf der Klasse der gB-perfekten Graphen: ein Graph G
heißt gB-perfekt, wenn es für jeden Untergraphen H von G eine Gewinnstrategie gibt, mit
der der Maker als zweiter Spieler eine abgewandelte Form von Bodlaenders Maker-Breaker-
Knotenfärbungsspiel auf H mit ω(H) Farben gewinnen kann, wobei ω(·) die Cliquenzahl eines
Graphen darstellt. Unser Hauptresultat ist die Charakterisierung gB-perfekter Graphen mit-
hilfe verbotener induzierter Untergraphen und mittels expliziter struktureller Beschreibungen.
Auf diese Weise beantworten wir eine offene Frage aus dem Paper [S. D. Andres. On charac-
terizing game-perfect graphs by forbidden induced subgraphs. Contributions to Discrete Math.,
7(1):21–34, 2012], das spielperfekte Graphen für sechs Variationen von Bodlaenders Knotenfär-
bungsspiel behandelt.

Unsere Charakterisierung mithilfe verbotener induzierter Untergraphen basiert auf den von Hand
verifizierten Ergebnissen einer computergestützten Suche, die 15 verbotene Graphen F1, . . . , F15

ergibt, welche als induzierte Untergraphen in keinem gB-perfekten Graphen vorhanden sein dür-
fen. Umgekehrt wird zunächst eine strukturelle Analyse der Graphen ohne verbotener Untergra-
phen durchgeführt. Eine Reihe von Fallunterscheidungen erlaubt es uns, diese Graphen in 13
verschiedene Graphenklassen zu unterteilen. Schließlich weisen wir nach, dass jeder Graph G aus
einer dieser Klassen gB-perfekt ist, indem wir für jede Klasse eine Gewinnstrategie angeben, mit
der der zweite Spieler auf G mit ω(G) Farben gewinnen kann. Wir zeigen damit, dass ein Graph
genau dann gB-perfekt ist, wenn er keine induzierten F1, . . . , F15 enthält.

Die Untersuchung gB-perfekter Graphen fördert zwei weitere Ergebnisse zutage, die hier aufge-
zeigt werden: Erstens weisen wir nach, dass Graphen der Cliquenzahl ≤ 2 genau dann gB-perfekt
sind, wenn sie vollständig bipartit oder fast vollständig bipartit sind. Zweitens erhalten wir als
weiteres Resultat unserer computergestützten Suchmethode eine vollständige Liste aller verbo-
tener induzierter Graphen mit bis zu zehn Knoten für alle sechs Variationen des Spiels von
Bodlaender, die für weiterführende Arbeiten in dem Gebiet von Nutzen sein kann.

Acknowledgement

I would like to thank my thesis supervisor Dr. Dominique Andres for his unwavering encourage-
ment, wise counsel and kind support, and for challenging and motivating me with the intriguing
problem that lies at the heart of this work.

Contents

1 Introduction 1
1.1 The aim of this thesis . 1
1.2 Playing the game gB on a P5 with ω(P5) = 2 colours 2
1.3 Graph colouring games in literature . 2

2 Terminology and graph colouring 5
2.1 Basic terms . 5
2.2 Classes of graphs . 6
2.3 Competitive and non-competitive graph colouring 7

3 Identifying forbidden subgraphs 9
3.1 Determining forbidden subgraphs computationally 9
3.2 Proving that F1, ..., F15 are forbidden subgraphs 9

4 Characterising connected triangle-free gB-perfect graphs 13
4.1 Our result . 13
4.2 The structure of triangle-free gB-perfect graphs 14
4.3 Strategies for Alice . 15

5 Characterising gB-perfect graphs 17
5.1 The main result . 17
5.2 A key to the graph depictions throughout this chapter 18
5.3 The graph classes E1 to E13 . 18
5.4 The 13 possible structures of gB-perfect graphs 20
5.5 Induced subgraphs of an E∪1 , E2, . . . , E13 are again instances of the same 39
5.6 Instances of E∪1 , E2, . . . , E13 are gB-nice . 42

6 Outlook 57
6.1 Open problems . 57
6.2 Algorithmic challenges . 58

A The vertex colouring game implemented as a backtracking algorithm 59
A.1 Basic principles . 59
A.2 Pruning . 60
A.3 The file game.py . 60

B Systematically finding forbidden induced subgraphs 67
B.1 The file forbidden.py . 67

C Computational forbidden subgraph results for Andres’s six vertex colouring
games 71
C.1 A brief note on the results . 71

Bibliography 81

i

ii

List of Figures

1.1 Playing the game gB on a P5 with ω(P5) = 2 colours. 2

2.1 The 3-spider with thin legs. 7

3.1 The 15 forbidden induced subgraphs for gB-perfect graphs. 10

4.1 The 3 forbidden induced subgraphs for connected triangle-free gB-perfect graphs. 14

5.1 The 13 structural possibilities for connected gB-perfect graphs. 19
5.2 The nested case distinctions made throughout the proof. 21
5.3 The three non-empty shapes of G3, attached to the dominating edge x1x2. 23
5.4 G if G1 = K1 and G2 = K1. 31
5.5 Possibilities for G if G3 = GA. 32
5.6 G if G1 = Kn with n ≥ 2 and GR is not empty. 34
5.7 G if G1 = Kn, G2 = K1 ∪K1 and G3 is not empty. 35
5.8 G if G3 is empty and G2 a single vertex. 36
5.9 G if G3 is empty and G2 = Kn with n ≥ 2. 37
5.10 G if G3 empty and G2 = K1 ∪K1. 38
5.11 The third possibility for G if G2 = K1 ∪Kn with n ≥ 2. 39

iii

iv

Chapter 1

Introduction

1.1 The aim of this thesis

Suppose that Alice and Bob play a vertex colouring game gB on a simple1 graph G with k
available colours. Bob starts by colouring a vertex, upon which Alice and Bob then take turns
to colour an uncoloured vertex such that adjacent vertices do not share the same colour. The
game ends as soon as no vertex is colourable any more. If at this point G is fully coloured, Alice
wins, otherwise she loses. This type of game is called a maker-breaker game, as Alice tries to
make a proper graph colouring while Bob tries to break it.

We call the minimum number of colours that Alice requires to beat Bob on G at the game gB
the gB-chromatic number χgB (G). A graph G is considered gB-perfect if Alice wins the game
on H with χgB (H) = ω(H) colours for every induced subgraph H of G, where ω(H) denotes the
clique number of H. Section 1.2 shows, for example, that the path graph P5 is not gB-perfect.

The main aim of this thesis is to characterise the class of gB-perfect graphs by means of a
forbidden induced subgraph characterisation and explicit structural descriptions. In Chapter 3
we first identify a set of fifteen minimal forbidden subgraphs F1, . . . , F15 for gB-perfect graphs
using an optimised computational search procedure that is able to determine the outcome of
all six of Andres’s vertex colouring games (see Section 1.3) given a graph and a certain number
of colours. The procedure itself is presented in Appendix A. The fifteen forbidden subgraphs
thus found are then manually verified and taken as a starting point for the forbidden graph
characterisations in Chapters 4 and 5.

Chapter 4 shows that connected, triangle-free graphs are gB-perfect if and only if they are
complete bipartite or almost complete bipartite, while Chapter 5 proves our main result: a
graph is gB-perfect if and only if it contains no induced F1, . . . , F15 or, equivalently, if and only
if it is an instance of graph classes E∪1 , E2, . . . , E13. First we show that a graph G without
induced F1, . . . , F15 admits a decomposition based on a dominating edge. Using this knowledge,
we make a series of hierarchical case distinctions to comprehensively identify G as an instance
of one of thirteen possible graph classes E∪1 , E2, . . . , E13. Next we show for all instances of
E∪1 , E2, . . . , E13 that any subgraph is an instance of one of the same. Lastly we provide explicit
strategies for Alice to win on any instance I of E∪1 , E2, . . . , E13 with ω(I) colours. This concludes
our characterisation of gB-perfect graphs.

Aside from our main result concerning gB-perfect graphs, we also present a list of all minimal
forbidden graphs with up to ten vertices for all six of Andres’s vertex colouring games. The script
used for this is shown in Appendix B and the results themselves are presented in Appendix C.

1The terminology used in this thesis is defined in Chapter 2.

1

1.2 Playing the game gB on a P5 with ω(P5) = 2 colours

We play the game gB on a path graph P5 with ω(P5) = 2 colours, green (circle) and blue (square).
Assume Bob starts with the centre vertex in green. Alice can respond by colouring either a vertex
adjacent to the centre or a pendant vertex. If she colours the vertex adjacent to the centre, she
must use the colour blue, as adjacent vertices cannot be coloured the same. She can colour the
pendant in green or blue. This leads to the three possible moves up to isomorphism shown in
Figure 1.1.

If she colours a pendant in blue, its neighbouring vertex is surrounded by two colours and cannot
be coloured any more. In the other two cases, Bob makes sure that the second vertex from
the right is surrounded by two colours when he colours the right-most vertex in blue. The
uncolourable or surrounded vertex in each case is marked with a cross. Bob has now effectively
won, as the vertex × will be left uncoloured after Alice and Bob colour the other remaining
vertices, no matter how Alice proceeds.

×

× ×. . .

.

Figure 1.1: Playing the game gB on a P5 with ω(P5) = 2 colours.

1.3 Graph colouring games in literature

Vertex colouring games were first introduced by Brams in 1981 [27] and revived by Bodlaender [13]
ten years later. One such game that goes by the name of colouring construction game
in [13] and which we denote by gA requires Alice to start but is otherwise identical to the
game gB above. Four additional variants of these two games were introduced by Andres in [3]
and [8], where either Alice or Bob is permitted to skip moves. We denote these games by
[A,A], [A,B], [B,A] and [B,B]: the first letter signifies which player starts and the second letter
indicates the player who is allowed to skip moves. In this way one might also notate games gA
and gB as [A,−] and [B,−], respectively. We refer to these six games as Andres’s vertex colouring
games.

For each game X, an interesting graph invariant is the game chromatic number χX(G), which de-
notes the least number of colours required for Alice to guarantee a win on a graph G.2 Obviously,
the game chromatic number of a graph G is bounded as follows:

ω(G) ≤ χ(G) ≤ χX(G) ≤ |G|, (1.1)

where χ(G) denotes the chromatic number of G and |G| is the number of vertices of G. As these
strict bounds do not constitute a particularly deep result, it is more interesting to set an upper

2The term game chromatic number is frequently reserved only for the original game gA. For variants X of
the original game the term X-chromatic number is used.

2

limit k with ω(G) ≤ k < |G| and study all graphs for which χX(G) ≤ k holds. Alternatively one
might take a class of graphs C and seek to determine a strict upper bound for {χX(G) | G ∈ C}.

1.3.1 Characterising game-perfect graphs

The first approach is taken in [3] and [8], with an upper limit of k = ω(G), the lowest possible
upper bound. As the class of graphs satisfying this upper bound does not have a nice structure
in itself [8], it is additionally required that this upper bound hold for all induced subgraphs of G.
In analogy to Berge’s perfect graphs [11], graphs satisfying this condition are called game-perfect
or X-perfect, depending on the game X.

The perfect graphs were famously characterised by Chudnovsky et al. [18] in the Strong Perfect
Graph Theorem.

Theorem 1 (Chudnovsky, Robertson, Seymour, Thomas (2006)). A graph is perfect if and only
if it is Berge, i.e. if it contains neither odd induced cycles of size ≥ 5 nor induced complements
of odd cycles of size ≥ 5.

This motivates a characterisation of game-perfect graphs along the same lines.

Problem 2. Let X be one of Andres’s six vertex colouring games. Provide a forbidden induced
subgraph characterisation for X-perfect graphs.

In [8] such a forbidden induced subgraph characterisation was provided for the three games gA,
[A,B] and [B,B], together with an explicit structural description of the respective X-perfect
graphs. This thesis presents an analogous characterisation of gB-perfect graphs in continuation
of these efforts.

While the structures of [A,A] and [B,A]-perfect graphs have so far resisted characterisation,
partial results have been achieved. In [8], a few forbidden subgraphs for both games were
identified and in [3] the following two results for small classes of graphs were obtained.

Theorem 3 (Andres (2009)). A triangle-free graph G is [A,A]-perfect if and only if every con-
nected component of G is either a K1, a Km,n or a Km,n − e, where e is an edge.

Theorem 4 (Andres (2009)). Complements of bipartite graphs are [A,A]-perfect.

1.3.2 Upper bounds for classes of graphs

A long-standing hunt initiated by Faigle et al. [25] in 1993 is to provide strict upper bounds for
the gA-chromatic number of specific classes of graphs. In [25], it was shown that χgA(T) ≤ 4
for every tree T , χgA(G) = O(log |G|) for the class of planar graphs and χgA(G) ≤ 3ω(G) − 2
for interval graphs G. A better upper bound for the class of planar graphs is provided by Zhu
in [37] and certain classes of cactus graphs are studied in [34]. These are just a few results found
in the literature.

Many upper bounds for classes of graphs have been achieved with the help of another vertex
colouring game, the marking game, which was introduced by Zhu [36]. The graph invariant of this
game, the game colouring number colg(G), is an extension of the colouring number introduced
by Erdős and Hajnal in [23]. It turns out that χgA(G) ≤ colg(G), which means an upper bound
for the game colouring number is also an upper bound for the game chromatic number. It is
often easier to find an upper bound for colg(G) for classes of graphs.

3

1.3.3 Related games

Apart from the marking game and Andres’s five variations mentioned above, Bodlaender’s
vertex colouring game has also inspired other graph colouring games. One of these is the
edge colouring game. As its name suggests, the edge colouring game requires Alice and Bob
to colour edges instead of vertices. It was first introduced by Cai and Zhu [14] and its graph
invariant is the game chromatic index. Various results have been achieved regarding the upper
bound of the game chromatic index for special graph classes. Following initial results in [14]
that certain trees of maximum vertex degree ∆ = 3 have a game chromatic index of at most
∆ + 1 = 4, Erdős et al. [24] proved that trees of maximum vertex degree ∆ = k ≥ 6 have a
game chromatic index of at most ∆ + 1. Andres [1] then showed that this upper bound ∆ + 1
holds even for all forests of maximum degree ∆ ≥ 5. For wheel graphs W of order n ≥ 6 the
game chromatic index of W is n [9]. Further results for various classes of graphs can be found
in [10, 15, 12].

Another type of game played on oriented graphs was introduced by Nešetřil and Sopena [29] as
a game analogue to the oriented chromatic number. A few results for this game can be found
in [29, 30, 31]. An entirely different extension of Bodlaender’s original game gA is played on
digraphs. Introduced by Andres [2], a few additional results for this game and for various classes
of graphs can be found in [5, 6, 7, 16]. Lastly, further games include relaxed graph colouring
games [17, 22] and incidence colouring games [4].

4

Chapter 2

Terminology and graph colouring

2.1 Basic terms

A graph G consists of a set of vertices V (G) and a set of edges E(G). We call the number of
vertices in G the order |G| of G. Every edge e in E(G) is associated with exactly two vertices
a, b ∈ V (G), with which it is incident. We say that a and b are adjacent or neighbours. If the two
vertices that e is incident with are identical, we call the edge a loop. A simple graph is a graph
without loops that has no more than one edge associated with any two vertices. In this thesis
all graphs will be simple. This allows us to identify any edge e with its incident vertices a, b and
denote it by ab.

For every vertex v in G, the degree of v is the number of neighbours it has. A pendant is a vertex
of degree 1, i.e. a vertex that has only one neighbour. We also record the neighbouring vertices
of v themselves in NG(v), which denotes the set of all neighbours of v in G. This definition can
be extended to sets of vertices in the following way. Let S be a set of vertices in G. We define
by NG(S) the set of all vertices in V (G) \ S that are adjacent to at least one vertex in S. If it
is obvious which graph we are talking about, we simply write N(v) and N(S).

A set of vertices S ⊆ V (G) is called independent if none of the edges in G are incident with two
vertices in S. A set of edges M in a graph is called independent or a matching if for any two
edges e, f ∈M , e and f are not incident with the same vertex. We say that M is a matching of
S ⊆ V (G) if there exists an edge in M that is incident with vertex s for every s ∈ S.

Let S be a set of vertices S ⊆ V (G) of G. If we delete all vertices V (G) \ S and incident edges
from G, we call the resulting graph an induced subgraph H of G and say that S induces H. If
all vertices in H are adjacent to one another, we call the vertex set S a clique.1 Let S ⊆ V (G)
be a clique of maximum size. Then we say that |S| is the clique number ω(G) = |S| of G.

We can also remove vertices from a graph G by specifying them directly. Let S be such a set of
vertices. Then G − S is the graph obtained by deleting all vertices in S and all incident edges
from G. If S consists of a single vertex v, we also use the shorthand G − v. Lastly, if U is an
induced subgraph of G and we seek to remove U from G, we write G \ U , which is equivalent
to G− V (U).

Let A,B ⊂ V (G) be two disjoint sets of vertices in G. If every vertex in A is adjacent to every
vertex in B we say that A and B are completely connected. If G has no edge incident with vertices
in A and B, we say that A and B are completely disconnected. If A and B are neither completely

1Occasionally the subgraph H itself is also called a clique.

5

connected nor completely disconnected, we say that A and B are partially connected. We use
the same terminology when we speak about the respective subgraphs that A and B induce.

A non-empty graph G is considered connected if there exists no non-trivial, proper subset A
of V (G) such that A and V (G) \ A are completely disconnected. Equivalently, G is connected
if for every pair of vertices a, b in G there exists a path from a to b [21]. If a graph G is not
connected, it consists of two or more components, which are maximal connected subgraphs of G.

Let G be a connected graph. A set S of vertices in G is called a dominating set if every vertex
not in S is adjacent to one or more vertices in S. A dominating set is called a dominating clique
if it is a clique. A dominating clique of size two is also called a dominating edge and a dominating
clique of size one is called a dominating vertex.

Finally, we define the following notation to describe non-elementary graphs. Let G,H be two
graphs. Then G ∨ H is the graph obtained by completely connecting all vertices in G to all
vertices in H. This operation ∨ is called a graph join. Another operation is the disjoint union ∪.
The union of G and H is the graph G ∪H that consists of two subgraphs G and H which are
completely disconnected. We use the shorthand G ∨ v and G ∪ v to denote the join or union
G ∨K1 and G ∪K1 if v is the vertex of the K1.

2.2 Classes of graphs

The following classes of graphs make an appearance in this thesis.

A cycle graph Cn is a connected graph with n vertices such that every vertex has degree 2. We
call Cn an odd cycle if n is odd.

A path graph Pn is a cycle graph Cn with one edge removed.

A graph is considered complete if every vertex is adjacent to every other vertex in the graph. A
complete graph with n vertices is denoted by Kn. A K3 is also called a triangle. If S is a clique
of a graph G, then the subgraph H of G induced by S is a complete graph.

We say that a graph is triangle-free if it does not contain an induced triangle. Equivalently, a
graph is triangle-free if its clique number is ≤ 2.

A graph is bipartite if its set of vertices can be partitioned into two disjoint sets V1 and V2 such
that every edge in G is incident with a vertex in V1 and a vertex in V2. Equivalently, a graph is
bipartite if and only if it does not contain any odd induced cycles [21].

Let G be a bipartite graph with disjoint vertex sets V1 and V2 of size m and n, respectively.
If every vertex in V1 is adjacent to every vertex in V2, G is a complete bipartite graph denoted
by Km,n. The K1,3 is also called the claw graph. Let G = Km,n be a complete bipartite graph.
We call the graph obtained by deleting one edge e from G an almost complete bipartite graph
and denote it by Km,n − e.

Let G be a graph. The complement or inverse G of G is defined as a graph with an identical
vertex set such that two vertices are adjacent if and only if they are not adjacent in G.

Lastly, the n-spider with thin legs is the graph obtained by taking a Kn and adding an additional
pendant vertex adjacent to v for every vertex v ∈ Kn. The 3-spider with thin legs is shown in
Figure 2.1.

6

Figure 2.1: The 3-spider with thin legs.

2.3 Competitive and non-competitive graph colouring

Given a graph G, we can assign colours to vertices or edges. Vertex colourings are often required
to obey certain rules. One such natural rule is the following. A proper vertex colouring of G is a
labelling of every vertex with colours 1 to k in such a way that adjacent vertices are not labelled
the same. We are often interested in the smallest number of colours required to achieve a proper
colouring on G. This graph invariant is called the chromatic number χ(G) of G. Obviously
we have ω(G) ≤ χ(G), since a clique of size n cannot properly be coloured with fewer than n
colours. A graph G is called perfect if ω(H) = χ(H) for every induced subgraph H of G.

As seen in Chapter 1, we can also colour the graph competitively. For each of Andres’s vertex
colouring games X, this naturally leads to the game chromatic number χX(G). Recall that
this number is defined as the smallest number of colours Alice requires to successfully achieve
a proper vertex colouring of G while her adversary Bob tries to prevent this, subject to certain
rules. It follows immediately that the chromatic number is a strict lower bound for the game
chromatic number and we have χ(G) ≤ χX(G). The game analogue to Berge’s perfect graphs is
defined in two steps. We say for a given vertex colouring game X that the graph G is X-nice if
ω(G) = χX(G) and that G is X-perfect if every induced subgraph H of G is X-nice.

Forbidden graph characterisations generally find frequent application in graph theory, most not-
ably shining light on the nature of bipartite graphs [21], planar graphs (Kuratowski’s The-
orem [32]) and perfect graphs (Strong Perfect Graph Theorem [18]). We introduce the concept
of a forbidden graph characterisation using induced subgraphs for X-perfect graphs specifically.

We call a graph H that is not X-nice a forbidden induced subgraph because its presence as an
induced subgraph in a graph G means that G is not X-perfect. If H contains no other forbidden
graph as an induced subgraph, we say that H is a minimal forbidden induced subgraph. Now
let F be a set of minimal forbidden induced subgraphs. F is comprehensive if the following
is true: a graph G is X-perfect if and only if it does not have any graph in F as an induced
subgraph.

Lastly we present an observation that shortens the duration of Andres’s vertex colouring games
in certain situations. In our original definition of the game gB we stated: “The game ends as
soon as no vertex is colourable any more.” We can equivalently say that the game ends as soon
as all vertices at risk have been neutralised or as soon as a vertex has been surrounded.

Assume we are playing one of Andres’s games played on a graph G with k colours. We say that
a vertex v is surrounded if v is uncoloured and its neighbours N(v) have been coloured in k
different colours. Because there is no colour left with which to colour v, Bob will inevitably
win and we can break off the game at this point. We have already encountered this situation in
Section 1.2 for the vertices marked ×. Not all vertices in G necessarily have the potential of being
surrounded. Pendants, for example, are never surroundable. We say that a surroundable vertex
is at risk. Furthermore, this status can change throughout the game. A vertex v at risk can
be neutralised either by colouring v itself or by making sure that the set of its neighbours N(v)
admits at most k− 1 colours. If all vertices originally at risk have been neutralised, Bob cannot
surround any vertices any more and Alice inevitably wins.

7

8

Chapter 3

Identifying forbidden subgraphs

3.1 Determining forbidden subgraphs computationally

We employ a computational search to systematically identify all minimal forbidden subgraphs
of order ≤ n for each of Andres’s six games. At the heart of our approach lies an optimised
backtracking algorithm, presented in Appendix A, that is able to determine the outcome of
Andres’s games on a given graph and with a specified number of colours. Using this backtracking
algorithm and the induced subgraph test made available by the SageMath software [20], a script
then systematically tests all graphs up to order ≤ n to see whether they are minimal forbidden
subgraphs. This script is shown in Appendix B. Note that there may be any number of forbidden
subgraphs of order > n that are not detectable in this way. The sets of forbidden graphs of
order ≤ 10 for all six of Andres’s vertex colouring games are shown in Appendix C.

For gB-perfect graphs in particular, this approach detects the fifteen minimal forbidden subgraphs
F1, . . . , F15 of order ≤ 7 shown in Figure 3.1. We verify in Theorem 5 below that these graphs
are indeed forbidden subgraphs for any gB-perfect graph G by providing an explicit strategy
for Bob to win on each of them. As we will see in Chapter 5, this set of fifteen graphs even
constitutes a comprehensive set of minimal forbidden subgraphs for gB-perfect graphs. Out of
these fifteen graphs, the nine graphs F1 to F9 were already provided in [8] and the remaining
graphs were newly discovered.

3.2 Proving that F1, ..., F15 are forbidden subgraphs

Theorem 5. If G is a gB-perfect graph, it contains no induced F1, . . . , F15 from Figure 3.1.

Proof. We show for each Fi, 1 ≤ i ≤ 15, that Alice cannot win on Fi with w(Fi) colours. As this
means that Fi is not gB-nice, it follows immediately that any graph G with an induced Fi is not
gB-perfect.

If ω(Fi) < χ(Fi), we are done, as we have ω(Fi) < χ(Fi) ≤ χgB (Fi). Otherwise we provide a
concrete winning strategy for Bob with ω(Fi) colours. As ω(Fi) ≤ 3 for all 1 ≤ i ≤ 15, we can
make do with colours red, green and blue. We use the vertex labels found in Figure 3.1.

F1: As ω(F1) = 2 and χ(F1) = 2, we provide a winning strategy for Bob with two colours, red
and blue. Bob begins by colouring the isolated vertex e in red. Alice now colours any
other vertex in red or blue. No matter which vertex and colour Alice chooses, Bob is able
to colour a vertex of distance 2 with the other colour. The vertex in between these two
differently coloured vertices cannot be coloured any more and Bob wins.

9

a b c d

e

F1 (P4 ∪K1)

b
c

a

d e

F2 (chair)

a b

cd

e

F3 (C4 ∪K1)

a

b

c d e

F4 (split 3-star)

a b c d e

F5 (path P5)

a

b

c d

e

F6 (cycle C5)

a b c

g

d e f

F7 (double fan)

a e d

b c

F8 (4-fan)

a d

cb

e

F9 (4-wheel)

a

b

c

d

e

f g

F10

a

b

c

d

e

f

g

F11

a

b

c

d

f

g e

F12

f

e

d

a

b

cg

F13

f

e

d

a

b

cg

F14

a

b

c

d

e

f

g

F15

Figure 3.1: The 15 forbidden induced subgraphs for gB-perfect graphs.

10

F2: As ω(F2) = 2, we provide a winning strategy with two colours red and blue. Bob starts
with a in red. If Alice colours c in blue, Bob wins with e in red because d has been
surrounded. If Alice does not colour c, then Bob is free to colour either b or d in blue,
surrounding c.

F3: ω(F3) = 2. Bob starts with the isolated vertex e in red. Alice must now colour a vertex,
say a, of the C4 component of F3. Bob’s response is to colour vertex c in the other colour,
thereby surrounding b and d.

F4: ω(F4) = 3. We use colours red, green and blue. Observe that c, d and e must have the
same colour in every proper vertex colouring with three colours: if w.l.o.g. c and d had
different colours, then both a and b would need to be coloured in the third available colour.
As a and b are adjacent, however, that leads to a contradiction. This allows Bob to win as
follows: Bob starts with c in red. Regardless of Alice’s next step, Bob colours either d or e
with an unused colour.

F5: ω(F5) = 2. We use colours red and blue. Bob starts by colouring c in red. If Alice colours a
or b in any colour, Bob colours e in blue, surrounding d. Otherwise Bob colours a in blue,
surrounding b.

F6: As ω(F6) = 2 < χ(F6) = 3, no strategy is necessary.

F7: ω(F7) = 3. Note that a and c must be coloured the same for every proper vertex colouring
with three colours, as must be d and f . Bob colours a in red. Alice must colour c in red to
prevent Bob from colouring c in any other colour in his next move. Bob next colours d in
green. Alice must respond with f in green. Bob now wins with b in blue by surrounding g.

F8: ω(F8) = 3. Note that in every proper vertex colouring with three colours, both pairs a, c
and b, d must be uniformly coloured. Bob starts with e in red. Alice must colour a, b, c
or d in green. Whichever vertex Alice has chosen, Bob colours the other vertex of the pair
in blue, surrounding the uncoloured vertex in between the pair.

F9: Bob follows the same strategy as on F8.

F10: ω(F10) = 3. Observe that d and e must be coloured the same. Bob starts with e in red.
Alice must respond with d in red. Bob then colours b in green. If Alice now colours a
in red, Bob can surround c by colouring f in blue. If Alice colours a in blue, she herself
surrounds c. If she colours c in blue, Bob wins by colouring g in green. If Alice colours f
or g in either possible colour, Bob can colour a in blue and surround c.

F11: ω(F11) = 3. Bob begins with d in red. Due to symmetry, we only need to study three
possibilities. If Alice colours

1. c in green, Bob responds with g in blue and surrounds e.

2. a in green, Bob responds with e in blue and surrounds c.

3. a in red, Bob colours g in green. If Alice continues with f or c in blue, she herself
surrounds e, and with b in green she forces both c and e to take the same colour,
a contradiction. If Alice instead colours e in blue, Bob wins with b in green by
surrounding c. If Alice instead colours f in red, Bob wins with b in green because
both c and e must now be coloured in blue, a contradiction. Finally, if Alice chooses c
in green, Bob wins by colouring f in blue, while if Alice chooses b in blue, Bob wins
with f in blue, surrounding e.

F12: ω(F12) = 3. Note that c and e must be coloured the same. Bob starts with a in red. If
Alice responds with b in green, Bob surrounds c by colouring d in blue. If Alice colours c
in green, Bob wins with e in red as c and e are now differently coloured. Similarly, if Alice

11

colours e in any colour, Bob wins by colouring c with a different colour. Otherwise we
distinguish between the following, relabelling f and g where necessary:

1. Alice colours either f or d in red. Bob responds with the other vertex in the same
colour. If Alice then colours b in green, Bob wins with g in blue. If Alice chooses c in
green, Bob wins with e in blue. If Alice chooses e or g in green, Bob wins with b or c
in blue, respectively.

2. Alice colours either f or d in green. Bob responds with the other vertex in the same
colour. If Alice then colours b in green, Bob wins with g in blue by surrounding c. If
instead Alice colours b in blue, she surrounds c herself. If Alice chooses c in blue, Bob
wins with e in red. If she colours e in red, Bob colours c in blue and surrounds g. If
Alice colours g in blue, she surrounds c herself. Lastly, if she colours e in blue or g in
red, Bob wins with b in blue by surrounding c.

F13: ω(F12) = 3. Observe that b and e must be coloured the same and g must have a different
colour to b and e. Bob begins with g in red. Alice cannot colour e or b, as that would
allow Bob to achieve different colours for b and e on his next move. Therefore she must
colour a, c, d or f . W.l.o.g. let a be the vertex she chooses. If Alice colours a in green,
Bob colours b in red. As e cannot have the same colour as b any more, he wins. If Alice
colours a in red, Bob applies the same colour to d. If Alice next colours b in green, Bob
wins with e in blue and vice versa because c and f are surrounded. If she instead colours c
in green, Bob wins by colouring f in blue and vice versa because b and e are surrounded.

F14: Bob follows the same strategy as on F13.

F15: Observe that the pairs b, c and d, g must be uniformly coloured. Bob starts with b in red.
Alice must colour c in red to stop Bob from colouring c in a different colour on his next
move. Bob then colours f in red. If Alice colours a or e in green, Bob surrounds d by
colouring the other vertex in blue. If Alice colours d or g in green, Bob wins by colouring
the other vertex in blue.

This proves that graphs F1, . . . , F15 are all forbidden induced subgraphs.

12

Chapter 4

Characterising connected triangle-free
gB-perfect graphs

Before we characterise all gB-perfect graphs in the next chapter, we investigate only a small
subclass, namely the gB-perfect graphs that are both connected and triangle-free. We prove that
connected, triangle-free graphs are gB-perfect if and only if they contain no induced F1, . . . , F15

from Figure 3.1. We can restrict ourselves to the five forbidden subgraphs F1, F2, F3, F5, F6

in Figure 4.1, as all other graphs contain triangles and cannot be induced subgraphs of any
triangle-free graph. In fact, as we shall see in the proof of Theorem 6, it even suffices to restrict
ourselves to F2, F5 and F6 to achieve a successful characterisation. In addition, we provide a
direct structural characterisation: a connected, triangle-free graph is gB-perfect if and only if
it is a complete or almost complete bipartite graph. Recall that an almost complete bipartite
graph is a complete bipartite graph from which one edge has been removed (cf. page 6).

4.1 Our result

Theorem 6. Let G be a connected, triangle-free graph. Then the following are equivalent:

(i) G is gB-perfect.

(ii) G contains no induced chair, P5 or C5 (F2, F5 and F6 in Figure 4.1).

(iii) G is a Km,n with m,n ≥ 0 or a Km,n − e, where e is an edge and m,n ≥ 2.

Proof. If G has zero or one vertices, the theorem obviously holds. We assume from now on that
G has two or more vertices.

(i) ⇒ (ii): Let G be gB-perfect. In Chapter 3, Theorem 5 we show that G cannot contain an
induced F1, . . . , F15, which includes the chair, the P5 and the C5 (i.e. F2, F5 and F6).

(ii) ⇒ (iii): This follows immediately from Lemma 12 in Section 4.2.

(iii)⇒ (i): In Section 4.3, we show that every induced subgraph H of G is gB-nice by providing a
strategy for Alice to win onH with ω(H) colours. It follows immediately thatG is gB-perfect.

13

F2 (chair) F5 (path P5) F6 (cycle C5)

Figure 4.1: The 3 forbidden induced subgraphs for connected triangle-free gB-perfect graphs.

4.2 The structure of triangle-free gB-perfect graphs

Let G denote a connected triangle-free graph without an induced chair, P5 or C5 and with two
or more vertices. This section proves Theorem 6 (ii) ⇒ (iii).

First we note that G has a dominating edge. The following lemma by Cozzens and Kelleher [19]
is crucial for this.

Lemma 7 (Cozzens and Kelleher (1990)). Let G be a connected graph with two or more vertices.
If G contains no induced P5, C5 or 3-spider with thin legs, it has a dominating edge.

From this it follows immediately that

Corollary 8. G has a dominating edge.

Proof. By assumption, G has no induced P5, C5 or triangle. G also cannot contain an induced
3-spider with thin legs, as this graph contains a triangle. By Lemma 7, G has a dominating
edge.

From now on, let x1 and x2 denote the two vertices of a dominating edge x1x2 of G. From
Corollary 8 we draw our first claim about the structure of G.

Corollary 9. Every vertex in G is adjacent to either x1 or x2 but not both.

Proof. This is obviously true for x1 and x2, as they are adjacent to each other and not to
themselves. Let v be any other vertex in G. As x1x2 is a dominating edge, v must be adjacent
to x1 or x2. If v were adjacent to both x1 and x2, vertices v, x1, x2 would induce a triangle in G,
in contradiction to our assumption that G be triangle-free.

Next we see that

Claim 10. G is bipartite.

Proof. By assumption, G contains no induced C3 or C5. G also contains no induced cycle of
size ≥ 7, as these cycles contain a forbidden induced P5 subgraph. As G is thus odd-cycle-free,
we have that G is bipartite (cf. page 6).

We propose the following proper vertex colouring of G. Colour x1 in red and x2 in blue. Next
colour all vertices adjacent to x2 in red and all vertices adjacent to x1 in blue. By Corollary 9,
all vertices of G are now coloured in exactly one colour. We denote the two disjoint vertex sets
of colour red and blue by V1 and V2, respectively.

Next we note that V1 and V2 must be almost completely connected. By this we mean that no
more than one edge incident with a vertex in V1 and a vertex in V2 may be absent.

14

Claim 11. There is at most one non-adjacent pair of vertices of opposite colours in G.

Proof. Let (v, w) ∈ V1 × V2 be a non-adjacent pair of vertices with opposite colours. By Corol-
lary 9, we have v 6= x1 and w 6= x2. Assume that a second non-adjacent pair of vertices (v∗, w∗)
with opposite colours exists. Again we have v∗ 6= x1 and w∗ 6= x2. We distinguish between two
possibilities.

First assume that v = v∗. As the two pairs are not identical, it follows that w 6= w∗. By
assumption, v is neither adjacent to w nor w∗. It follows that vertices v, w,w∗, x1, x2 induce a
chair.

Now assume that v 6= v∗ and w 6= w∗. By the above, it follows that v must be adjacent to w∗

and v∗ must be adjacent to w. Then vertices v, v∗, w, w∗, x1 induce a forbidden P5.

Summing up Claims 10 and 11, we can say that

Lemma 12. G is a Km,n with m,n ≥ 1 or G is a Km,n − e with m,n ≥ 2, where e is an edge.

Proof. By assumption, G is connected and has two or more vertices. By Claim 10, G is bipartite.
If G contains no non-adjacent pair of vertices of opposite colours, we have G = Km,n with m,n ≥
1. Now assume that G contains a non-adjacent pair of vertices (v, w) ∈ V1 × V2. By Claim 9,
we have v 6= x1 and w 6= x2, so that |V1|, |V2| ≥ 2. From Claim 11 we have that G cannot
have any other non-adjacent pair of vertices of opposite colours. It follows that G = Km,n − e
and m,n ≥ 2.

4.3 Strategies for Alice

This section proves Theorem 6 (iii) ⇒ (i).

Proof. We prove that G is gB-perfect by showing that every induced subgraph of G is gB-nice.
Note first that every induced subgraph of a complete bipartite graph is again complete bipartite
and every induced subgraph of an almost complete bipartite graph is either complete bipartite or
almost complete bipartite. Let H be an induced subgraph H = Km,n or H = Km,n − e of G. If
one side of the bipartition is empty, the graph consists only of independent vertices and Alice wins
without making a single move. If one side of the bipartition consists of a single vertex a, Alice
makes sure that a is coloured after the first round and wins. We can now assume that m,n ≥ 2
and provide strategies for Alice to win with two colours.

Assume H = Km,n with m,n ≥ 2: As a bipartite graph, H has the vertex partition sets V1
and V2. If Bob colours a vertex from V1 in red, Alice colours any vertex in V2 in blue.
Bob’s move neutralises all other vertices in V1, as V2 now only admits the colour blue. For
the same reason, Alice’s move neutralises all other vertices in V2 and she wins.

Assume H = Km,n − e with m,n ≥ 2: Let v, w be the pair of vertices incident with e. If Bob
starts by colouring a vertex in V1 adjacent to all vertices in V2, Alice responds by colouring
a vertex in V2 that is adjacent to all vertices in V1. Such a vertex exists because m,n ≥ 2.
As above, this neutralises all vertices in V1 and V2.

Bob might instead start by colouring the vertex v. Alice responds by colouring the other
vertex w in the other colour. As v is adjacent to all vertices V2 apart from w, and w is
adjacent to all vertices V1 apart from v, this neutralises all other vertices in G.

15

16

Chapter 5

Characterising gB-perfect graphs

We now turn to the main result of this thesis, the characterisation of gB-perfect graphs. In [8],
a characterisation of non-connected gB-perfect graphs is provided. Our result extends this to
connected gB-perfected graph also.

Theorem 13 (Andres (2012)). Let G be a graph with two or more components. Then the
following are equivalent.

(i) G is gB-perfect.

(ii) G contains no induced P4, C4, split 3-star or double fan.

(iii) G consists of two or more E1 components. The graph class E1 is described in Section 5.3
and shown in Figure 5.1.

5.1 The main result

Now we are ready to state the main result.

Theorem 14. Let G be a graph. Then the following are equivalent.

(i) G is gB-perfect.

(ii) G contains no induced F1, . . . , F15 from Figure 3.1.

(iii) G is an instance of E∪1 , E2, . . . , E13 defined in Section 5.3 and shown in Figure 5.1.

Proof. If G has order ≤ 1, the proof is elementary. From now on assume that G has two or more
vertices.

(i) ⇒ (ii): This is Theorem 5 in Chapter 3.

(ii) ⇒ (iii): Assume that G contains no induced F1, . . . , F15. Then by Lemma 15 in Section 5.4,
G is an instance of E∪1 , E2, . . . , E13.

(iii) ⇒ (i): By assumption, G is an instance of E∪1 , E2, . . . , E13. Let H be an induced sub-
graph of G. With the help of Lemma 59 in Section 5.5 we have that H is also an instance
of E∪1 , E2, . . . , E13. Then by Lemma 73 in Section 5.6, H is gB-nice. It follows immediately
that G is gB-perfect.

17

5.2 A key to the graph depictions throughout this chapter

We present a concise key to the graph depictions found in Figures 5.1 to 5.11.

A large circle denotes a complete subgraph. Its order is ≥ 0 unless otherwise specified. A small
dot denotes a single vertex, generally labelled with a lowercase letter. If the vertex is solid,
it must be present in any graph instance of that structure. A dashed vertex together with its
incident dashed edges, as in E7 to E9, indicates optional vertices. If a dashed vertex exists,
its incident dashed edges must also exist. A dotted edge, as in E8, may be omitted even if its
incident vertices are both present.

The complete subgraphs denoted by large circles are always either completely connected to
another vertex or complete subgraph or completely disconnected. If two complete subgraphs
denoted by large circles are completely connected, five lines are drawn between them. If a
complete subgraph denoted by a large circle is completely connected to a vertex, the circle is
graphically connected to the vertex by three lines.

Take E1, for example. The vertex x is solid and must be present in every instance of E1. All
other vertices are in one of the complete subgraphs Ka,Kb,Kc, H1, . . . ,Hk. As x is completely
connected to each of these subgraphs, x is adjacent to every vertex in G apart from itself and it
follows that x is a dominating vertex. Lastly we see that Kb and Kc are completely disconnected
from each other but both completely connected to Ka.

5.3 The graph classes E1 to E13

The class E1 consists of all graphs of shape K1 ∨ (H0 ∪ H1 ∪ · · · ∪ Hk), where k ≥ 0 and
the H1, . . . Hk are non-null complete graphs, and where H0 is either empty or there exist
a, b, c ≥ 1 such that H0 = Ka ∨ (Kb ∪Kc). We can assume that b ≥ c. If G is an instance
of E1, the clique number of G is ω(G) = max{a+ b, |H1|, . . . , |Hk|}+ 1.

The class E∪1 consists of all graphs that are instances of E1 ∪ . . . ∪ E1, i.e. all graphs whose
components are all instances of E1.

The class E2 contains all graphs obtained by taking the graph Kr ∨ (Kb ∪ Kc), where r ≥ 2
and b, c ≥ 1, and adding a pendant d to a vertex x1 ∈ Kr and a pendant e to a different
vertex x2 ∈ Kr. Ka := Kr − {x1, x2} is drawn separately from x1 and x2 in Figure 5.1.
Due to symmetry, we can assume that b ≥ c. For every instance G of E2, the clique number
of G is ω(G) = a+ b+ 2.

The class E3 contains all graphs created by taking the graph (Km∪ b)∨ (Kr ∪a), where m ≥ 1
and r ≥ 2, and adding an additional vertex d that is adjacent to a and a single vertex c
in Kr. We define Kn := Kr − c and draw Kn and c separately in Figure 5.1. The clique
number of an instance G of E3 is ω(G) = m+ n+ 1.

The class E4 constitutes all graphs that consist of two complete subgraphs A and V par-
tially connected in a specific way. Let A = AR, A1, . . . , Ak be a partition of A and
V = VR, V1, . . . , Vk be a partition of V for some k ≥ 1, where AR and/or VR may be
empty. For every 1 ≤ i ≤ k, Ai and Vi are completely connected, Ai is not adjacent to
any other vertices in V and Vi is not adjacent any other vertices in A. Lastly, AR is not
adjacent to any vertices in V and VR is not adjacent to any vertices in A.

We can assume that |A| ≥ |B| and that |A1|+ |V1| ≥ |Ai|+ |Vi| for all 1 ≤ i ≤ k, relabelling
if necessary. The clique number of an instance G of E4 is either ω(G) = |A1| + |V1| or
ω(G) = |A|, depending on which is larger.

18

x.

Ka

Kb Kc

H1

H2

Hk

. .
.

E1 : k ≥ 0, a = b = c = 0 or
a ≥ 1, b ≥ c ≥ 1

x2x1

d e

Ka

Kb Kc

E2 : a ≥ 0 and b ≥ c ≥ 1

Km Kn

a

b

c

d

E3 : m,n ≥ 1

AR

A1

A2

A3

Ak

VR

V1

V2

V3

Vk

E4 : k ≥ 1

Ka Kb

Kc

Kd e

E5 : a, b, c, d ≥ 1

Kn Km

a b

c

E6 : m,n ≥ 2

a c

. . .

Kn

E7 : n ≥ 2

a c

. . .

Kn

E8 : n ≥ 2

a c d

. . .

Kn

E9 : n ≥ 2

a b

c

Km Kn

E10 : m,n ≥ 1

Km Kn

a

b

c d

E11 : m,n ≥ 1

. . .

. . .

E12 : Km,n with m,n ≥ 0

. . .

. . .

E13 : Km,n − e with m,n ≥ 2

Figure 5.1: The 13 structural possibilities for connected gB-perfect graphs.

19

The class E5. We construct instances of E5 by taking a complete subgraph Kb ∨Kc ∨Kd

with b, c, d ≥ 1, completely connecting a complete subgraph Ka to the subgraph Kb and
completely connecting a vertex e to the subgraph Kd. The clique number of any instance G
is ω(G) = max{a, c+ d}+ b.

The class E6 consists of the graphs constructed by joining a complete graphKn∨Km,m, n ≥ 2,
with a P3 such that one pendant a of P3 is completely connected to Kn, the middle vertex b
is completely connected to Km and the other pendant c is only adjacent to c. The clique
number of any instance G of E6 is ω(G) = m+ n.

The class E7 contains all graphs obtained by taking a complete bipartite graph K2,m,m ≥ 1
and completely connecting a complete graphKn, n ≥ 2 to one of two vertices that constitute
one side of the bipartition. The clique number of an instance G is ω(G) = n+ 1 ≥ 3.

The class E8 contains all graphs obtained by taking either a complete bipartite graph K2,m

or an almost bipartite graph K2,m − e with m ≥ 1 and completely connecting a complete
graph Kn, n ≥ 2 to both of the two vertices that constitute one side of the bipartition. The
edge e that might or might not be present is represented by the dotted line in Figure 5.1.
For any instance G of E8, the clique number of G is ω(G) = n+ 1 ≥ 3.

The class E9 contains all graphs obtained by taking a complete bipartite graph K3,m,m ≥ 1
and completely connecting a complete graph Kn, n ≥ 2 to two of the three vertices that
constitute one side of the K3,m. Let G be an instance of E9. Then its clique number is G
is ω(G) = n+ 1.

The class E10 constitutes all graphs obtained by completely connecting the two pendants of
a P3 to one complete graph Kn and completely connecting the inner vertex of the P3 to
another complete graph Km, where m,n ≥ 1. The clique number of an instance G of E10

is ω(G) = max{m,n}+ 1.

The class E11 contains all graphs obtained by completely connecting two non-adjacent vertices
in a C4 to one complete graph Km and completely connecting the other two non-adjacent
vertices to another complete graph Kn. Due to symmetry we can assume that m ≥ n. If G
is an instance of E11, the clique number of G is ω(G) = m+ 1.

The classes E12 and E13 correspond to the complete bipartite graphs and the almost complete
bipartite graphs (cf. page 6), respectively.

5.4 The 13 possible structures of gB-perfect graphs

This section proves the following lemma.

Lemma 15. A graph G of order ≥ 2 that contains no induced F1, . . . , F15 is an instance of E∪1
with one or more components or an instance of E2, . . . , E13.

Proof. Let G have two or more components. We first note that G cannot have an induced C4

or P4. If a component of G had an induced P4 or C4, G would have an F1 = P4 ∪ K1 or
F3 = C4 ∪K1, induced by the vertices of the P4 or C4 and any vertex in another component.
By assumption, G also cannot have a split 3-star (F4) or a double fan (F7). By Theorem 13, G
then is an instance of E∪1 with two or more components.

Therefore it suffices from now on to study connected graphs. Throughout the rest of this section,
let G be a connected graph of order ≥ 2 without forbidden induced subgraphs F1, . . . , F15.

The proof proceeds along the following lines. First we note in 5.4.1 thatG admits a decomposition
that allows us to partition G into a dominating edge and three subgraphs G1, G2 and G3. Then

20

we study the structures of G1, G2 and G3 in sections 5.4.2, 5.4.3 and the relationship between
them in 5.4.4 and 5.4.5. The remainder of the proof from 5.4.6 to 5.4.11 consists of a series of case
distinctions that address every structural possibility for G, as outlined in Figure 5.2. Each leaf
case culminates in one or more lemmas that identify the graph G as an instance of E1, . . . , E13.

Decomposition of G
in 5.4.1

G1 and/or G2 is empty
in 5.4.6

Neither G1 nor G2 is empty
from 5.4.7 onwards

G3 is not complete
in 5.4.7

G3 is complete
from 5.4.8 onwards

G1 or G2 has a non-complete component
in 5.4.8

G1 and G2 only has complete components
from 5.4.9 onwards

G1 and G2 only have components of order 1
in 5.4.9

G1 and/or G2 have a component of order ≥ 2
from 5.4.10 onwards

G3 is a Kn with n ≥ 1
in 5.4.10

G3 is empty
in 5.4.11

Figure 5.2: The nested case distinctions made throughout the proof.

5.4.1 The decomposition of G into a dominating edge and G1, G2, G3

The following lemma from Cozzens and Kelleher [19] already used in Chapter 4 is also central
to this proof, as it provides the key for our decomposition.

Lemma 16 (Cozzens and Kelleher (1990)). Let G be a connected graph with two or more vertices.
If G contains no induced P5, C5 or 3-spider with thin legs, it has a dominating edge.

From this it follows immediately that

Corollary 17. G has a dominating edge.

Proof. By assumption, G has no induced F1, P5 or C5. G cannot have an induced 3-spider with
thin legs because if it did, it would also have an induced F1 obtained by removing a vertex of
degree 3 from the 3-spider. Hence by Lemma 16, G has a dominating edge.

From now on, let x1 and x2 be the vertices of a dominating edge x1x2 in G. Using the existence
of this dominating edge, we define subgraphs G1, G2 and G3.

21

Definition 18. G1 is the subgraph of G induced by all vertices in V (G)−x2 adjacent to x1 and
not to x2. G2 is the subgraph of G induced by all vertices in V (G)− x1 adjacent to x2 and not
to x1. G3 is the subgraph of G induced by all vertices adjacent to both x1 and x2.

The structures of G1, G2 and G3 and the relationships between the three subgraphs obey certain
rules that we investigate below. Note that by renaming x1 to x2, G1 becomes G2 and vice versa.
In particular this means that all statements and proofs in 5.4.2, 5.4.3, 5.4.4 and 5.4.5 concerning
G1 and G2 are valid also when exchanging G1 for G2 and vice versa.

Before we start analysing the structures of G1, G2 and G3 separately, we introduce a structural
lemma that is useful for understanding G1, G2 and G3.

Lemma 19. A connected, non-complete graph G that has no induced P4, C4, claw, split 3-star
or double fan takes the shape G = Ka ∨ (Kb ∪Kc), where a, b, c ≥ 1.

Proof. Because G has no induced P4, C4, split 3-star or double fan, we can apply Theorem 3
from [8] which states that G has the structure G = K1∨(H0∪H1∪· · ·∪Hk), where k ≥ 0 and the
H1, . . . Hk are non-null complete graphs, and where H0 is either empty or there exist p, q, r ≥ 1
such that H0 = Kr ∨ (Kp ∪Kq).

Next we make use of the fact that G cannot contain an induced S3. If H0 is empty, then G must
have the shape G = K1 ∨ (H1 ∪H2). It cannot have a third subgraph H3 as the dominating K1

together with a single vertex each from H1, H2 and H3 would otherwise induce an S3. Neither
H1 nor H2 can be empty, as that would mean G is complete. We define Ka := K1,Kb := H1 and
Kc := H2 and have G = Ka ∨ (Kb ∪Kc).

If, on the other hand, H0 is not empty, then G consists entirely of the H0 and the dominating K1,
i.e. G = K1 ∨ H0: assume G = K1 ∨ (H0 ∪H1), where H1 is not empty. Then any three
vertices from Kp,Kq and H1 together with the dominating K1 would induce an S3. We define
Ka := Kr ∨K1, Kb := Kp and Kc := Kq and have G = Ka ∨ (Kb ∪Kc).

5.4.2 The structure of subgraphs G1 and G2

Recall that the subgraph G1 is induced by all vertices in G−x1 adjacent to x1 and the subgraph
G2 is defined analogously. G1 and G2 need not be connected but can consist of multiple com-
ponents. Of these components, we see below that no more than one can be non-complete. This
non-complete component N has a specific structure.

Claim 20. G1 and G2 have at most one non-complete component N each. The structure of N
is N = Ka ∨ (Kb ∪Kc) with a, b, c ≥ 1.

Proof. Assume that G1 has two non-complete components. Each component contains an induced
P3. The two P3 together with x1 induce a double fan.

Next we examine the structure of N . First we note that N cannot contain the following induced
subgraphs:

• a P4: if N contained a P4, it would induce an F1 = P4 ∨K1 together with x2.

• a C4: if N contained a C4, it would induce an F3 = C4 ∨K1 together with x2.

• an S3: if N contained an S3, it would induce a split 3-star together with x1.

• any of the F1, . . . , F15, by definition.

Then by Lemma 19 we have N = Ka ∨ (Kb ∪Kc), a, b, c ≥ 1.

22

Kn

x1 x2

(a) n ≥ 1

Ka

Kb Kc

x1 x2

(b) a, b, c ≥ 1

Kn

Km

x1 x2

(c) m,n ≥ 1

Figure 5.3: The three non-empty shapes of G3, attached to the dominating edge x1x2.

5.4.3 The structure of subgraph G3

G3 is the subgraph induced by all vertices adjacent to both x1 and x2. In the following, we
determine that G3 is either empty, connected or composed of two components. In the case that
G3 is not empty, we can describe the single or the two components in greater detail.

Claim 21. G3 is either empty, connected or composed of two components.

Proof. Assume that G3 has three or more components and let a, b, c be three vertices from three
different components. By assumption, a, b, c are independent and each adjacent to x1 and x2. It
follows that a, b, c, x1, x2 induce a split 3-star.

We first investigate the case where G3 has two components and then the case where G3 is
connected.

Claim 22. If G3 has two components, they are both complete subgraphs.

Proof. Let G3 have two components. If one of these components is not complete, there exist
two vertices y1 and y2 in this component that are not adjacent. Let y3 be any vertex in the
other component. Then x1, x2, y1, y2, y3 induce a forbidden split 3-star. This shows that both
components must be complete.

If G3 is connected, it can take one of two shapes.

Claim 23. If G3 is connected, G3 is either complete or a graph of shape G3 = Ka ∨ (Kb ∪Kc)
with a, b, c ≥ 1.

Proof. If G3 is complete, we are done. Thus we assume that G3 is not complete. By assumption,
G3 cannot have an induced split 3-star or double fan. G3 also cannot have an induced S3, P4

or C4, as this induced subgraph would induce a split 3-star, 4-fan or 4-wheel together with x1.
By Lemma 19, we have G3 = Ka ∨ (Kb ∪Kc) with a, b, c ≥ 1.

In summary, we can say that G3 is either complete, made of two complete components or
G3 = Ka ∨ (Kb ∪Kc) with a, b, c ≥ 1 as shown in Figure 5.3. Of course the graph in (b) is
the same as the graph in (c) if we allow for a = 0.

5.4.4 The relationship between components of G1 and G2

We have seen that G1 and G2 can consist of multiple complete components and no more than
one non-complete component each. We study how the components of G1 can be connected to
the components of G2.

23

The first claim about the relationship between G1 and G2 yields that the two subgraphs must
be almost completely connected in a very specific way. This claim occupies a central position in
our approach and will be used throughout the proof.

Claim 24. With the exception of one pair of components (X,Y), where X is a component of G1

and Y is a component of G2, all components of G1 must be completely connected to all components
of G2. (X,Y) may be completely, partially or not at all connected.

Proof. Let X and X ′ be two components of G1. Assume that neither X nor X ′ is completely
connected to G2. Then there exists a vertex a ∈ X not adjacent to v ∈ G2 and a vertex b ∈ X ′
not adjacent to w ∈ G2. If we have v = w, then vertices a, b, v, x1, x2 induce a forbidden chair.

If we have v 6= w, we distinguish between two cases due to symmetry. If there is no edge
between a and w, vertices a, b, w, x1, x2 induce a chair. If the edges aw and bv both exist,
vertices a, b, v, w, x1 induce a P5 or C5, depending on whether v and w are adjacent in G2.

Now let Y, Y ′ be two components of G2. With the same argument as above, one of them must
be completely connected to G1. This concludes the proof.

It is interesting to see what constraints the existence of a non-complete component of G1 places
on G2.

Claim 25. Let G1 have a non-complete component N = Kr ∨ (Kp ∪Kq) with p, q, r ≥ 1. If both
p, q ≥ 2, then G2 is empty. Otherwise, if p = 1, G2 has at most one vertex v. This vertex v
must be completely connected to Kp and Kq and completely disconnected from Kr.

Proof. Let v be a vertex in G2. First we prove that v must be completely connected to Kp and
Kq and completely disconnected from Kr. Let a, b, c denote a P3 in G1 with a ∈ Kp, b ∈ Kr

and edges ab, bc. If v is adjacent to neither a, b nor c, vertices a, c, v, x1, x2 induce a chair. If v is
adjacent only to b, vertices a, b, c, v, x2 induce a chair. If v is only adjacent to either a or c, the
same vertices induce a P5. If v is adjacent to a and b or to b and c, vertices a, b, c, v, x1 induce
a 4-fan. If a, b, c are all adjacent to v, the same vertices induce a 4-wheel. This only leaves us
with the possibility that v is adjacent to a and c and not adjacent to b. As a, b, c were chosen
freely from Kp,Kr and Kq, it follows that v must be adjacent to all vertices in Kp and Kq and
not adjacent to any vertices in Kr.

Next we see that G2 can only contain one vertex. Assume G2 has two vertices v and w. By
the first part, they must both be adjacent to a and c and not adjacent to b. If v and w are
not adjacent, vertices b, v, w, x1, x2 induce a chair. Otherwise, if v and w are adjacent, vertices
a, c, v, w, x2 induce a split 3-star.

Lastly we prove that G2 must be empty if p, q ≥ 2. Let a1, a2 be vertices in Kp and c1, c2 be
vertices in Kq. Assume G2 contains a vertex v. By the above, v must be adjacent to a1, a2, c1
and c2. Then vertices a1, a2, c1, c2, v, x1, x2 induce an F14.

In Claim 25 we showed that G2 can have at most one vertex if G1 contains a non-complete
component. If we go one step further and require that G2 contains a vertex, we see that G1

consists entirely of the non-complete component G1 = Kr ∨ (K1 ∪Kp) with p, r ≥ 1.

Claim 26. Let G1 have a non-complete component N = Kr ∨ (K1∪Kp) with p, r ≥ 1 and let G2

not be empty. Then G1 consists entirely of G1 = Kr ∨ (Kp ∪ K1) and G2 consists of a single
vertex.

Proof. Let a, b, c be a P3 in N with edges ab, bc and let v be a vertex in G2. By Claim 25, G2

consists entirely of v, which must be adjacent to a, c and cannot be adjacent to b. Let d be a

24

vertex from another component in G1. By Claim 24, vertices d and v must be adjacent. Then
vertices a, b, d, v, x2 induce a chair.

The next two claims are useful in situations where we know that neither G1 nor G2 is empty.

Claim 27. Let neither G1 nor G2 be empty. Then G1 and G2 can each have no more than one
component of order ≥ 2.

Proof. Assume G1 has at least two components of order ≥ 2 and let v be a vertex of G2. We
choose two adjacent vertices from each of the two components in G1 and denote them by a, b
and c, d, respectively. By Claim 24, we know that one of the two components must be completely
connected to v; we assume that a and b are both adjacent to v. Now we distinguish between three
possibilities due to isomorphism. If v is adjacent to neither c nor d, vertices a, b, c, d, v, x1, x2
induce an F12. If v is only adjacent to c and not to d, vertices a, c, d, v, x2 induce a chair. If v is
adjacent to both c and d, vertices a, b, c, d, v, x1, x2 induce an F14.

Claim 28. If G1 has a complete component A of order ≥ 2, G2 has at most two components.
Conversely, if G2 has a complete component V of order ≥ 2, G1 has at most two components.

Proof. Let G1 have a complete component A of order ≥ 2 and assume that G2 has three vertices
from three components. By Claim 24, two of the three vertices must be completely connected
to A. Then these two vertices together with any two vertices from A and x1 induce a split
3-star.

The following important structural result holds if both G1 and G2 are complete subgraphs.

Claim 29. Let G1 and G2 each be non-empty complete subgraphs. For a fixed k ∈ N, G1 and G2

can be partitioned into subgraphs G1 = AR, A1, . . . , Ak and G2 = VR, V1, . . . , Vk such that for
each i = 1, . . . , k the subgraph Ai is completely connected to Vi and completely disconnected
from Vj , j 6= i, while AR and VR contain all the remaining vertices of G1 and G2 that are not
adjacent to any vertices in G2 and G1, respectively. Graph E4 in Figure 5.1 illustrates this
relationship between G1 and G2.

Proof. If both G1 and G2 consist of a single vertex, the claim is trivially true. Assume that G1

is a complete graph of order ≥ 2 that contains vertices a and b.

First we show that if a is adjacent to a subset Sa of vertices in G2, b is either adjacent to all of
Sa or not adjacent to any vertices in Sa. Assume that a is adjacent to all vertices in Sa and b is
only partially connected to Sa. Then there exists a vertex v ∈ G2 adjacent to both a and b as
well as a vertex w ∈ G2 adjacent only to a. As G2 is complete, vertices v and w are adjacent
and it follows that vertices a, b, v, w, x1 induce a 4-fan.

This allows us to partition G2 into disjoint subgraphs G2 = VR, V1, . . . , Vk as follows. VR is the
subgraph of G2 induced by all vertices not adjacent to G1 and each subgraph Vi, 1 ≤ i ≤ k,
corresponds to a subgraph induced by the set of vertices Sa in G2 adjacent to a vertex a in G1.

Now that we have defined a partition of G2, we can use it to partition G1 too. First we note
that every vertex a in G1 can only be adjacent to at most one subgraph Vi, 1 ≤ i ≤ k with the
first part of this proof. We define by Ai the subgraph induced by the subset of all vertices in G1

adjacent to Vi. Lastly, we define AR as the subgraph of G1 induced by all vertices not adjacent
to any vertex in G2. Note that AR and/or VR may be empty and k ≥ 1.

25

5.4.5 The relationship between (G1 or G2) and G3

Now that we have seen how different configurations of G1 can be connected to G2 and vice
versa regardless of the shape of G3, we investigate how the existence and configuration of a
non-empty G3 constrains the other two subgraphs.

If G3 is not complete, (see (b) and (c) in Figure 5.3), the case is simple.

Claim 30. Let G3 not be complete. Then G3 is not connected to any vertices in G1 and G2.
Further, neither G1 nor G2 can contain a non-complete component N .

Proof. Let y1 and y2 be two non-adjacent vertices in G3. These must exist as G3 is not complete.
Let a be a vertex in G1 or G2. If a is adjacent to y1 alone, vertices a, x1, x2, y1, y2 induce a 4-fan.
If a is adjacent to y1 and y2, the same vertices induce a 4-wheel. As a, y1, y2 were freely chosen
from their respective subgraphs, this shows that a vertex in G3 that is not adjacent to all other
vertices in G3 cannot be connected to G1 or G2.

Now assume that y3 ∈ G3 is a vertex adjacent to all other vertices in G3. (Such a vertex need
not exist.) If a is adjacent to y3, vertices a, x1, y1, y2, y3 induce a split 3-star. This shows for all
possible vertices in G3 that they are not adjacent to any vertices in G1 or G2.

Lastly we note that neither G1 nor G2 can contain a non-complete component. Assume G1 has
a non-complete component N . We know that N must contain an induced P3. As by the above,
none of the vertices in P3 can be adjacent to y1 or y2, the P3 and vertices x1, x2, y1, y2 induce a
double fan.

If G3 is a non-empty complete subgraph, the situation is a little more complex. We first assume
that G1 has a non-complete component.

Claim 31. Let G3 be a non-empty complete subgraph. If G1 contains a non-complete component
N , then G1 and G3 are completely disconnected from one another.

Proof. First we show that the non-complete component N = Kr ∨ (Kp ∪ Kq) of G1 and G3

are completely disconnected. We select three vertices a ∈ Kp, b ∈ Kr and c ∈ Kq with edges ab
and bc. Let y be a vertex in G3. If y is partially adjacent to a, b and c, we can assume that y is
adjacent to a and not adjacent to b. Then vertices a, b, x1, x2, y induce a 4-fan. If y is adjacent
to a, b and c, vertices a, c, x1, x2, y induce a split 3-star. As vertices a, b, c were chosen freely from
Kp,Kr and Kq, it follows that N and G3 must be completely disconnected.

Now let d be a vertex from another (complete) component in G1 that is adjacent to y ∈ G3.
Then vertices a, b, c, d, x1, x2, y induce a double fan. This shows that G1 and G3 are completely
disconnected.

Claim 32. Let G3 be a non-empty complete subgraph. If G1 has a non-complete component N ,
then G2 must be empty.

Proof. Let y be a vertex in G3. We select a ∈ Kp, b ∈ Kr and c ∈ Kq from N = Kr ∨ (Kp ∪Kq).
By Claim 31, we know that y is not adjacent to a, b or c. Assume that G2 has a vertex v. By
Claim 25, v must be adjacent to a, c and not adjacent to b. If v is not adjacent to y, vertices
a, c, v, x2, y induce a chair. If v is adjacent to y, then vertices a, b, c, v, x1, x2, y induce an F15.

From now on we assume that neither G1 nor G2 has a non-complete component. G3 is still
assumed to be complete and non-empty.

26

Claim 33. Let G3 be a non-empty complete subgraph and y be a vertex in G3. A complete
component of G1 is either completely connected to or completely disconnected from y.

Proof. Assume that a complete component A of G1 is partially connected to a vertex y in G3.
Then there exist a vertex a ∈ A adjacent to y and a vertex b ∈ A not adjacent to y. It follows
that vertices a, b, x1, x2, y induce a 4-fan.

Claim 34. Let G3 be a non-empty complete subgraph. Only one component of G1 can be con-
nected to G3. The same holds for G2. If G3 is connected to a component of G1 and a component
of G2, the G1 component must be connected to different vertices of G3 than the G2 component.

Proof. First assume that a and b are vertices from two components of G1 connected to G3. If a
and b are both adjacent to the same vertex y in G3, vertices a, b, x1, x2, y induce a split 3-star.
If a is adjacent to y1 ∈ G3 and b is adjacent to y2 ∈ G3, vertices a, b, x1, y1, y2 induce a 4-fan.

Next assume that G3 is connected to a component in G1 and a component in G2. Thus there
exist two vertices a ∈ G1 and v ∈ G2 that are both adjacent to a vertex in G3. If a and v
are both adjacent to the same vertex y in G3, vertices a, v, x1, x2, y induce a 4-fan or a 4-wheel,
depending on whether the edge av is present or not. This proves the second part.

Definition 35. Let G3 be a non-empty complete subgraph. By Claim 34, exactly one component
from each G1 and G2 may be connected to G3. We denote the two components of G1 and G2

that are connected to G3 by A and V , respectively. If no component in G1 or G2 exists that is
connected to G3, we can formally assume that A or V is empty. This allows us to partition G3

into three complete subgraphs G3 = GA ∨ GV ∨ GR as follows. Let GA be the subgraph of G3

induced by the vertices in G3 that A is completely connected to. Next, let GV be the subgraph
of G3 induced by the vertices in G3 that V is completely connected to. Lastly, let GR be the
subgraph induced by all the remaining vertices in G3 only adjacent to x1 and x2. If G1 or G2

are not connected to G3, we formally define GA or GV as an empty subgraph, and if all vertices
in G3 are adjacent to either A or V , we define GR as an empty subgraph.

If G3 has a vertex not adjacent to any vertices in G1 or G2, (in other words, if GR is not empty),
we can say the following about G1 and G2.

Claim 36. Assume that GR is not empty. If G1 and G2 are both not empty then they are both
complete.

Proof. Let y be a vertex in GR. By definition, y is not adjacent to any vertices in G1 or G2. By
Claim 30 or Claim 32, we know that G1 and G2 only have complete components. Assume G1

has two components and G2 has at least one vertex v. We select two vertices a and b from the
two components of G1. If neither a nor b is adjacent to v, vertices a, b, v, x1, x2 induce a chair. If
only one vertex is adjacent to v, vertices a, b, v, x2, y induce an F1. If both a and b are adjacent
to v, the same vertices induce a chair.

Claim 37. Assume that GR is not empty. If both G1 and G2 contain more than one vertex, G1

and G2 are completely connected to each other.

Proof. Let y be a vertex in GR. By Claim 36, we know that G1 and G2 are both complete.
Let a, b be two vertices of G1 and v, w be two vertices of G2. We show that G1 and G2 must
be completely connected. Due to isomorphism we distinguish between two cases only. If a, b
and v, w are completely disconnected, vertices a, b, v, w, x1, x2, y induce an F11. If a is adjacent
to v and not adjacent to w, vertices a, v, w, x1, y induce a P5.

If GR is empty but G3 is non-empty and complete, we can make the following two claims.

27

Claim 38. If G1 contains a component of order ≥ 2 and GV is not empty, G1 and G2 each
consist of a single component. The same holds if G2 contains a component of order ≥ 2 and GA

is not empty.

Proof. Let C denote the component of order ≥ 2 in G1 with two vertices a, b ∈ C and let yV
be a vertex in GV . Because GV is not empty, there must exist a vertex v ∈ G2 adjacent to yV .
First we show that G1 consists of a single component and is thus complete. Assume that c
is a vertex from a second component in G1. We distinguish between three cases. If C is not
connected to v, c must be adjacent to v by Claim 24. Then vertices a, b, c, v, x1, x2, yV induce
an F12. Secondly, if C is partially connected to v, we can assume that a is adjacent to v and b
is not. Because c and v must be adjacent, vertices a, b, c, v, yV induce a chair. Lastly, if C and v
are completely connected and c is adjacent to v, vertices a, b, c, v, x1, x2, yV induce an F14 while
if c is not adjacent to v, the same vertices induce an F13.

Now we show that G2 also consists of a single component. Assume that w is a vertex from a
second component in G2. As yV is adjacent to v, it cannot be adjacent to w by Claim 34. We
show that the existence of w leads to a forbidden induced subgraph. Vertices a, b cannot both be
adjacent to v and w, otherwise vertices a, b, v, w, x1 would induce a split 3-star. We can assume
that it is vertex a that is not adjacent to both v and w. If a is neither adjacent to v nor to w,
vertices a, v, w, x1, yV induce an F1. If a is adjacent to v only, the same vertices induce an F3.
If a is adjacent to w only, the same vertices induce a P5.

Claim 39. If G1 has a component of order ≥ 2, G2 and G3 are not empty but GR is empty,
then G1 and G2 each have at most two components.

Proof. By Claim 28, G2 has at most two components. We now show the same for G1. Assume
that G1 has three components and let a, b, c be vertices from these three components. Let v be
a vertex in G2. By Claim 38, we have that GV is empty, i.e. that G3 = GA. Let yA be a vertex
in GA and w.l.o.g. let GA be completely connected to a. By Claim 24, no more than one vertex
of a, b, c can be non-adjacent to v. If b and c are adjacent to v, vertices b, c, v, x2, yA induce a
chair. Otherwise we can assume that b is not adjacent to v. It follows that vertices a, b, v, x2, yA
induce an F3.

5.4.6 The structure of G if G1 or G2 is empty

Now that we have studied the structures of G1, G2 and G3 as well as the relationships between
them, we start distinguishing cases that allow us to characterise G explicitly. We start with the
case that either G1 or G2 is empty. W.l.o.g. we can assume this to be G2. Our first structural
result is to show that if G2 is empty, G is an instance of graph E1.

Lemma 40. Let G2 be empty. Then G is an instance of E1 in Figure 5.1.

Proof. Our aim is to show that G = K1 ∨ (H0 ∪H1 ∪ · · · ∪Hk), where k ≥ 0 and the H1, . . . ,Hk

are non-empty complete graphs, and where H0 is either empty or there exist a, b, c ≥ 1 such that
H0 = Ka ∨ (Kb ∪Kc). We investigate the structure of G, dealing separately with the three cases
that G3 is empty, a non-empty complete subgraph and a non-complete subgraph.

If G3 is empty, vertex x1 is a dominating edge in G. Structurally, G is then made up of this
dominating vertex x1 completely connected to all the components of G1 and adjacent to x2.
From Claim 20 we see that the only possible non-complete component N of G1 matches the
subgraph H0 = Ka ∨ (Kb ∪Kc) of E1 in Figure 5.1. It follows that G is an instance of E1.

IfG3 is not complete, then by Claim 30, G1 can only contain complete components and these com-
ponents are completely disconnected fromG3. By Claims 22 and 23, we haveG3 = Kr ∨ (Kp ∪Kq)

28

with r ≥ 0, p, q ≥ 1. G3 and x2 constitutes the subgraph H0 := (Kr+1) ∨ (Kp ∪Kq) completely
connected to x1 and we have that G is an instance of E1.

From now on we assume that G3 is a non-empty complete subgraph. By Claim 20, G1 can
have at most one non-complete component N and any number of complete components. We
differentiate between the two cases that G1 has a non-complete component and that it does not.

Assume G1 has a non-complete component. By Claim 31, G1 and G3 are completely discon-
nected. G3 and x2 together constitute a complete subgraph H1. As G1 only contains complete
components apart from N , G is an instance of E1.

Now assume that G1 contains only complete components. By Claim 34, no more than one of
these components can be connected to G3. If none of the components of G1 are connected to G3,
thenG3 and x2 constitute a complete subgraph ofG andG is an instance of E1 with an emptyH0.
Otherwise let A be the complete component of G1 that is completely connected to a subset of
vertices in G3. We use the notation introduced in Definition 35 to denote by GA the subgraph
of G3 completely connected to A and by GR the subgraph G3 \GA. Note that GR can be empty
if A is adjacent to all of G3. We take a closer look at the subgraph induced by the x2 and the
vertices of A and G3. Specifically, we define Ka,Kb and Kc as follows. Ka := GA,Kb := A
and Kc := GR ∨ x2. Then the subgraph induced by x2 and the vertices of A and G3 has the
structure H0 := Ka ∨ (Kb ∪Kc). As none of the components of G1 apart from A are connected
to G3, we have that G is an instance of E1.

5.4.7 The structure of G if G1 and G2 are non-empty and G3 is not complete

From now on we assume that neither G1 nor G2 is empty. We first deal with the straight-forward
case that G3 is not complete. We know that G3 must contain at least two non-adjacent vertices y1
and y2. This allows us to describe G explicitly.

Lemma 41. Let neither G1 nor G2 be empty. If G3 is not complete, G1 and G2 each consist of
a single vertex of degree 1. It follows that G is an instance of E2.

Proof. Assume, say, that G2 contains more than one vertex. Let a be a vertex in G1 and let v
andw be vertices in G2. Further, let y1 and y2 be two non-adjacent vertices in G3. By Claim 30,
we have that a, v and w are not adjacent to y1 or y2. We first show that a cannot be adjacent
to v or w. If a and v were adjacent, vertices a, v, x1, y1, y2 would induce a chair. Now we need
only distinguish between two cases. If v and w are not adjacent, vertices a, v, w, x1, x2 induce
a chair. If v and w are adjacent, vertices a, v, w, x1, x2, y1, y2 induce an F10. This shows that
neither G1 nor G2 can have more than one vertex each and that these two vertices cannot be
adjacent. As one can see by taking graphs (b) and (c) in Figure 5.3 and attaching a pendant each
to x1 and x2, G is an instance of E2. Note that in case (c) the subgraph Ka in E2 is empty.

5.4.8 The structure of G if G1 has a non-complete component, G2 is not empty
and G3 is complete

Having concluded the case that G3 is not complete, we can assume from now on that G3 is com-
plete. We distinguish between the case that G1 and/or G2 have a non-complete component N
and the case that neither G1 nor G2 has a non-complete component. We assume in this subsec-
tion that G1 has a non-complete component. Then G admits the following structural description.

29

Lemma 42. If G1 has a non-complete component N and G2 is not empty, G1 takes the shape
N = Ka ∨ (K1 ∪Kb) with a, b ≥ 1, G2 consists of a single vertex and G3 is empty. In other
words, G is an instance of E3.

Proof. By Claim 32, G3 is empty. The structure of G follows immediately from Claim 26.

5.4.9 The structure of G if G1 and G2 are non-empty and only have K1 com-
ponents and G3 is complete

We assume from now on that all components in G1 and G2 are complete and neither G1 nor G2

is empty. We first study the case that all components are made up of single vertices.

Our approach is to investigate in view of Definition 35 what constraints the complete subgraph
G3 = GA ∨ GV ∨ GR places on the number of K1 components in G1 and G2. In particular we
differentiate between the different possibilities that GA, GV and/or GR are empty or not empty.
This leads to a series of case distinctions. For each leaf case (1, 2.1, 2.2.1 and 2.2.2) we provide
a lemma describing G structurally.

Case 1: G3 is empty.

Lemma 43. Let G1 and G2 only have K1 components. If G3 is empty, G is a Km,n with m,n ≥ 1
or a Km,n − e, with m,n ≥ 2. These correspond to E12 and E13.

Proof. By Claim 24, no more than one pair of vertices (a, v) in G1×G2 is non-adjacent. If G con-
tains no non-adjacent pair of vertices, G is a complete bipartite graph G = Km,n with m,n ≥ 1.
Now assume that G contains exactly one non-adjacent pair of vertices (a, v). G then is an al-
most complete bipartite graph G = Km,n − e. Because G contains vertices x1, x2, a and v, we
have m,n ≥ 2.

Case 2: G3 is not empty.

From now on we can assume that G3 is a complete graph with at least one vertex. By Claim 34,
only one component from G1 and G2 each can be connected to G3. If a vertex in G1 exists that is
connected to G3, we denote it by a. We do the same for a vertex v in G2. By Claim 34, a and v
cannot be adjacent to the same vertex y in G3. As per Definition 35, we partition G3 into GA,
the subgraph of G3 induced by the vertices of G3 adjacent to vertex a ∈ G1, GV , the subgraph
of G3 induced by the vertices of G3 adjacent to v, and lastly, GR, the subgraph induced by all
the remaining vertices in G3 that are only adjacent to x1 and x2.

The following claim will prove useful in several lemmas below.

Claim 44. If G1 and G2 each consist of a single vertex, then G is an instance of either E4

or E5.

Proof. Let G3 = GA ∨GV ∨GR be the partition of G3 described above. The subgraphs GA, GV

and GR may be empty. Let a be the vertex of G1 and v be the vertex of G2. These two vertices
may be adjacent or non-adjacent. The two resulting possibilities for G are shown in Figure 5.4
with the optional dotted edge av and Km := GA ∨ x1, Kn := GV ∨ x2. Note that GA and GV

may be empty but Km and Kn always contain at least one vertex. If the edge av exists, G is
an instance of E4. If av does not exist and GR is empty, G is an instance of E4. If av does not
exist and GR is not empty, G is an instance of E5.

30

Km Kn

GR

a v

Figure 5.4: G if G1 = K1 and G2 = K1.

For our next case distinction, we distinguish between an empty and a non-empty GR.

Case 2.1: GR is not empty.

Assume first that GR is not empty, which means that there exists a vertex in G3 that is connected
to neither G1 nor G2.

Lemma 45. Let G1 and G2 have only K1 components. If GR is not empty, G is an instance of
either E4 or E5.

Proof. By Claim 36, G1 and G2 each have exactly one vertex and by Claim 44, G is an E4

or E5.

Case 2.2: GR is empty.

Now we assume that GR is empty. By assumption G3 is not empty. It follows that G3 = GA∨GV

and at least one of GA and GV is not empty. We distinguish between two cases. Either G3 is
completely connected to a single vertex in G1 or G2, i.e. that w.l.o.g. G3 = GA, or G3 is
connected to a and v, i.e. G3 = GA ∨GV and both GA and GV are not empty.

Case 2.2.1: G3 = GA.

To discover what G looks like if G3 = GA, we need the following three lemmas. For these, assume
that G3 is completely connected to a ∈ G1 and that v is a vertex in G2. Vertices a and v can
either be adjacent or non-adjacent. We investigate whether G1 or G2 can contain additional K1

components.

Claim 46. Let G1 consist of the single vertex a and G3 = GA be completely connected to a.
Then G2 can have any number of K1 components but only one can be non-adjacent to a. G is
then an instance of E8.

Proof. By Claim 24, all but one K1 component in G2 must be adjacent to a. By defining
Kn := GA ∨ x1, we see that G is an instance of E8 as shown in Figure 5.5 (a).

Claim 47. Let GA be non-empty and let v be a component in G2. Then G1 can have a second K1

component b only if both a and b are adjacent to v. G1 cannot have more than two components.
If G2 consists of a single vertex, G is an instance of E3 as shown in Figure 5.5 (b).

Proof. Let a and b be two K1 components in G1. Further let yA be a vertex in GA. We can
assume that GA is completely connected to a and in particular that yA is adjacent to a. We show
that a and b must both be adjacent to v. By Claim 24, at least one of them must be adjacent

31

a x2

. . .

Kn

(a) G1 = K1 and G2 = K∪
1

Kna

v

x2

x1

v

(b) G1 = K1 ∨K1 and G2 = K1

Figure 5.5: Possibilities for G if G3 = GA.

to v. If only a is adjacent to v, vertices a, b, v, x2, yA induce an F3. If only b is adjacent to v, the
same vertices induce a P5. This shows that a and b must both be adjacent to v.

Next we show that G1 cannot have more than two components. Let c denote a third component
in G1. If c is not adjacent to v, vertices a, b, c, v, yA induce an F1. If c is adjacent to v, the same
vertices induce a chair.

Claim 48. Let GA be non-empty. Then G1 and G2 cannot both have more than one K1 com-
ponent.

Proof. Let yA be a vertex in GA. We assume that G1 has two components a, b and G2 has two
components v, w. We can further assume that a is completely connected to GA. By Claim 47, v
and w are both adjacent to a and b. It follows that vertices b, v, w, x1, yA induce a chair.

The three claims above allow us to provide an explicit description of G for the case that G3 = GA.

Lemma 49. Let G1 and G2 only have K1 components. If GA is non-empty, then G is an
instance of either E3, E4, E5 or E8.

Proof. If G1 and G2 each consist of a single vertex, it follows from Claim 44 that G is an instance
of E4 or E5. By Claim 48, G1 and G2 cannot both have two or more components. If G2 has two
or more K1 components, then by Claim 46, G is an instance of E8 as shown in Figure 5.5 (a). If
on the other hand G1 has more than one component, then by Claim 47, G1 consists of two K1

components and G is an instance of E3 as shown in Figure 5.5 (b).

Case 2.2.2: G3 = GA ∨GV .

We now deal with the last case, namely that G3 = GA ∨GV and neither GA nor GV is empty.

Lemma 50. Let G1 and G2 only have K1 components. If G3 = GA ∨GV , then G is an instance
of E3, E4 or E5.

Proof. Throughout this proof, let yA be a vertex in GA and let yV be a vertex in GV . By
assumption, G1 contains a vertex a adjacent to yA and G2 contains a vertex v adjacent to yV .

Assume first that a is not adjacent to v. We see that neither G1 nor G2 can contain any more
components. Assume that b is a second component in G1. By Claim 24, b and v must be adjacent
and vertices a, b, v, yA, yV induce a P5. If G2 has two vertices, the situation is symmetrical. By
Claim 44, then, G is an instance of E4 or E5.

32

Now assume that a and v are adjacent. If G1 and G2 each consist of a single vertex, we see with
the help of Claim 44 that G is an instance of E4 or E5. We investigate whether G1 and G2 can
contain additional K1 components.

First we see that G1 or G2 can have no more than two components each. Let b and c be two
additional components of G1. By assumption, vertex a is still adjacent to yA and b, c are not
adjacent to yA. By Claim 24, vertex v must be adjacent to at least two of the three vertices a, b, c.
If v is adjacent to either b or c, vertices b, c, v, x2, yA induce an F1. If v is adjacent to both b
and c, vertices b, c, v, x2, yA induce a chair.

Secondly, we show that if G1 contains a secondK1 component, it must be adjacent to v. Assume b
is a second component in G1 that is not adjacent to v. Then a, b, v, x2, yA induce an F3. Next we
see that if G1 has two components, G2 cannot also have two K1 components. Let w be a second
component of G2. Then by the above w must be adjacent to a and vertices a, b, w, x2, yV induce
an F1 or chair, depending on whether w is adjacent to b or not. Conversely, if G2 contains a
second K1 component, G1 consists entirely of a single K1 component due to symmetry. It follows
that G is an instance of E3 with Km := GV ∨ x2 and Kn := GA.

5.4.10 The structure of G if G1 or G2 has a complete component with ≥ 2 ver-
tices, G1 and G2 are not empty and only contain complete components,
and G3 is complete and not empty

Now that we have dealt with the case that G1 and G2 contain only components of order 1, we
assume that G1 or G2 contain at least one component of size ≥ 2. W.l.o.g. we assume that G1 has
a component of order ≥ 2 denoted by C throughout this section. By Claim 32, all components
in G1 and G2 are complete. It is also worth repeating that G3 can only be a complete graph at
this point. We assume in this subsection that G3 is not empty; the second case that G3 is empty
is dealt with in Subsection 5.4.11.

By Claim 27, G1 cannot contain any further components of order ≥ 2. Just as in Subsection 5.4.9,
we partition G3 = GA ∨ GV ∨ GR using the notation introduced in Definition 18, then make a
series of case distinctions that lead to structural lemmas. The first case we study is that GR is
not empty.

Case 1: GR is not empty.

Lemma 51. Let GR contain one or more vertices. Then G is an instance of either E4 or E5.

Proof. Let y ∈ GR be a vertex not adjacent to any vertices in G1 or G2. By Claim 36, G1 and G2

are both complete. We investigate the two possibilities G2 = K1 and G2 = Kn, n ≥ 2 separately.

If G2 = Kn, then by Claim 37, G1 and G2 are completely connected. We define H2 := GA ∨ x1
and H3 := GV ∨ x2 and show this possibility in Figure 5.6 (a). It follows that G is an instance
of E4.

If G2 consists of a single vertex v, then this vertex v is either completely connected or completely
disconnected to G1. Assume that G1 and v are partially connected. Then there exist two
vertices a, b ∈ G1 such that a is adjacent to v and b is not adjacent to v and it follows that
vertices a, b, v, x2, y induce a P5. The two resulting possibilities are shown in Figure 5.6 (b)
and (c) with H2 := GA∨x1 and H3 := GV ∨x2. It follows that G is an instance of E4 or E5.

33

GR

H2 H3

G1 G2

(a)

GR

H2 H3

G1 G2

(b)

GR

H2 H3

G1 G2

(c)

Figure 5.6: G if G1 = Kn with n ≥ 2 and GR is not empty.

Case 2: GR is empty.

Now we investigate the situation that GR is empty, i.e. that G3 consists of G3 = GA ∨ GV

and either GA or GV (but not both) can be empty. By Claim 39, G1 and G2 contain at most
two components each. By assumption, G1 contains a complete component of order ≥ 2 and
by Claim 27, the other component of G1, if present, must be a K1. As a result, we have
either G1 = Kn or G1 = Kn ∪K1 with n ≥ 2.

Next we determine the possibilities for G2. Note that G1 and G2 cannot both contain a com-
ponent of order ≥ 2 if either of them has two components. Otherwise, by Claim 38, GA and GV

would both be empty, in contradiction to our assumption that G3 is not empty. By Claim 27, this
leads to the following possibilities for G2. If G1 = Kn, n ≥ 2, we can have either G2 = Km,m ≥ 1
or G2 = K1 ∨K1. If G1 = Kn ∨K1, we have either G2 = K1 or G2 = K1 ∨K1.

We consider all four possibilities for G1 and G2 to see whether they are compatible with
GR = GA ∨GV not being empty.

Case 2.1: GR is empty, G1 = Kn, n ≥ 2 and G2 = Km,m ≥ 1.

Lemma 52. If G1 = Kn, n ≥ 2 and G2 = Km,m ≥ 1, then both GA and GV in G3 = GA ∨GV

can be non-empty or either of them can be empty. G is an instance of E4.

Proof. Claim 29 describes the relationship between G1 and G2. In particular, we know that we
can partition G1 and G2 into G1 = AR, A1, . . . , Ak and G2 = VR, V1, . . . , Vk such that AR is
disconnected from G2, VR is disconnected from G1 and for every i = 1, . . . , k the subgraph Ai

is completely connected to Vi and disconnected from Vj , j 6= i. We define two further sub-
graphs Ak+1 := GA ∨ x1 and Vk+1 := GV ∨ x2 to see that G is also an instance of E4.

From now on, either G1 or G2 has two components. This means that by Claim 38, GV is empty
and G3 consists solely of G3 = GA with a non-empty subgraph GA.

Case 2.2: GR is empty, G3 = GA, G1 = Kn, n ≥ 2 and G2 = K1 ∪K1.

Lemma 53. If G1 = Kn, G2 = K1 ∪K1 and G3 = GA with |GA| ≥ 1, then G is an instance of
either E3 or E6.

Proof. Let v and w be the two non-adjacent vertices in G2. By Claim 24, we can assume that v
is completely connected to G1. The second vertex w can either be completely disconnected
from G1 or adjacent to exactly one vertex a in G1. If w were adjacent to two vertices a, b in G1,
vertices a, b, v, w, x1 would induce a split 3-star. Both remaining possibilities are depicted in
Figure 5.7. In both cases, Km = GA ∨ x1 contains GA and x1. In Graph (b), Kn−1 is the
subgraph G1 − a. The two resulting structures correspond exactly to E3 and E6.

34

G1 Km

v x2

w

(a)

Km Kn−1

x2

v

a

w

(b)

Figure 5.7: G if G1 = Kn, G2 = K1 ∪K1 and G3 is not empty.

Case 2.3: GR is empty, G3 = GA, G1 = Kn ∪K1, n ≥ 2 and G2 = K1.

Lemma 54. If G1 = Kn ∪K1, G2 = K1 and G3 = GA with |GA| ≥ 1, then G is an instance
of E3.

Proof. Let a and b be two vertices of the Kn of G1 and let c denote the K1 in G1. Further let v
be the single vertex of G2 and yA be a vertex of GA. By Definition 18, GA must be completely
connected to either the Kn or the K1 of G1.

We show that GA must be completely connected to the Kn. Assume conversely that GA is
completely connected to the K1 of G1. By Claim 24, vertex v must be completely connected
to at least one component of G1. If v is completely connected to both the Kn and K1, ver-
tices a, b, c, v, x1, x2, yA induce an F15. If v is not adjacent to a, vertices a, c, v, x2, yA induce
an F3. If v is not adjacent to vertex c, the same vertices induce a P5.

As GA is completely connected to the Kn, vertex v must also be completely connected to all
of G1, otherwise vertices a, c, yA, v, x2 would induce an F1, F3 or P5 as above. It follows that G
must be an instance of E3.

Case 2.4: G3 = GA, G1 = Kn ∪K1 and G2 = K1 ∨K1.

Let C and b denote the Kn and the K1 in G1, respectively, and let v, w be the two K1 in G2. We
can assume that w is not completely connected to C. Otherwise, if v and w were both completely
connected to C, vertices v, w, x1 and any two vertices from C would induce a split 3-star. Let c
be a vertex in C that is not adjacent to w. By Claim 24, vertex b must be adjacent to v and w.
Lastly, let yA be a vertex in GA. Then by definition, yA must be adjacent to either b or c. If yA
is adjacent to b, vertices b, c, w, x2, yA induce an F3. If yA is adjacent to c, the same vertices
induce a P5.

This concludes our case distinctions and our structural description of G if G3 is not empty.

5.4.11 The structure of G if G1 or G2 has a complete component with ≥ 2 ver-
tices, G1 and G2 are not empty and only contain complete components,
and G3 is empty

Now we see what G can look like if G3 is empty, G1 and G2 are both not empty and at least
one of the two contains a component of order ≥ 2. By Claim 36, G1 and G2 can only have
complete components, by Claim 28, we know that G2 can have at most two components and by

35

x1

x2

v

. . .

C

(a)

x1 x2

v
AR A1

(b)

x1

x2

v

. . .

C

(c)

Figure 5.8: G if G3 is empty and G2 a single vertex.

Claim 27, G2 cannot have two components of order ≥ 2. It follows that G2 consist of either a
single K1, a single Kn, two K1 components, or a K1 and a Kn with n ≥ 2.

We deal with each of these possibilities in turn. Because G3 is empty, we cannot limit the
number of K1 components of G1 a priori and must determine the structure of G1 on a case by
case basis. Note that by assumption, G1 contains at least one component of order ≥ 2 and by
Claim 27, it can only contain additional K1 components. Our task is to determine how many K1

components G1 can have.

Case 1: G2 = K1.

Lemma 55. If G2 consists of a single vertex, G takes one of three shapes depicted in Figure 5.8,
which correspond to E4, E7 and E8.

Proof. Assume that we have G2 = K1, denoted by the vertex v. We denote the component of G1

of order ≥ 2 by C. Vertex v and C can be either completely disconnected, partially connected
or completely connected. If v is partially connected to C, we partition C into the subgraph A1

induced by all vertices adjacent to v and the subgraph AR = A \ A1. These three cases are
illustrated by the solid edges and vertices of the graphs in Figure 5.8. We investigate for each of
the three cases whether G1 can contain additional K1 components.

Case 1.1: If v and C are completely disconnected, G1 can have any number of K1 components
that, by Claim 24, must all be adjacent to v. The result is shown in Figure 5.8 (a) and is clearly
an instance of E7.

Case 1.2: If v and C are partially connected, we show that G1 consists entirely of C. Because v
and C are partially connected, there exists a vertex a ∈ A adjacent to v and a vertex b ∈ A not
adjacent to v. Assume d is a vertex from a second component in G1. By Claim 24, d must be
adjacent to v. It follows that vertices a, b, d, v, x2 induce a chair. By partitioning C = A1 ∨AR,
we see that the structure of G, shown in Figure 5.8 (b), is an instance of E4.

Case 1.3: If v and C are completely connected, G1 can have any number of K1 components
but by Claim 24, only one of them may not be adjacent to v. The resulting graph G is shown in
Figure 5.8 (c) and is an instance of E8.

Case 2: G2 = Kn with n ≥ 2.

Lemma 56. If G2 is a Kn with n ≥ 2, G takes one of four shapes shown in Figure 5.9. G is an
instance of E3, E4, E6 or E10.

36

x1 x2

AR VR

A1

Ak

V1

Vk

(a)

x1 x2

d

C G2

(b)

C G2

x1 x2

d

(c)

C Kn−1

x1

x2

v

d

(d)

Figure 5.9: G if G3 is empty and G2 = Kn with n ≥ 2.

Proof. By assumption, G1 has a complete component of order ≥ 2 and by Claim 28, G1 can have
at most one additional K1 component. We distinguish between the case that G1 is complete and
that G1 has an additional K1 component.

Case 2.1: If G1 is complete, Claim 29 provides us with the structural relationship between G1

and G2, as illustrated by G1 = AR, A1, . . . , Ak and G2 = VR, V1, . . . , Vk in Figure 5.9 (a). We
define Ak+1 := x1 and Vk+1 := x2 to see that G is an instance of E4.

Case 2.2: We now assume that G1 consists of a component C of order ≥ 2 and a K1 denoted
by d. Then G is one of essentially two structures. First we show that C and G2 must be either
disconnected or completely connected. To do that, we choose any a, b ∈ C and v, w ∈ G2 and
assume that they are partially connected. By Claim24, d must be adjacent to both v and w.
We can dismiss all edge configurations that result in either a or b being adjacent to both v
and w, as vertices d, x1, v, w together with either a or b would otherwise induce a split 3-star.
Due to symmetry, this leaves us with two possibilities. If a is adjacent to v and b is not,
vertices a, b, d, v, x2 induce a chair. If both a and b are adjacent to v (and thus non-adjacent
to w), vertices a, b, d, v, w, x1, x2 induce an F15.

Case 2.2.1: If C and G2 are completely disconnected, it follows by Claim 24 that d must be
completely connected to G2. The graph G is shown in Figure 5.9 (b) and is an instance of E10.

Case 2.2.2: If C and G2 are completely connected, we see that d cannot be adjacent to more
than one vertex v in G2. If d were adjacent to two vertices v, w ∈ G2, vertices d, v, w, x2 together
with any vertex a ∈ C would induce a split 3-star. If d is not adjacent to any vertices in G2, G is
an instance of E6 and if d is adjacent to one vertex v in G2, G is an instance of E3. These two
cases are shown in Figure 5.9 (c) and (d). In (d), the induced complete subgraph Kn−1 := G2−v
drawn is the subgraph G2 without the vertex v that vertex d is attached to.

37

x1

x2

v w

. . .

C

(a)

Cx1

x2

v

a

w

(b)

Figure 5.10: G if G3 empty and G2 = K1 ∪K1.

Case 3: G2 = K1 ∪K1.

Lemma 57. If G2 consists of two K1 components, G is an instance of E3 or E9, as depicted in
Figure 5.10.

Proof. We denote the two K1 components of G2 by v and w. By assumption, G1 has a complete
component C of order ≥ 2. By Claim 24, we can assume that v is completely connected to C.
Vertex w can only be adjacent to at most one vertex in A. Assume that w is adjacent to two
vertices a, b ∈ C. Then a, b, v, w, x1 induce a split 3-star. This allows us to distinguish between
two possibilities. In both cases we investigate whether G1 can have K1 components.

Case 3.1: If w and C are not connected, G1 can have any number of additional K1 components
that must all be adjacent to v and w by Claim 24. These additionalK1 components are illustrated
by the dashed elements in Figure 5.10 (a). G is then an instance of E9.

Case 3.2: If w is adjacent to a single vertex a in C, then G1 cannot have any K1 components
and must consist entirely of G1 = C. Assume G1 has a K1 component d. By Claim 24, d must be
adjacent to v and w. Let b be another vertex in C not adjacent to w. Then vertices a, b, d, w, x2
induce a chair. The graph G with G1 = C is shown in Figure 5.10 (b) and is clearly an instance
of E3.

Case 4: G2 = K1 ∪Kn, n ≥ 2.

Lemma 58. If G2 consists of a K1 and a Kn with n ≥ 2, then G is an instance of E3, E6, E10

or E11.

Proof. By assumption and by Claim 28, G1 has a component C of order ≥ 2 and no more than
one additional K1 component. We study the two possible cases G1 = C and G1 = C ∨K1.

Case 4.1 G1 = C: If G1 = C, then by relabelling G1 to G2 and vice versa we see that we have
solved this problem in Case 2, Lemma 56. After relabelling, G becomes one of graphs (b), (c)
or (d) in Figure 5.9, which correspond to instances of E10, E6 and E3, respectively.

Case 4.2 G1 = C ∨ K1: Now we study whether any of three possibilities (b), (c) and (d) for
G in Case 4.1 allow for an additional K1 in G1. Assume G1 consists of C and a K1 component
denoted by a. Let V and w denote the components of order ≥ 2 and order 1 of G2, respectively.

If G takes shape (b), C and V are completely disconnected and w is completely connected to C.
It is easily seen with the help of Claim 24 that a must be completely connected to all of G2. The
resulting graph G is shown in Figure 5.11 and is an instance of E11.

38

C V

x1

v

a x2

Figure 5.11: The third possibility for G if G2 = K1 ∪Kn with n ≥ 2.

Assume now that G is a graph of shape (c) or (d). By Case 4.1, C is completely connected to V
and not completely connected to w. It follows from Claim 24 that vertex a must be adjacent to
all of G2. Then any two vertices in the Kn of G2 together with a, x2 and a vertex in A induce
a split 3-star.

This concludes the proof of Lemma 15: any graph G without F1, . . . , F15 is an instance of
E∪1 , E2, . . . , E13.

5.5 Induced subgraphs of an E∪1 , E2, . . . , E13 are again instances of
the same

In this section we show that graphs G that are instances of E∪1 , E2, . . . , E13 only have induced
subgraphs that are also instances of E∪1 , E2, . . . , E13.

Lemma 59. Let G be an instance of E∪1 , E2, . . . , E13. Any induced subgraph H of G is also an
instance of E∪1 , E2, . . . , E13.

Proof. Let H be a subgraph of G induced by the set of vertices S ⊆ V (G). Then H is the graph
obtained by deleting all vertices in V (G)\S and incident edges from G. In order to prove that H
is an E∪1 , E2, . . . , E13, we use the following inductive approach.

With the help of Claims 60 to 72 we show that removing a single vertex v and associated edges
from an instance of E∪1 , E2, . . . , E13 results in a graph G−v that is also an E∪1 , E2, . . . , E13. If we
remove the vertices in V (G) \S from G one by one, we know after every step that the remaining
graph is still an E∪1 , E2, . . . , E13. This is especially true once we remove all vertices in V (G) \S.
As the remaining graph is now H, we are finished.

Claim 60. Let G be an E∪1 . Then any induced subgraph G− v obtained by removing a vertex v
and incident edges from G is another instance of E∪1 .

Proof. Let H be the E1 component of G that we are removing the vertex v from. If v is the only
vertex in H and G consists entirely of H, G− v is the empty graph and an E12. Otherwise, if v
is the only vertex in H and G has two or more components, G− v is an E∪1 .

Assume from now on that H has order ≥ 2. If v is not the dominating vertex in H, then H − v
is an E1. It follows that G− v is an E∪1 . If v is the dominating vertex in H, H − v is an E∪1 and
the same follows for G− v.

Claim 61. Let G be an E2. Then any induced subgraph G− v obtained by removing a vertex v
and incident edges from G is an E1, E1 ∪ E1, E2 or E5.

Proof. Let G be an E2. G− x1 consists of two E1 components. One E1 is made up of vertex d,
the other E1 consists of vertices e and x2 together with Ka,Kb and Kc. Next, G − d is an E1.

39

Let a be a vertex in Ka. G− a is an E2. Now let vb be a vertex in Kb. If b = 1, then G− vb is
an E5. If b ≥ 2, then G− vb is an E2. All other cases are symmetrical.

40

Claim 62. Let G be an E3. Then any induced subgraph G− v obtained by removing a vertex v
and incident edges from G is an E1, E3, E4, E6 or E8.

Proof. Let G be an E3. G − a is an E1, G − b is an E4, G − c is an E6 and G − d is an E4.
Let vm be a vertex in Km. If m = 1, G− vm is an E4. If m ≥ 2, G− vm is an E3. Now let vn
be a vertex in Kn. If n = 1, G− vn is an E8. If n ≥ 2, G− vn is an E3.

Claim 63. Let G be an E4. Then any induced subgraph G− v obtained by removing a vertex v
and incident edges from G is an E1, E1 ∪ E1 or E4.

Proof. Assume first that k = 1. Let v be a vertex in A1. If |A1| = 1, G − v has the structure
G− v = AR ∪ (V1 ∨ VR). If AR is empty, the graph is an E1. If AR is not empty, the graph is
an instance of E1 ∪ E1. If |A1| ≥ 2, G − v is an E4. Now let v be a vertex in AR. Then G − v
is an E4. Now assume that k = 2. Then for any vertex v in G the resulting graph G − v is
an E4.

Claim 64. Let G be an E5. Then any induced subgraph G− v obtained by removing a vertex v
and incident edges from G is an E1 ∪ E1, E4 or E5.

Proof. Let G be an E5. G − e is an E4. Now we turn to the subgraphs Ka,Kb,Kc and Kd. If
we remove a vertex v from Ka,Kb,Kc or Kd and the respective complete subgraph is not empty
in G− v, the induced subgraph is an E5. If Ka has only one vertex and we remove it, the result
is an E4. If Kb has only one vertex and we remove it, the result is an E1 ∪ E1. If Kc has only
one vertex and we remove it, the result is an E4. If Kd has only one vertex and we remove it,
the result is an instance of E1 ∪ E1.

Claim 65. Let G be an E6. Then any induced subgraph G− v obtained by removing a vertex v
and incident edges from G is an E1 ∪ E1, E4, E6, E8 or E10.

Proof. Let G be an E6. G − a is an E4, G − b is an E1 ∪ E1 and G − c is an E4. Let vn be a
vertex in Kn. If n = 2, then G− vn is an E8. If n ≥ 3, then G− vn is an E6. Now let vm be a
vertex in Km. If m = 2, then G− vm is an E10. If m ≥ 3, then G− vm is an E6.

Claim 66. Let G be an E7. Then any induced subgraph G− v obtained by removing a vertex v
and incident edges from G is an E1 ∪ E1, E7 or E13.

Proof. Let G be an E7. G−a is an E1∪E1 and G− c is an E1. Let vb be a vertex in the bottom
row. If the bottom row has two or more vertices, G − vb is an E7. If the bottom row only has
one vertex, G − vb is an E1 ∪ E1. Let vn be a vertex in Kn. If n = 2, then G − vn is an E13.
If n ≥ 3, then G− vn is an E7.

Claim 67. Let G be an E8. Then any induced subgraph G− v obtained by removing a vertex v
and incident edges from G is an E1, E1 ∪ E1, E8, E12 or E13.

Proof. Let G be an E8. G− a is an E1 or E1 ∪E1 and G− c is an E1. Let vn be a vertex in Kn.
If n = 2, then G− vn is an E12 or E13. If n ≥ 3, then G− vn is an E8. Now let vb be a vertex
in the bottom row. If the bottom row has only one vertex, G − vb is an E1. If the bottom row
has two or more vertices, G− vb is an E8.

Claim 68. Let G be an E9. Then any induced subgraph G− v obtained by removing a vertex v
and incident edges from G is an E1 ∪ E1, E7, E8, E9 or E13.

Proof. Let G be an E9. G − a and G − c are instances of E7 and G − d is an E8. Let vb be a
vertex in the bottom row. If the bottom row has only one vertex, G − vb is an E1 ∪ E1. If the
bottom row has two or more vertices, G− vb is an E9. Now let vn be a vertex in Kn. If n = 2,
then G− vn is an E13. If n ≥ 3, then G− vn is an E9.

41

Claim 69. Let G be an E10. Then any induced subgraph G− v obtained by removing a vertex v
and incident edges from G is an E1, E1 ∪ E1, E4 or E10.

Proof. Let G be an E10. G− a is an E1 ∪E1 and G− b (and G− c) is an E4. Let vn be a vertex
in Kn. If n = 1, G−vn is an E1. If n ≥ 2, then G−vn is an E10. Now let vm be a vertex in Km.
If m = 1, then G− vm is an E4. If m ≥ 2, then G− vm is an E10.

Claim 70. Let G be an E11. Then any induced subgraph G− v obtained by removing a vertex v
and incident edges from G is an E8, E10, E11 or E12.

Proof. Let G be an E11. G− a is an E10. Let vm be a vertex in Km. If m = n = 1, G− vm is
an E12. If m = 1 and n ≥ 2, G− vm is an E8. If m ≥ 2, G− vm is an E11. All other cases are
symmetrical.

Claim 71. Let G be an E12. Then any induced subgraph G− v obtained by removing a vertex v
and incident edges from G is an E12.

Proof. No matter which vertex we remove, every remaining vertices in the top row is still adjacent
to every remaining vertex in the bottom row. The result follows immediately with the definition
of a complete bipartite graph.

Claim 72. Let G be an E13. Then any induced subgraph G− v obtained by removing a vertex v
and incident edges from G is either an E1 ∪ E1, E12 or E13.

Proof. Let G be an E13 and let a, b be the two vertices that would be incident with the edge e
that is missing. Then G− a or G− b are instances of E12, as every remaining vertex in the top
row is adjacent to every remaining vertex in the bottom row.

Now let v be a vertex that is not a or b. If the row we are removing v from has exactly two
vertices, G− v is an E1 ∪ E1, where one of the E1 is a single vertex and the other E1 is a star.
If the row we are removing v from has three or more vertices, G− v is an E13.

5.6 Instances of E∪1 , E2, . . . , E13 are gB-nice

In this section we prove the following lemma.

Lemma 73. Any instance of E∪1 , E2, . . . , E13 is gB-nice.

Proof. Let G be an instance of E∪1 with two or more E1 components. Then by Theorem 13, G
is gB-perfect and we are done. Now let G be an instance of E1. Then G is an induced subgraph
of G∪G. This graph G∪G is an instance of E∪1 and as such gB-perfect. As induced subgraphs
of gB-perfect graphs are again gB-perfect, it follows that G is gB-perfect.

Therefore we can assume from now on that G is an instance of E2, . . . , E13. For each of these
possibilities Ei, 2 ≤ i ≤ 13 we provide a strategy for Alice to win on Ei with ω(Ei) colours. This
shows that Ei is gB-nice. For the sake of completeness, we also provide a strategy for Alice to
win on E1. This strategy is easily extended to E∪1 : Alice simply always responds in the same
component as Bob just coloured.

If Alice’s approach is straightforward, we list her moves sequentially. Otherwise we define rules
based on game states. Each game state, defined in bold, represents a class of partial graph
colourings such that no vertex has been surrounded. For each of these game states, we provide
instructions for Alice to respond to every possible move by Bob. These instructions either lead
to another state or allow Alice to win immediately. It follows inductively that Alice must win
after at most |G| moves.

42

A strategy for E1

Let G be an instance of E1. We show that Alice can win on G with ω(G) colours. The vertices
at risk are the dominating vertex x and all vertices in Ka. Recall that b ≥ c. Alice’s main aim
is to make sure that Kb and Kc contain the same colours after each round until either Ka or Kc

is fully coloured. This guarantees that no vertex in Ka can be surrounded. Alice follows the
following state-based rules to win.

State 1 [start]: The vertex x is not coloured.

• Assume Ka or Kc is fully coloured. If Bob colours x, all vertices have been neutralised
and Alice wins. If Bob colours any other vertex, Alice colours x and wins for the same
reason.

• Now assume Ka and Kc are both not fully coloured.

◦ If Bob colours a vertex in Kb, Alice applies the same colour to a vertex in Kc and
vice versa. Repeat state 1.

◦ If Bob colours vertex x, Alice colours a vertex in Ka and vice versa. If Ka is now
fully coloured, Alice wins, otherwise proceed to state 2.

◦ If Bob colours a vertex in H1, . . . ,Hk, Alice colours vertex x. Proceed to state 2.

State 2: The vertex x is coloured.

• Assume Ka has exactly one uncoloured vertex va. If Bob colours va, Alice wins. If
Bob colours any other vertex, Alice colours va in Ka and wins.

• Now assume Ka has two or more uncoloured vertices.

◦ If Bob colours one of these, Alice colours another. If Ka is now fully coloured,
Alice wins because all vertices at risk have been coloured. Otherwise repeat
state 2.

◦ If Bob colours a vertex in Kb, Alice applies the same colour to a vertex in Kc

and vice versa. If Kc is fully coloured, Ka has been neutralised and Alice wins.
Otherwise repeat state 2.

◦ If Bob colours a vertex in H1, . . . ,Hk, Alice colours a vertex in Ka. Repeat
state 2.

A strategy for E2

Let G be an instance of E2. Recall that b ≥ c. The vertices at risk are x1, x2 and all vertices
in Ka. Note that for any proper vertex colouring with ω(G) colours, Kc cannot have a colour
not in Kb. Because of this, Alice makes sure that Kb and Kc contain the same colours after each
round until Ka or Kc is full. We restrict ourselves to describing rules that apply to symmetrical
situations only once.

State 1 [start if a ≥ 1]: Vertices d, e, x1, x2 are uncoloured, Ka and Kc are not com-
pletely coloured. All uncoloured vertices are at risk.

• If Bob colours vertex d in a new colour, Alice applies the same colour to vertex x2 and
vice versa. If Bob instead colours vertex d in a colour already used in Ka,Kb or Kc,
Alice uses a new colour on vertex x2. In both cases proceed to state 5.

43

• If Bob colours a vertex in Kb, Alice applies the same colour to a vertex in Kc and
vice versa. If Kc is now completely coloured, proceed to state 2. Otherwise repeat
this state.

• If Ka has exactly one uncoloured vertex and Bob colours it, Alice colours vertex x1
and wins on her next move: if Bob colours vertex x2 she wins immediately. If Bob
instead colours any other vertex, Alice colours x2 herself.

• If Ka has two or more uncoloured vertices and Bob colours one of them, Alice colours
the other. If Ka is now fully coloured, proceed to state 3. Otherwise repeat this state.

State 2: Vertices d, e, x1, x2 are uncoloured, Ka is not completely coloured and Kc is
completely coloured. The vertices in Ka have been neutralised, only x1 and x2 remain
at risk.

• If Bob colours vertex d in a new colour, Alice applies the same colour to vertex x2 and
vice versa. If Bob instead colours vertex d in an old colour, Alice uses a new colour
on vertex x2. In both cases Alice wins because x1 and x2 are no longer at risk.

• If Bob colours a vertex in Ka or Kb, Alice applies the same colour to d and wins on
her next move: if Bob colours vertex x2, Alice wins immediately. If Bob colours any
other vertex, Alice colours x2 herself.

State 3 [start if a = 0]: Vertices d, e, x1, x2 are uncoloured, Ka is completely coloured
and Kc is not completely coloured. The vertices in Ka have been neutralised, only x1
and x2 remain at risk.

• If Bob colours vertex d in a new colour, Alice applies the same colour to vertex x2
and vice versa. Since x1 is now neutralised, Alice wins. If Bob colours d in a colour
already used in Ka,Kb or Kc, Alice applies a new colour to x2. Alice now wins after
the next round: if Bob’s move is to colour vertex x1, Alice wins. If Bob instead colours
any other vertex, Alice wins by colouring vertex x1 herself.

• If Bob colours a vertex in Kb, Alice applies the same colour to a vertex in Kc and
vice versa. If Kc is not completely coloured yet, repeat this state. Otherwise proceed
to state 4.

State 4: Vertices d, e, x1, x2 are uncoloured, Ka and Kc are completely coloured. Only
vertices x1 and x2 are still at risk.

• If Bob colours vertex d in a new colour, Alice applies the same colour to x2 and vice
versa. If Bob instead colours vertex d in a colour already used in Ka,Kb or Kc, Alice
applies a new colour to x2. In both cases x1 and x2 are now neutralised and Alice
wins.

• If Bob colours a vertex in Kb, Alice colours vertex d in a colour from Kb. Alice now
wins after the next round by making sure that x2 is coloured by Bob or herself.

State 5: Vertices e, x1 are uncoloured, d, x2 are coloured such that d’s colour is used
elsewhere, Ka and Kc are not completely coloured. Only vertex x2 has been neut-
ralised, vertex x1 and the uncoloured vertices in Ka are still at risk.

• If Bob colours vertex x1, Alice colours vertex e and vice versa. Proceed to state 6.

• If Bob colours a vertex in Kb, Alice applies the same colour to a vertex in Kc and vice
versa. If Kc is now fully coloured, Alice wins because vertices x1 and Ka have been
neutralised. Otherwise repeat this state.

• If Ka has one uncoloured vertex and Bob colours it, Alice colours vertex x1 and wins.

44

• If Ka has two uncoloured vertices and Bob colours one, Alice colours the other and
wins on her next move by making sure that x2 is coloured by Bob or herself.

• IfKa has three or more uncoloured vertices and Bob colours one of them, Alice colours
another. Repeat this state.

State 6: Vertices d, e, x1, x2 are coloured, Ka and Kc are not completely coloured. The
uncoloured vertices in Ka are at risk.

• If Bob colours a vertex in Ka and it is fully coloured, Alice wins. Otherwise Alice
colours another vertex in Ka. If Ka is now fully coloured, she wins. Otherwise repeat
this state.

• If Bob colours a vertex in Kb, Alice applies the same colour to Kc and vice versa.
If Kc is now completely coloured, Alice wins. Otherwise repeat this state.

A strategy for E3

LetG be an instance of E3. The only vertex not at risk is d. For a colouring with ω(G) = m+n+1
colours, vertex b must be coloured the same as a vertex in Km, vertex a must be coloured the
same as c or a vertex in Kn, and vertex d must be coloured the same as a vertex in Km or Kn.
This leads to the following strategy for Alice.

State 1 [start]: None of the vertices in G are coloured.

• If Bob colours vertex a, Alice applies the same colour to vertex c and vice versa.
Proceed to state 5.

• If Bob colours vertex b, Alice applies the same colour to a vertex in Km and vice
versa. If m ≥ 5, proceed to state 3. If m = 1, Km is now fully coloured, a and Kn

are neutralised and Alice wins by making sure that c is coloured by Bob or herself in
the next round.

• If Bob colours vertex d, Alice applies the same colour to a vertex in Kn and vice versa.
If Kn is now fully coloured, proceed to state 4. Otherwise proceed to state 2.

State 2: Vertices a, b, c and Km are uncoloured, d is coloured in same colour as a
vertex in Kn, which is not completely coloured. All uncoloured vertices are still at
risk.

• If Bob colours a, Alice applies the same colour to c and vice versa. Proceed to state 5.

• If Bob colours b, Alice applies the same colour to Km and vice versa. If Km is now
fully coloured, Alice wins. Otherwise proceed to state 6.

• If Bob colours the last uncoloured vertex in Kn, Alice colours a in the same colour
and then wins by making sure that vertex c is coloured by Bob or herself in the next
round.

• If Bob colours the penultimate uncoloured vertex in Kn, Alice colours the last uncol-
oured vertex. Proceed to state 4.

• If Kn contains more than two uncoloured vertices and Bob colours one, Alice colours
another. Repeat this state.

State 3: Vertices a, c, d and Kn are uncoloured, b is coloured in the same colour
as a vertex in Km and Km is not completely coloured. Vertices a, b and Kn are
neutralised, vertex c and the uncoloured vertices in Km are at risk.

45

• If Bob colours vertex c, Alice wins by applying the same colour to a and vice versa.

• If Bob colours vertex d in a colour previously used, Alice colours a vertex in Km in
a new colour. If Bob instead colours vertex d in a new colour, Alice applies the same
colour to Km. If Km is now completely coloured, Alice wins. Otherwise proceed to
state 6.

• If Bob colours a vertex in Km or Kn, Alice applies the same colour to d. If Km is
now completely coloured, Alice wins. Otherwise proceed to state 6.

State 4: Vertices a, b, c and Km are uncoloured, d is coloured in same colour as a
vertex in Kn, which is fully coloured. Only Kn is neutralised.

• If Bob colours a, Alice wins by applying the same colour to c and vice versa.

• If Bob colours b, Alice applies the same colour to Km and vice versa. If Km is now
fully coloured, Alice wins. Otherwise proceed to state 6.

State 5: Vertices a, c are coloured the same, b and Km are uncoloured and Kn is
not completely coloured. Vertices a, b, c and Km are neutralised, only the uncoloured
vertices in Kn are at risk.

• If Bob colours vertex b, Alice applies the same colour to Km and vice versa. As Kn

is now neutralised, she wins.

• If Bob colours a vertex in d or Kn, Alice colours a vertex in Kn. If Kn was already
fully coloured or is fully coloured now, she wins. Otherwise repeat this state.

State 6: Vertices a, c are uncoloured, b is coloured in the same colour as a vertex
in Km, Km is not completely coloured, d is coloured in the same colour as a
vertex in Kn or Km. Only the uncoloured vertices in Km are at risk.

• If Bob colours vertex a in a colour present in Kn, Alice wins. If Bob instead colours
vertex a in a new colour, Alice wins by applying the same colour to c and vice versa.

• If Bob colours a vertex in Km or Kn, Alice colours a vertex in Km. If Kn was already
fully coloured or if Km is fully coloured, Alice wins. Otherwise repeat this state.

A strategy for E4

Let G be an instance of E4. We saw in Section 5.3 that the clique number of G is either ω(G) =
|A1|+ |V1| or |A|, depending on which is larger. We will treat these two cases separately.

The case |A1|+ |V1| > |A|

Assume that |A1| + |V1| > |A|. As by assumption we have |A| ≥ |V |, it follows immediately
that |A1| > |V | − |V1| and |V1| > |A| − |A1|. We first show constructively that there exists a
vertex colouring forG with ω(G) = |A1|+|V1| colours: colour the vertices of A1∨V1 in consecutive
colours 1, . . . , ω(G). Next colour every vertex in V \ V1 in consecutive colours from A1. Lastly,
colour every vertex in A \A1 in consecutive colours from V1.

Note that in this colouring every vertex in A\A1 and V \V1 has exactly one identically-coloured
vertex in V1 or A1, respectively. Alice recreates this colouring with her strategy. We describe
Alice’s responses if Bob colours a vertex in V . The case for A is symmetrical.

• If Bob colours a vertex in V \ V1, Alice applies the same colour to a vertex in A1.

46

• Assume that A \ A1 is not fully coloured. If Bob colours a vertex in V1, Alice applies the
same colour to a vertex in A \A1. If V \ V1 is now fully coloured, A \A1 and all of V have
been neutralised.

• Assume that A \A1 is fully coloured. Only vertices V1 are at risk. If Bob colours a vertex
in V1, Alice colours another vertex in V1. If V1 is fully coloured, Alice wins.

The case |A1|+ |V1| ≤ |A|

We assume that ω(G) = |A| ≥ |A1|+ |V1|, which means we have exactly |A| colours available in
the game. As above, we first show that there exists a proper vertex colouring of G with ω(G)
colours, before providing a strategy for Alice to achieve this colouring competitively. We employ
Hall’s Marriage Theorem [28] for this.

Theorem 74 (Hall (1935)). Let G be a bipartite graph with disjoint vertex sets V1 and V2
and |V1| ≤ |V2|. G has a matching of V1 if and only if for every subset S of V1:

|S| ≤ |N(S)|.

We are now ready to show that there exists a proper vertex colouring with ω(G) colours.

Claim 75. Let |A1|+ |V1| ≤ |A|. G admits a proper vertex colouring with |A| colours.

Proof. Let G be the complement of G. Note that G is bipartite, allowing us to apply Hall’s
Marriage Theorem.

Let S be a subset of Vi, 1 ≤ i ≤ k. Then its neighbouring vertices inG areNG(S) = V (A\Ai). By
assumption we have |A1|+ |V1| ≤ |A|, which implies |V1| ≤ |A\Ai|. It follows that |S| ≤ |NG(S)|.
Now let S be a set of V that is not a subset of any Vi, 1 ≤ i ≤ k. Then we have NG(S) = V (A).
As by assumption |V | ≤ |A|, it follows that |S| ≤ |NG(S)|. Applying Hall’s Marriage Theorem,
we know that there exists a matching that entirely covers V .

The matching pairs up every vertex v in V with a vertex av in A. As the two vertices av and v
are adjacent in G, they are not adjacent in G. This allows us to achieve a proper vertex colouring
of G. First we colour all vertices in A in consecutive colours. Then for every vertex in v in V ,
we retrieve the colour of its paired vertex av in A and apply it to v.

Now that we have a vertex colouring of G that fulfils the above requirements, we note the
following. Every vertex in V is assigned a colour also used in A but not every colour in A is also
present in V . If a vertex a in A has a vertex with the same colour in V , we say that a and v are
paired. Otherwise we call the vertex unpaired. The following modification of the vertex colouring
results in another valid vertex colouring: Let a be an unpaired vertex in Ai and let v be a vertex
in V \ Vi that is paired with b ∈ A. We can pair a and v by assigning v the colour of a. This
means v and b are no longer coloured the same, and b is now an unpaired vertex.

Once we know that a non-competitive vertex colouring of G exists as described above, Alice can
use the following strategy to win.

If Bob colours a vertex v in V , Alice applies the same colour to the vertex a ∈ A that v is paired
with. If Bob colours any vertex a in A that is paired with a vertex v in V , Alice applies the
same colour to v. If V is now fully coloured, Alice wins as Bob cannot surround any vertices any
more.

If Bob colours any vertex a in Ai, 1 ≤ i ≤ k that is not paired with a vertex in V \ Vi, Alice
applies the same colour to any other vertex v in V \Vi. This pairs up vertices a and v and unpairs

47

the vertex that v was originally paired with. If V is full, Alice wins as Bob cannot surround any
vertices any more.

If Alice cannot respond in this way because V \Vi is already fully coloured, we note the following.
Firstly, all vertices in V and the vertices in A \Ai are neutralised and only the vertices in Ai are
still at risk. Secondly, if a vertex in Ai is uncoloured, it must be an unpaired vertex. For this
reason, Alice responds to Bob’s move by colouring another vertex in Ai. If all vertices in Ai are
fully coloured, Alice wins.

A strategy for E5

Let G be an instance of E5. First we assume that a > c + d. Then the clique number of G
is ω(G) = a+ b ≥ b+ c+ d+ 1. The only vertices at risk are the vertices of Kb. Alice adheres to
the following strategy to win. If Bob colours the vertex e or a vertex in Kb, Alice colours another
vertex in Kb. If Bob instead colours a vertex in Ka, Alice applies the same colour to Kc ∨Kd

and vice versa. Alice wins as soon as Kb or Kc ∨Kd is fully coloured.

If a ≤ c+ d, Alice follows a slightly more complicated strategy. The clique number of G in that
case is ω(G) = b + c + d. The vertices at risk are in Kb and Kd. In general, Alice makes sure
that Ka always contains the same colours as Kc ∨Kd after every round. Similarly, she ensures
that vertex e is coloured the same as a vertex in Kb or Kc. If both of these objectives have been
achieved, she wins as Kb and Kd are now neutralised.

State 1 [start]: Ka,Kb and Kd are not completely coloured and vertex e is uncoloured.
Ka and Kc ∨Kd contain the same colours. The uncoloured vertices in Kb and Kd are
at risk.

• If Bob colours e in a new colour, Alice applies the same colour to a vertex in Kb and
vice versa. If Bob colours e in a colour already used in Kb or Kc, Alice colours a
vertex in Kb in a new colour. In both cases this neutralises Kd. If Kb is now fully
coloured, Alice wins. Otherwise proceed to state 2.

• If Bob colours a vertex in Ka, Alice applies the same colour to a vertex in Kd and
vice versa. If Ka and Kd are fully coloured, Alice wins. If only Ka is fully coloured,
proceed to state 3. If only Kd is fully coloured, proceed to state 4. If neither Ka

nor Kd are fully coloured, repeat this state.

• If Bob colours a vertex in Kc, Alice applies the same colour to a vertex in Ka. If Ka

is now fully coloured, proceed to state 3, otherwise repeat this state.

State 2: Ka,Kb and Kc ∨Kd are not completely coloured and vertex e is coloured in
a colour from Kb. Ka and Kc ∨Kd contain the same colours. Only the uncoloured
vertices in Kb are at risk.

• If Bob colours a vertex in Kc or Kd, Alice applies the same colour to Ka and vice
versa. If Ka is fully coloured, Kb has been neutralised and Alice wins. Otherwise
repeat this state.

• If Bob colours a vertex in Kb, Alice also colours a vertex in Kb. If Kb was already
fully coloured or if Kb is now fully coloured, Alice wins, otherwise repeat this state.

State 3: Ka is completely coloured with colours from Kc ∨ Kd, Kb and Kd are not
completely coloured and vertex e is uncoloured. Only the uncoloured vertices in Kd

are at risk.

• If Bob colours a vertex in Kb or Kc, Alice wins by applying the same colour to e.

48

• If Bob colours vertex e in a colour used in Kb or Kc, Alice wins. If he uses a new
colour, Alice applies that colour to Kb and wins.

• If Bob colours a vertex in Kd, Alice colours another vertex in Kd. If Kd was already
fully coloured or if Kd is now fully coloured, Alice wins. Otherwise repeat this state.

State 4: Kd is completely coloured, Ka and Kb are not completely coloured and
vertex e is uncoloured. Ka and Kc ∨ Kd contain the same colours. Only the
uncoloured vertices in Kb are at risk.

• If Bob colours vertex e or a vertex in Kb, Alice colours a vertex in Kb. If Kb is fully
coloured, Alice wins. Otherwise repeat this state.

• If Bob colours a vertex in Kc, Alice applies the same colour to Ka and vice versa.
If Ka is fully coloured, Alice wins. Otherwise repeat this state.

A strategy for E6

Let G be an instance of E6. Because m,n ≥ 2, the clique number of G is ω(G) = m + n ≥
max{m,n}+ 2. The vertices at risk are possibly b and all vertices in Km and Kn. Every vertex
at risk can be neutralised by colouring two neighbours the same.

State 1 [start]: G is completely uncoloured. Vertices b, Km and Kn are at risk.

• If Bob colours vertex a, Alice applies the same colour to a vertex in Km and vice
versa. Proceed to state 4.

• If Bob colours vertex b, Alice applies the same colour to a vertex in Kn and vice versa.
Proceed to state 3.

• If Bob colours vertex c, Alice applies the same colour to vertex a. Proceed to state 2.

State 2: Vertices a and c are coloured the same, all other vertices are uncoloured.
The vertices in Km and Kn are at risk.

• If Bob colours vertex b, Alice applies the same colour to a vertex in Kn and vice versa.
Alice wins on her next move by making sure that a vertex in Km has the same colour
as vertex a.

• If Bob colours a vertex in Km in the colour of vertex a, Alice colours another vertex
in Km in a new colour. If Bob colours a vertex in Km in a new colour, Alice colours
another vertex in Km in the colour of vertex a. In both cases Alice wins if Km is
completely coloured. Otherwise proceed to state 4.

State 3: Vertex b is coloured in a colour from Kn, Kn is partially coloured, a and Km

are uncoloured. Only the uncoloured vertices in Kn are still at risk.

• If Bob colours vertex a, Alice wins by applying the same colour to a vertex in Km

and vice versa.

• If Bob colours vertex c or a vertex in Kn, Alice colours another vertex in Kn. If Kn

was already fully coloured or if Kn is now fully coloured, Alice wins. Otherwise repeat
this state.

State 4: Vertices b and Kn are uncoloured, Km is partially coloured, a is coloured in
a colour from Km. Only the uncoloured vertices in Km are still at risk.

• If Bob colours vertex b, Alice wins by applying the same colour to a vertex in Kn and
vice versa.

49

• If Bob colours vertex c or a vertex in Km, Alice colours another vertex in Km. If Km

was already fully coloured or ifKm is now fully coloured, Alice wins. Otherwise repeat
this state.

A strategy for E7

Let G be an instance of E7. The only vertices of G that are at risk are a and c. Alice’s strategy
is to ensure that both of them are coloured after two rounds. If Bob starts with vertex a, Alice
wins by applying the same colour to vertex c and vice versa. If Bob starts with another vertex,
Alice responds with vertex a in a different colour. If Bob’s second move is vertex c, Alice wins
immediately. If Bob’s second move is another vertex, Alice can colour vertex c herself as at most
two neighbouring vertices have been coloured and ω(G) ≥ 3.

A strategy for E8

Let G be an instance of E8. The vertices at risk are a, c and every vertex in Kn. Let BR denote
the bottom row of vertices and let p denote the right-most vertex in BR that may or may not
be adjacent to c. We play the game with n+ 1 colours.

Alice adheres to the following principle: she makes sure that Kn and BR always contain the
same colours until Kn contains n− 1 colours or BR is fully coloured, whichever case arises first.
Then she proceeds to state 2 or 3 to play her winning end game.

State 1 [start]: Vertices a, c are uncoloured, Kn has two or more uncoloured vertices,
BR is not fully coloured. BR only contains colours from Kn. Vertices a, c and the
uncoloured vertices in Kn are at risk.

• If Bob colours vertex a, Alice applies the same colour to vertex c and vice versa. As
this neutralises Kn, Alice wins.

• If Bob colours a vertex in Kn, Alice applies the same colour to a vertex in BR. If BR
is now fully coloured, proceed to state 3. If BR is not fully coloured and Kn now
contains exactly one uncoloured vertex, proceed to state 2. Otherwise repeat this
state.

• If BR contains exactly one uncoloured vertex and Bob colours it in a colour already
found in Kn, Alice colours a vertex in Kn in a new colour. If Bob instead uses a new
colour, Alice applies the same colour to a vertex in Kn. In both cases proceed to
state 3.

• BR contains two or more uncoloured vertices and Bob colours one in a colour already
found in Kn, Alice colours another vertex in BR with the same colour. If BR is now
fully coloured, proceed to state 3. Otherwise repeat this state. If instead Bob uses
a new colour, Alice applies the same colour to Kn. If Kn now contains exactly one
uncoloured vertex, proceed to state 2. Otherwise repeat this state.

State 2: Vertices a, c are uncoloured, Kn has exactly one uncoloured vertex, BR is not
fully coloured. BR only contains colours from Kn. Vertices a, c and the uncoloured
vertex in Kn are at risk.

• If Bob colours vertex a, Alice wins by applying the same colour to vertex c and vice
versa.

50

• If Bob colours the last vertex in Kn, Alice colours vertex a in its last legal colour
and wins as vertex c can now only take the colour of a and the bottom row cannot
surround c any more.

• If Bob colours vertex p in a new colour, Alice colours vertex c in its last legal colour.
Vertex a cannot be surrounded any more as none of the remaining vertices in BR nor
the vertex in Kn can be coloured in the colour of vertex c. Kn cannot be surrounded
any more as vertex a cannot be coloured in any colour of BR and must take the colour
of vertex c. It follows that Alice wins.

• If Bob colours a vertex in BR other than p in a new colour, Alice colours vertex a in
its last legal colour. Alice wins for the same reason as above.

• If BR contains exactly one uncoloured vertex and Bob colours it in a colour already
used in BR, Alice wins by colouring the last uncoloured vertex in Kn.

• If BR contains two or more uncoloured vertices and Bob colours one of them in a
colour already used in BR, Alice applies the same colour to another vertex in BR.
If BR is now fully coloured, proceed to state 3. Otherwise repeat this state.

State 3: Vertices a, c are uncoloured, Kn is not fully coloured, BR is fully coloured
with colours from Kn. Only the uncoloured vertices in Kn are at risk.

• If Bob colours vertex a, Alice wins by applying the same colour to vertex c and vice
versa.

• If Bob colours a vertex in Kn, Alice colours another vertex in Kn. If Kn was already
fully coloured or if Kn is now fully coloured, Alice wins. Otherwise repeat this state.

A strategy for E9

Let G be an instance of E9. We play the vertex colouring game on G with n+ 1 colours. If Bob
starts with vertex d, Alice applies the same colour to a vertex in Kn. As no other vertex in G
can be coloured in that colour any more, this reduces the situation to a game with n colours on
an instance of E12 (if n = 2) or E8 (if n ≥ 3).

We can now assume that Bob starts with a vertex that is not d. The following additions to
Alice’s strategy for E8 allow her to win on G.

States 1 and 2: If Bob colours d, Alice colours a vertex in BR in a colour already found in BR.
If BR is now fully coloured, proceed to state 3. Otherwise repeat the respective state.

State 3: If Bob colours d, Alice colours a vertex in Kn. If Kn is full, Alice wins. Otherwise
repeat state 3.

A strategy for E10

Let G be an instance of E10. We first deal with the case m = n = 1. Then G is a C4 induced
by vertices a, b, c and Kn with a pendant Km attached to vertex a and the clique number of G
is ω(G) = 2. Alice’s strategy is straightforward: If Bob starts with vertex a in colour 1, Alice
colours vertex b in colour 2 and vice versa. If Bob starts with Km in colour 1, Alice colours Kn

in colour 2 and vice versa.

If m ≥ 2 and m > n ≥ 1, Alice’s strategy is even simpler. Only vertex a is at risk, so Alice wins
by making sure that a is coloured after the first round, either by Bob or by herself.

51

We can now assume that n ≥ m ≥ 1, n ≥ 2. The vertices at risk are a, b and c as well as all
of Kn. Alice’s strategy consists of three sets of instructions. States 1 and 2 concern the opening
game and allow Alice to win or ensure that a and a vertex in Kn are coloured the same after at
most two rounds. State 3 describes how she should proceed in subsequent rounds of the game.

State 1 [start]: G is completely uncoloured.

• If Bob colours b, Alice applies the same colour to c and vice versa. She wins on her
next move by making sure that a is coloured either by Bob or Alice herself.

• If Bob colours a vertex in Km, Alice colours vertex a in a different colour. Proceed
to state 2.

• If Bob colours a, Alice applies the same colour to Kn and vice versa. Proceed to
state 3.

State 2: Vertex a is coloured, one vertex in Km is coloured, all other vertices are
uncoloured. Vertices b, c and Kn are still at risk.

• If Bob colours b, Alice wins by applying the same colour to c and vice versa.

• If Bob colours another vertex in Km, Alice applies the colour of a to Kn. Proceed to
state 3.

• If Bob colours a vertex in Kn in the colour of a, Alice colours a second vertex in Kn in
any colour. If Bob instead colours a vertex in Kn in a different colour, Alice colours a
second vertex in Kn in the colour of a. Such a move is possible as Kn contains at least
two uncoloured vertices. If Kn is now fully coloured, Alice wins. Otherwise proceed
to state 3.

State 3: Vertices b, c are uncoloured, vertex a and a vertex in Kn are coloured the
same, Kn is not completely coloured. Only the uncoloured vertices in Kn are still at
risk.

• If Bob colours b, Alice wins by applying the same colour to c and vice versa.

• If Bob colours a vertex in Km or Kn, Alice colours a vertex in Kn. If Kn was already
fully coloured or if Kn is now fully coloured, Alice wins. Otherwise repeat this state.

A strategy for E11

Let G be an instance of E11. Due to symmetry it is sufficient to distinguish between the two
cases m = n and m > n.

If m = n, Alice adheres to the following strategy below. In general, Alice makes sure that Km

and Kn contain the same colours throughout the game. Similarly, if Bob colours a, Alice applies
the same colour to b and vice versa. The same applies to c and d. The two exceptions to these
rules are in states 2 and 4, which allow Alice to win after at most two moves. Note that Alice
might start her strategy with state 1 or 2, depending on whether m = 1 or m ≥ 2.

State 1 [start if m ≥ 2]: Vertices a, b, c, d are uncoloured and Kn,Km each have two or
more uncoloured vertices. All uncoloured vertices are at risk.

• If Bob colours a vertex in Km, Alice applies the same colour to Kn and vice versa.
If Kn and Km now have exactly one uncoloured vertex each, proceed to state 2.
Otherwise repeat this state.

52

• If Bob colours the vertex a, Alice applies the same colour to b. If Kn and Km now
have exactly two uncoloured vertex each, proceed to state 3. Otherwise proceed to
state 4.

State 2 [start if m = 1]: Vertices a, b, c, d are uncoloured and Kn,Km each have exactly
one uncoloured vertex. All uncoloured vertices are at risk.

• If Bob colours the last vertex of Km, Alice wins by colouring the last vertex of Kn in
a different colour and vice versa.

• If Bob colours vertex a, Alice colours vertex c in the only possible colour. Vertex d
now only admits the colour of c and vertex b only admits the colour of a. It follows
that Alice wins.

State 3: Vertices a, b are coloured, c, d are uncoloured and Km,Kn each have exactly
two uncoloured vertices. Vertices c, d and the uncoloured vertices in Kn are at risk.

• If Bob colours c, Alice wins by applying the same colour to d and vice versa.

• If Bob colours a vertex in Km, Alice completes the colouring of Km. She is now one
round away from winning: if Bob next colours vertex c, she wins by applying the same
colour to vertex d and vice versa. If Bob instead colours one of the two uncoloured
vertices in Kn, Alice colours the other uncoloured vertex, making sure that the colour
of a is present in Kn.

• If Bob colours a vertex in Kn, Alice completes the colouring of Kn, making sure that
the colour of a is present in Kn. Alice wins because c, d and Kn have been neutralised.

State 4: Vertices a, b are coloured, c, d are not and Km,Kn each have three or more
uncoloured vertices. Vertices c, d and the uncoloured vertices in Kn are at risk.

• If Bob colours c, Alice wins by applying the same colour to d and vice versa.

• If Bob colours a vertex in Km, Alice applies the same colour to a vertex in Kn. If Km

and Kn still have three or more uncoloured vertices each, repeat this state. Otherwise
proceed to state 3.

If m > n, Alice’s strategy is a little more complex but works by the same principle. The five
possible states and accompanying rules for Alice are listed below. The game starts in state 1.

In every state the following rule applies: If Bob colours vertex a, Alice wins by applying the
same colour to vertex b and vice versa.

State 1 [start]: Vertices a, b, c, d are uncoloured, Km and Kn contain identical colours,
Km has two or more uncoloured vertices and Kn has fewer uncoloured vertices
than Km but at least one. Vertices a, b, c and the uncoloured vertices in Km are at risk.

• If Bob colours c, Alice applies the same colour to d. If that colour was previously used
in Km, proceed to state 5. Otherwise proceed to state 3.

• If Bob colours a vertex in Km, Alice responds with a vertex in the same colour in Kn

and vice versa. IfKn is not fully coloured yet, repeat this state. IfKn is fully coloured,
proceed to state 3.

State 2: Vertices a, b, c, d are uncoloured, Km has at least one uncoloured vertex
and Kn is fully coloured. Vertices a, b, c, d and the uncoloured vertices in Km are at
risk.

• If Bob colours vertex c with a colour from Km, Alice applies the same colour to
vertex d and vice versa. Proceed to state 5.

53

• Assume that Km has exactly one uncoloured vertex:

◦ If Bob colours vertex c in a colour not found in Km, Alice colours vertex a in
its only remaining legal colour. Vertex b now has m − 1 neighbouring colours
and cannot be surrounded any more, as neither vertex c nor d nor any vertices
in Km can take the colour of a. Similarly, d and the last vertex in Km cannot be
surrounded any more either. Alice wins.

◦ If Bob colours the uncoloured vertex in Km, Alice wins by colouring vertex a in
the only colour possible.

• Assume Km has exactly two uncoloured vertices:

◦ If Bob colours one of the two uncoloured vertices in Km with a new colour, Alice
colours vertex c in the same colour and vice versa. She then wins on her next
move: if Bob colours vertex a, Alice applies the same colour to vertex b and vice
versa. If Bob instead colours the last vertex of Km in any colour, Alice applies
the same colour to d and vice versa.

• Should Km have three or more uncoloured vertices:

◦ If Bob colours vertex c in a colour not found in Km, Alice applies the same colour
to vertex d and vice versa. Proceed to state 4.

◦ If Bob colours one of the vertices in Km, Alice colours another. Repeat this state.

State 3: Vertices a, b are uncoloured, c, d are coloured in a colour not found in Km,
Km has two or more uncoloured vertices and Kn has fewer uncoloured vertices
than Km but at least one. Km and Kn contain identical colours. Vertices a, b and
the uncoloured vertices in Km are at risk.

• Assume Km has three or more vertices:

◦ If Bob colours a vertex in Km, Alice applies the same colour to a vertex in Kn

and vice versa. If Kn is now fully coloured, proceed to state 4. Otherwise repeat
this state.

• Assume Km has exactly two vertices:

◦ If Bob colours one of the two uncoloured vertices inKm, Alice makes sure thatKm

contains the colour of vertices c and d when she colours another vertex in Km.
Alice wins because Km is now fully coloured and vertices a, b are neutralised.

◦ If Bob colours a vertex in Kn, Alice colours a vertex in Km in the colour of
vertex c. Proceed to state 5.

State 4: Vertices a, b are uncoloured, c, d are coloured in a colour not found in Km,
Km has two or more uncoloured vertices and Kn is fully coloured. Vertices a, b
and the uncoloured vertices in Km are at risk.

• If Bob colours one of the two uncoloured vertices in Km, Alice makes sure that Km

contains the colour of vertices c and d when she colours another vertex in Km. Ver-
tices a and b have now been neutralised. IfKm is fully coloured, Alice wins. Otherwise
proceed to state 5.

State 5: Vertices a, b are uncoloured, c, d are coloured in a colour also found in Km

and Km contains at least one uncoloured vertex. Only the uncoloured vertices inKm

are at risk.

• If Km has only one uncoloured vertex and Bob colours it, Alice wins.

54

• If Km has two uncoloured vertices and Bob colours one of them, Alice colours the
other one to win.

• If Km has more than two uncoloured vertices, Bob and Alice each colour a vertex
in Km and we return to this state again.

A strategy for E12 and E13

See Section 4.3 in Chapter 4.

This concludes the proof of Lemma 73.

55

56

Chapter 6

Outlook

6.1 Open problems

For four of Andres’s six vertex colouring games, their respective class of game-perfect graphs has
been successfully characterised. The characterisation of gA, [A,B] and [B,B]-perfect graphs can
be found in [8], while the gB-perfect graphs has been characterised in this thesis.

Two classes of graphs have resisted characterisation so far: the [A,A] and the [B,A]-perfect
graphs. Hence the following open problems are apparent.

Problem 76. Characterise [A,A]-perfect graphs explicitly or by means of forbidden (induced)
subgraphs.

Problem 77. Characterise [B,A]-perfect graphs explicitly or by means of forbidden (induced)
subgraphs.

Problem 76 seems particularly interesting, as the number of minimal forbidden induced subgraphs
for the game [A,A] is not finite. In particular, all odd anti-holes C2k+7, k ≥ 0 are minimal
forbidden induced subgraphs for [A,A]-perfect graphs [8]. It is not known whether the number
of minimal forbidden subgraphs for [A,A]-perfect graphs is finite apart from the odd anti-holes
or even whether F consists of a finite number of forbidden graphs and (infinite) forbidden graph
classes such as the class of odd anti-holes.

Problem 78. Is the number of minimal forbidden subgraphs for [A,A]-perfect graphs finite
apart from the odd anti-holes C2k+7, k ≥ 0?

Problem 79. Does there exist another interesting infinite class of graphs that constitute a set
of minimal forbidden subgraphs such as the class of odd anti-holes mentioned above?

Looking at the computational results obtained in Appendix C, we see that [A,A] has an intriguing
wealth of forbidden graphs ≤ 10 compared to the other five games. These results may aid the
hunt for further forbidden graphs, especially if further (infinite) classes of graphs can be identified.

Using our computational results for the game [B,A], it can be shown that the odd anti-holes
C7, C9 and C11 are minimal forbidden subgraphs. This raises the following question.

Problem 80. Are all odd anti-holes C2k+7, k ≥ 0 minimal forbidden subgraphs for [B,A]-perfect
graphs?

We note that [A,A] and [B,A]-perfect graphs do not admit the same structural decomposition
used in our characterisation of gB-perfect graphs. The 3-spider with thin legs, for example,
has no dominating edge and is [A,A]-perfect. It remains open whether all [A,A]-perfect graphs

57

contain any dominating clique of size k for some k ∈ N, perhaps allowing for an analogous but
more complex decomposition.

Problem 81. Does there exist a constant k ∈ N such that all [A,A] or [B,A]-perfect graphs
have a dominating clique of size k?

6.2 Algorithmic challenges

If we know that a given graph G is an instance of E∪1 or Ei, where 2 ≤ i ≤ 13, we can easily
turn Alice’s strategy from Section 5.6 into an algorithm for Alice to win on G with ω(G) colours.
This algorithm then runs in linear time O(n), where n = |G| is the number of vertices of G.

This motivates the following challenge.

Problem 82. Provide an efficient algorithm that identifies a given graph as an instance of E∪1
or Ei, where 2 ≤ i ≤ 13.

Of course, this problem is a strong version of the problem of determining whether a given graph
is gB-perfect. More generally we can pose the problem of determining whether a given graph is
X-perfect for any of Andres’s colouring games.

Problem 83. Provide an efficient algorithm that determines whether a given graph is game-
perfect for any of Andres’s six vertex colouring games.

A promising angle on Problem 82 is the observation that every class of graphs Ei, 1 ≤ i ≤ 13,
has a relatively simple structure. For every Ei, it might be possible to employ a modular
decomposition technique first presented by Gallai [26]. This technique recursively decomposes
a graph into components that correspond to maximal modules, determining a unique encoding
of G into a hierarchical tree. Given a graph class Ei, 1 ≤ i ≤ 13, the unique tree encoding for
every G in Ei should be essentially the same. This modular decomposition is possible in linear
time [35].

58

Appendix A

The vertex colouring game
implemented as a backtracking
algorithm

The following implementation of a simple backtracking algorithm determines the outcome of
all six of Andres’s vertex colouring games under the assumption that both Alice and Bob play
optimally. Written in Python, it exhaustively plays all possible moves allowed in the game X
with k colours. This allows us to test whether a given graph G is X-nice by simulating the game
X on G with ω(G) colours.

The implementation works as a standalone program or as a function that can be called in a
different script. This second usage is demonstrated in Appendix B. The code is included as
game.py on the CD accompanying this thesis. The focus of the code lies on readability, not
speed, although the canonical pruning technique used significantly improves computation time
compared to an entirely brute-force approach.

A.1 Basic principles

We first describe the algorithm without the pruning technique presented in A.2. We will refer
to game.py’s _move() function below to highlight the relevant code during the explanation.

In principle, the algorithm works by playing through every single possible colouring sequence,
working through what is essentially a search tree. The leaves of the search tree consist of all
possible full graph colourings and all possible partial graph colourings with one surrounded
vertex. We work backwards from these leaves in order to determine which branch will allow the
player to win. At any stage in the tree, if Alice finds a subtree that will allow her to complete
the graph colouring, she will choose it. Similarly, if Bob finds a subtree that will allow him to
win, he will choose that one.

We start the game by calling _move(player, game_state), passing the first player and an
uncoloured graph as parameters. The function _move() simulates the decision process of Alice
or Bob when considering which branch to follow. At any point in the game, a player will generally
be able to colour multiple vertices in multiple legal colours. For each possible vertex and colour,
he or she colours it and calls _move() to pass on the game to the other player [lines 101-108].
If the current player is allowed to skip, he or she also calls _move() and passes on the game to
the next player without colouring a vertex [lines 89-91].

59

Every call of _move() continues this recursive process until the graph colouring hits one of two
possible base cases: If the graph is fully coloured, the function returns True [lines 74-75]. If a
player detects that the graph contain a vertex that is surrounded, i.e. a vertex that cannot be
coloured any more, the functions returns False [lines 78-80].

Assume the player is Alice. If one of her _move() calls return True, she also returns True [lines
96-98, 109-111], otherwise she returns False [line 116]. Bob does the exact opposite: if any of his
child calls return False, he also returns False, otherwise he returns True.

If the root _move() call returns True, Alice wins, otherwise Bob does.

A.2 Pruning

The number of calls grows extremely quickly even for relatively small graphs. Because of this,
we prune the search tree to stop Alice and Bob from following branches where the outcome has
essentially been determined.

A first observation is that we can limit the number of colours available to colour a vertex if fewer
than k − 1 colours have been used, allowing us to curtail the number of child calls that a player
makes. For any partial colouring of G we can assume that it contains consecutive colours from 1
to i, i < k; if necessary, by relabelling colours. Throughout the game, we keep track of the largest
colour l used. If a player uses a colour > l on a vertex, we can relabel the resulting colouring to
one with consecutive colours up to l + 1. For that reason we restrict each player to colours up
to l + 1 in the first place.

Secondly, we employ a canonization technique to detect branches of the search tree we can prune.
A partial vertex colouring with i colours divides the set of vertices into i + 1 partitions: one
partition for each colour and one partition for the uncoloured vertices. We say that two partial
colourings are isomorphic or essentially the same if the partitions they define are identical.
We define a canonization function such that two partial colourings are mapped to the same
canonical colouring if and only if they are essentially the same. When given a partial colouring
as a Python list, we can achieve such a function by relabelling the colours in such a way that they
appear consecutively in the list. Example: [0,2,1,0,2] becomes [0,1,2,0,1]. This is implemented as
_canonize() in game.py and shown in Appendix A. Whenever a function call returns True or
False, it stores this result in a hash table, using the current player and the canonised colouring
as the key. As soon as the same player follows another branch and is faced with essentially the
same graph colouring, they can retrieve the result from the hash table and save the program
from traversing this branch.

A.3 The file game.py

1 #!/usr/bin/env python
2 #file: game.py
3 #author: Edwin Lock
4 #date: 22 May, 2016
5

6 """
7 An implementation of a simple backtracking algorithm to play all six variations
8 [A,-], [B,-], [A,A], [A,B], [B,A],[B,B] of Bodlaender’s vertex colouring game
9 presented by Stephan Dominique Andres in [0]. It uses a pruning technique to cut

10 down the number of branches to follow in the recursive search tree.

60

11 [0]: Stephan Dominique Andres. On characterizing game-perfect graphs by
12 forbidden induced subgraphs. Contributions to Discrete Mathematics, 7(1), 2012.
13

14 How to use:
15 A) To use standalone, run "python game.py FirstPlayer SkippingPlayer graph k",
16 where graph should be given as an adjacency list and k is the number of
17 colours to play the game with. FirstPlayer can be "Alice" or "Bob,
18 SkippingPlayer can be "Alice", "Bob" or "-".
19 Example: "python game.py Bob - [[3,4],[4],[],[0],[0,1]] 2".
20

21 B) To use in another program, import this file and run play(g,k,player1,
22 skipping_player). player1 should be True or False, for Alice and Bob,
23 respectively. skipping_player should be True, False or None.
24 Example: import game; game.play([[3,4],[4],[],[0],[0,1]],2, False, None).
25 """
26

27 def play(g, k, player1 = True, skipping_player = None):
28 """
29 Provides the starting point for the colouring game and calls _move() to
30 start off player one. If player1 and skipping_player are not given, it
31 defaults to Bodlaender’s original game where Alice starts and neither Alice
32 nor Bob may skip moves.
33 Args:
34 adjacency list of graph g: [[neighbours of vertex 0],
35 [neighbours of vertex 1], ...]
36 integer k: the number of colours to play with
37 (optional) boolean player1: Alice = True, Bob = False. Defaults to True
38 (optional) skipping_player: Alice = True, Bob = False, Defaults to None.
39 Returns:
40 True if Alice wins, False if Bob wins.
41 """
42 #hashtable for pruning
43 hashtable = {}
44

45 #prepare initial game state
46 game_state = _create_game_state(g, k, skipping_player)
47

48 #start game with first move
49 result = _move(player1, game_state, hashtable)
50 return result
51

52 def _move(player, game_state, hashtable):
53 """
54 Plays a single move of a player in the graph colouring game. The player
55 colours every possible vertex colouring in turn and hands over the result to
56 the other player.
57 If all vertices are coloured, Alice wins down this path. If a vertex has
58 been surrounded, Bob wins on this path.
59 Args:
60 boolean player: True (Alice) or False (Bob),
61 tuple game_state: (adjacency_list, colouring, uncoloured_vertices,

61

62 legal_colours, largest_colour, skipping_player)
63 dict hashtable: previous (player,game_states) tuples for pruning
64 Returns:
65 boolean: True if Alice wins down this path, otherwise False.
66 """
67 #unpack values from tuple
68 uncoloured_vertices = game_state[2]
69 legal_colours = game_state[3]
70 largest_colour = game_state[4]
71 skipping_player = game_state[5]
72

73 #If all vertices are coloured, Alice wins down this path
74 if not uncoloured_vertices:
75 return True
76

77 #If a vertex is surrounded, return False and update hashtable
78 if _has_surrounded_vertices(game_state):
79 _update_hashtable(player, game_state, hashtable, False)
80 return False
81

82 #Canonical pruning: If (player, game_state) is recorded in hash table,
83 #return previous result, otherwise just continue
84 try: return _check_hashtable(player, game_state, hashtable)
85 except KeyError: pass
86

87 #if player is allowed to skip, hand over game without doing anything,
88 #then proceed as normal
89 if player == skipping_player:
90 new_game_state = _duplicate_game_state(game_state)
91 result = _move(not player, new_game_state, hashtable)
92 #If Alice (player = True) finds a child that returns True, she
93 #also returns True. If Bob (player = False) finds a child that
94 #return False, he also returns False.
95 #In both cases: if result == player, return player.
96 if result == player:
97 _update_hashtable(player, game_state, hashtable, result)
98 return result
99

100 #colour all possible vertices with all (sensible) possible colours
101 for vertex in uncoloured_vertices:
102 for colour in legal_colours[vertex]:
103 #due to symmetry any larger colour is equivalent.
104 if colour <= largest_colour+1:
105 #colour vertex and update game state
106 new_game_state = _update_game_state(game_state, vertex, colour)
107 #hand over game to other player with new game state
108 result = _move(not player, new_game_state, hashtable)
109 if result == player:
110 _update_hashtable(player, game_state, hashtable, result)
111 return result
112 #If neither Alice nor Bob find a child branch that allows them to win,

62

113 #they return True for Bob or False for Alice.
114 result = not player
115 _update_hashtable(player, game_state,hashtable, result)
116 return result
117

118 def _canonize(colouring, largest_colour):
119 """
120 Takes a partially coloured graph and relabels its colour sets so that they
121 are sorted in ascending order according to the graph’s vertex ordering.
122

123 This canonizes the colouring of a graph, i.e. if two graphs have isomorphic
124 colour sets, the result after canonising is identical.
125

126 Why is this useful? We can prune large parts of the tree that develop when
127 we run my game algorithm as what is essentially the same branch does not
128 need to be traversed again.
129 """
130 copy = list(colouring)
131 n = len(copy)
132 highest = 0
133 i = 0
134 while i < n:
135 v = copy[i]
136 if v > highest:
137 highest += 1
138 if v > highest:
139 for j in range(i, n):
140 if copy[j] == v:
141 copy[j] = highest
142 elif copy[j] == highest:
143 copy[j] = v
144 if highest == largest_colour-1:
145 break
146 i += 1
147 return tuple(copy)
148

149 def _update_hashtable(player, game_state, hashtable, result):
150 """
151 Updates hashtable with an entry (player, game_state) and its branch result.
152 """
153 colouring = game_state[1]
154 largest_colour = game_state[4]
155 canonical = _canonize(colouring, largest_colour)
156 hashtable[(player, canonical)] = result
157

158 def _check_hashtable(player, game_state, hashtable):
159 """ checks whether (player, game_state) has already occurred previously """
160 colouring = game_state[1]
161 largest_colour = game_state[4]
162 canonical = _canonize(colouring, largest_colour)
163 try:

63

164 return hashtable[(player, canonical)]
165 except:
166 raise KeyError("This combination of player and game state not found.")
167

168 def _has_surrounded_vertices(game_state):
169 """ checks to see whether any vertices have been surrounded """
170 uncoloured_vertices = game_state[2]
171 legals = game_state[3]
172 for vertex in uncoloured_vertices:
173 if not legals[vertex]:
174 return True
175 return False
176

177 def _create_game_state(g, k, skipping_player):
178 adjacency_list = g
179 n = len(g)
180 colouring = [0]*n
181 uncoloured_vertices = range(n)
182 legal_colours = [range(1,k+1) for i in range(n)]
183 largest_colour = 0
184 return (adjacency_list, colouring, uncoloured_vertices,
185 legal_colours, largest_colour, skipping_player)
186

187 def _update_game_state(game_state, vertex, colour):
188 """
189 colours in a vertex with given colour and updates game state accordingly
190 """
191 adjacency_list = game_state[0]
192 colouring = game_state[1]
193 uncoloured_vertices = game_state[2]
194 legal_colours = game_state[3]
195 largest_colour = game_state[4]
196 skipping_player = game_state[5]
197

198 if colour == largest_colour + 1:
199 new_largest_colour = largest_colour + 1
200 else:
201 new_largest_colour = largest_colour
202

203 #make copies to hand over
204 new_colouring = list(colouring)
205 new_legal_colours = [l[:] for l in legal_colours] #deep copy
206 new_uncoloured_vertices = list(uncoloured_vertices)
207

208 #colour in vertex with colour
209 new_colouring[vertex] = colour
210 new_uncoloured_vertices.remove(vertex)
211

212 #update legal colours of neighbours
213 for i in adjacency_list[vertex]:
214 try:

64

215 new_legal_colours[i].remove(colour)
216 except ValueError: #colour already removed previously
217 pass
218 return (adjacency_list, new_colouring, new_uncoloured_vertices,
219 new_legal_colours, new_largest_colour, skipping_player)
220

221 def _duplicate_game_state(game_state):
222 """ makes an exact copy of game state to be handed on to the next player """
223 adjacency_list = game_state[0]
224 colouring = game_state[1]
225 uncoloured_vertices = game_state[2]
226 legal_colours = game_state[3]
227 largest_colour = game_state[4]
228 skipping_player = game_state[5]
229

230 #make copies to hand over
231 new_colouring = list(colouring)
232 new_uncoloured_vertices = list(uncoloured_vertices)
233 new_legal_colours = [l[:] for l in legal_colours] #deep copy
234 new_largest_colour = largest_colour
235

236 return (adjacency_list, new_colouring, new_uncoloured_vertices,
237 new_legal_colours, new_largest_colour, skipping_player)
238

239 def _plot_game_state(game_state):
240 """
241 plots a graph reflecting the current game state using SageMath’s plot()
242 function
243 """
244 adjacency_list = game_state[0]
245 colouring = game_state[1]
246 largest_colour = game_state[4]
247

248 vertex_colours = {i:[] for i in range(largest_colour+1)}
249 for index, value in enumerate(colouring):
250 vertex_colours[value].append(index)
251

252 g = sage.all.Graph({i: adjacency_list[i] for i in range(len(adjacency_list))})
253

254 g.show(vertex_colors = vertex_colours)
255

256

257 #if executed standalone:
258 import sys, ast
259 if __name__ == "__main__":
260 try:
261 player1 = str(sys.argv[1])
262 skipping_player = str(sys.argv[2])
263 g = ast.literal_eval(sys.argv[3])
264 k = int(sys.argv[4])
265 except:

65

266 sys.exit(’’’Please enter the first player [Alice or Bob], the skipping
267 player [Alice, Bob, or -], a graph as an adjacency list and the number
268 of colours to play the game with.
269

270 Example: "python game.py Alice - [[1,2],[0,2],[0,1]] 3".
271 This plays the original game on the complete graph K3 using 3 colours.’’’)
272

273 if player1 == "Alice":
274 player1 = True
275 elif player1 == "Bob":
276 player1 = False
277 else:
278 raise ValueError("I don’t recognise the name ’{0}’.".format(player1))
279

280 if skipping_player == "Alice":
281 skipping_player = True
282 elif skipping_player == "Bob":
283 skipping_player = False
284 elif skipping_player == "-":
285 skipping_player = None
286 else:
287 raise ValueError("I don’t recognise the name ’{0}’.".format(skipping_player))
288

289 result = play(g, k, player1, skipping_player)
290 if result:
291 print "Alice wins."
292 else:
293 print "Bob wins."

66

Appendix B

Systematically finding forbidden
induced subgraphs

In order to generate forbidden induced subgraphs for each of Andres’s vertex colouring games,
we make use of the mathematics software SageMath [20], which provides built-in functions for
testing induced subgraph isomorphism and calculating the clique number of a graph. Another
useful features is the inclusion of nauty [33], a program that allows very quickly generation of all
non-isomorphic graphs of order n for a reasonable value of n.1

The script used to compute all minimal forbidden induced subgraphs can be found in forbid-
den.py on the CD and consists of a single main function generate() and two helper functions.
It makes use of game.py (see Appendix A) to test for X-niceness. We use this script to determ-
ine a minimal comprehensive set of forbidden induced subgraphs with up to 10 vertices for each
of Andres’s games in Appendix C.

B.1 The file forbidden.py

1 #!/usr/bin/env python
2 #file: forbidden.py
3 #author: Edwin Lock
4 #date: 22 May, 2016
5

6 import sage.all
7 import game
8

9 """
10 This script utilises the SageMath mathematical software which provides
11 extensive support for graphs. In particular we use the integration of nauty,
12 a tool that allows us to (fairly) rapidly generate all non-isomorphic graphs
13 with k vertices.
14

15 SageMath is available at http://www.sagemath.org. The nauty package can be
16 added with ’sage -p nauty’.

1Very quickly as opposed to equivalent graph generators such as the native generator implemented in
SageMath. Even with nauty it is still practically impossible to generate and test all graphs with more than
10 vertices comprehensively on a personal computer. Instead, one might customise the generator to only grow
those graph structures one is interested in.

67

17

18 How to use:
19 This script must be run from within SageMath. The easiest way is to run
20 ’sage -python forbidden.py Player1 SkippingPlayer n’ from the command
21 line, where n is the largest order of graphs to be tested.
22

23 Alternatively, we can import the script from within Sage. Launch Sage from the
24 command line using the ’sage’ command. Then load this script with
25 ’load("path/to/forbidden.py"). The function generate() is now
26 available to use.
27 """
28

29 def generate(max_order, player1=True, skipping_player=None):
30 """
31 Generates and returns a set of minimal forbidden subgraphs (as Sage graph
32 objects) with up to n vertices. Defaults to Bodlaender’s original game.
33 """
34 forbidden_graphs=[]
35 for n in range(max_order+1):
36 param = str(n)
37 #param = str(n)+" -c" if only connected graphs
38 #generate all graphs of order n
39 gen = sage.all.graphs.nauty_geng(param)
40 for g in gen:
41 #first make sure g doesn’t contain a forbidden subgraph.
42 if _doesnt_contain_forbidden(g,forbidden_graphs):
43 #test whether g is g-nice:
44 clique_no = g.clique_number()
45 g_adj = _to_adjacency_list(g)
46 is_gnice = game.play(g_adj, clique_no, player1, skipping_player)
47 if not is_gnice:
48 forbidden_graphs.append(g)
49 return forbidden_graphs
50

51 def _to_adjacency_list(g):
52 """
53 Turns a SageMath graph object into an adjacency list that our implementation
54 of the game playing algorithm understands.
55 """
56 copy = g.copy()
57 copy.relabel()
58 d = copy.to_dictionary()
59 array = [None]*len(d)
60 for key in d:
61 array[key]=d[key]
62 return array
63

64 def _doesnt_contain_forbidden(g,f):
65 """
66 Takes a SageMath graph object g and a set of graph objects f.
67 Tests whether the graph g contains any induced subgraph from f.

68

68 """
69 for s in f:
70 subg = g.subgraph_search(s, induced=True)
71 if subg:
72 return False
73 return True
74

75 # if the script is called stand-alone
76 if __name__ == "__main__":
77 import sys
78

79 def _output_forbidden(forbidden_graphs):
80 """ Outputs all forbidden graphs as adjacency lists to stdout. """
81 for f in forbidden_graphs:
82 print _to_adjacency_list(f)
83

84 try:
85 player1 = str(sys.argv[1])
86 skipping_player = str(sys.argv[2])
87 n = int(sys.argv[3])
88 except:
89 sys.exit("\nPlease enter parameters as follows: first_player"
90 " [Alice, Bob], skipping_player [Alice, Bob, or -] and the maximum size"
91 " of graphs to be tested."
92

93 "\nExample: >> sage -python forbidden.py Alice - 7."
94 "This finds all forbidden induced subgraphs for the original game"
95 "with up to 7 vertices.")
96

97 #convert player1 and skipping_player for use with generate()
98 if player1 == "Alice":
99 player1 = True

100 elif player1 == "Bob":
101 player1 = False
102 else:
103 raise ValueError("I don’t recognise the name ’{0}’.".format(player1))
104

105 if skipping_player == "Alice":
106 skipping_player = True
107 elif skipping_player == "Bob":
108 skipping_player = False
109 elif skipping_player == "-":
110 skipping_player = None
111 else:
112 raise ValueError("I don’t recognise the name ’{0}’.".format(skipping_player))
113

114 forbidden_graphs = generate(n, player1, skipping_player)
115

116 print "{0} forbidden graphs were found:".format(len(forbidden_graphs))
117 _output_forbidden(forbidden_graphs)

69

70

Appendix C

Computational forbidden subgraph
results for Andres’s six vertex colouring
games

We run our script for each of Andres’s six vertex colouring games to find minimal forbidden
induced graphs with up to 10 vertices. The unix tool time shows how long each computation
took on a slightly below average laptop computer.1

C.1 A brief note on the results

The forbidden graphs identified for the games gA, [A,B] and [B,B] correspond with those presen-
ted in [8]. The results for the game gB are shown in Figure 3.1 and were used throughout this
thesis.

Of more interest to future characterisations are the results for the games [A,A] and [B,A], they
include forbidden subgraphs not previously found in literature. The 75 forbidden subgraphs
yielded for the game [A,A] in particular hint at a rich structure of [A,A]-perfect graphs.

The game gA = [A,−]

$ time sage -python forbidden.py Alice - 10

5 forbidden graphs were found:
[[2, 3], [3], [0], [0, 1]]

[[2, 3], [2, 3], [0, 1], [0, 1]]

[[3, 4, 5], [3, 4, 5], [3, 4, 5], [0, 1, 2, 4, 5], [0, 1, 2, 3, 5], [0, 1, 2, 3,
4]]↪→

[[4, 6, 7], [4, 6, 7], [5, 6, 7], [5, 6, 7], [0, 1, 6, 7], [2, 3, 6, 7], [0, 1,
2, 3, 4, 5, 7], [0, 1, 2, 3, 4, 5, 6]]↪→

1Processor: 2.4 GHz Intel Core 2 Duo, Memory: 8 GB 1067 MHz DDR3, Disk: Samsung SSD 840 EVO.

71

[[6, 8], [6, 8], [6, 8], [7, 9], [7, 9], [7, 9], [0, 1, 2, 8], [3, 4, 5, 9], [0,
1, 2, 6], [3, 4, 5, 7]]↪→

real 347m54.052s
user 329m4.419s
sys 1m23.774s

The game [A,A]

$ time sage -python forbidden.py Alice Alice 10

75 forbidden graphs were found:
[[3, 4], [4], [4], [0], [0, 1, 2]]

[[2, 4], [3, 4], [0], [1], [0, 1]]

[[2, 3], [3, 4], [0, 4], [0, 1], [1, 2]]

[[3, 4, 5], [3, 4, 5], [3, 4, 5], [0, 1, 2, 4, 5], [0, 1, 2, 3, 5], [0, 1, 2, 3,
4]]↪→

[[3, 4, 5, 6], [4, 5, 6], [6], [0, 5, 6], [0, 1, 5, 6], [0, 1, 3, 4], [0, 1, 2,
3, 4]]↪→

[[3, 4, 5, 6], [4, 5, 6], [5, 6], [0, 5, 6], [0, 1, 5, 6], [0, 1, 2, 3, 4], [0,
1, 2, 3, 4]]↪→

[[3, 6], [4, 5, 6], [4, 5, 6], [0, 6], [1, 2, 5, 6], [1, 2, 4], [0, 1, 2, 3, 4]]

[[3, 4, 5, 6], [3, 4, 5, 6], [5, 6], [0, 1, 5, 6], [0, 1, 6], [0, 1, 2, 3], [0,
1, 2, 3, 4]]↪→

[[3, 4, 5, 6], [3, 4, 5, 6], [5, 6], [0, 1, 5], [0, 1, 6], [0, 1, 2, 3, 6], [0,
1, 2, 4, 5]]↪→

[[3, 4, 5, 6], [3, 4, 5, 6], [6], [0, 1, 5, 6], [0, 1, 5, 6], [0, 1, 3, 4], [0,
1, 2, 3, 4]]↪→

[[3, 4, 5, 6], [3, 4, 5, 6], [5, 6], [0, 1, 5, 6], [0, 1, 5, 6], [0, 1, 2, 3,
4], [0, 1, 2, 3, 4]]↪→

[[3, 4, 5, 6], [3, 4, 5, 6], [4, 6], [0, 1, 5], [0, 1, 2, 6], [0, 1, 3], [0, 1,
2, 4]]↪→

[[3, 4, 5, 6], [3, 4, 5, 6], [4, 6], [0, 1, 5, 6], [0, 1, 2, 6], [0, 1, 3], [0,
1, 2, 3, 4]]↪→

[[3, 4, 5, 6], [3, 4, 5, 6], [4, 5, 6], [0, 1, 5, 6], [0, 1, 2, 6], [0, 1, 2,
3], [0, 1, 2, 3, 4]]↪→

72

[[3, 4, 5, 6], [3, 4, 5, 6], [4, 5, 6], [0, 1, 6], [0, 1, 2, 5, 6], [0, 1, 2,
4], [0, 1, 2, 3, 4]]↪→

[[3, 4, 5, 6], [3, 4, 5, 6], [5, 6], [0, 1, 4, 5], [0, 1, 3, 6], [0, 1, 2, 3,
6], [0, 1, 2, 4, 5]]↪→

[[3, 4, 5, 6], [3, 5, 6], [4, 5, 6], [0, 1, 4, 5], [0, 2, 3, 6], [0, 1, 2, 3,
6], [0, 1, 2, 4, 5]]↪→

[[3, 4, 5, 6], [3, 4, 5, 6], [4, 5, 6], [0, 1, 4, 5], [0, 1, 2, 3, 6], [0, 1, 2,
3, 6], [0, 1, 2, 4, 5]]↪→

[[3, 4, 5, 6], [3, 4, 5, 6], [3, 4, 5, 6], [0, 1, 2, 5, 6], [0, 1, 2, 6], [0, 1,
2, 3], [0, 1, 2, 3, 4]]↪→

[[3, 4, 5, 6], [3, 4, 5, 6], [3, 4, 5, 6], [0, 1, 2, 5, 6], [0, 1, 2, 5, 6], [0,
1, 2, 3, 4], [0, 1, 2, 3, 4]]↪→

[[2, 3, 4, 6], [3, 4, 5, 6], [0, 4, 5, 6], [0, 1, 5, 6], [0, 1, 2], [1, 2, 3],
[0, 1, 2, 3]]↪→

[[2, 3, 4, 5], [3, 4, 5, 6], [0, 4, 5, 6], [0, 1, 5, 6], [0, 1, 2, 6], [0, 1, 2,
3], [1, 2, 3, 4]]↪→

[[4, 6, 7], [5, 6, 7], [5, 6, 7], [5, 6, 7], [0, 6, 7], [1, 2, 3, 7], [0, 1, 2,
3, 4], [0, 1, 2, 3, 4, 5]]↪→

[[4, 6, 7], [5, 6, 7], [5, 6, 7], [5], [0, 6, 7], [1, 2, 3, 6, 7], [0, 1, 2, 4,
5, 7], [0, 1, 2, 4, 5, 6]]↪→

[[4, 6, 7], [5, 6, 7], [5, 6, 7], [5, 7], [0, 6, 7], [1, 2, 3, 6, 7], [0, 1, 2,
4, 5, 7], [0, 1, 2, 3, 4, 5, 6]]↪→

[[4, 6, 7], [4, 6, 7], [5, 6, 7], [5, 6, 7], [0, 1, 6, 7], [2, 3, 6, 7], [0, 1,
2, 3, 4, 5], [0, 1, 2, 3, 4, 5]]↪→

[[4, 6, 7], [4, 6, 7], [5, 6, 7], [5, 6, 7], [0, 1, 6, 7], [2, 3, 6, 7], [0, 1,
2, 3, 4, 5, 7], [0, 1, 2, 3, 4, 5, 6]]↪→

[[3, 6], [4, 6, 7], [5, 7], [0, 6], [1], [2, 7], [0, 1, 3, 7], [1, 2, 5, 6]]

[[3, 5, 7], [4, 6, 7], [5, 6, 7], [0, 5, 7], [1, 6, 7], [0, 2, 3, 6, 7], [1, 2,
4, 5, 7], [0, 1, 2, 3, 4, 5, 6]]↪→

[[3, 5, 6, 7], [4, 5, 6, 7], [4, 5, 6, 7], [0, 5, 6, 7], [1, 2, 6, 7], [0, 1, 2,
3], [0, 1, 2, 3, 4], [0, 1, 2, 3, 4]]↪→

[[5, 6, 7, 8], [5, 6, 7, 8], [5, 6, 7, 8], [7], [8], [0, 1, 2, 6], [0, 1, 2, 5],
[0, 1, 2, 3, 8], [0, 1, 2, 4, 7]]↪→

73

[[4, 6, 7], [5, 6, 7, 8], [5, 6, 7, 8], [8], [0, 6, 7], [1, 2], [0, 1, 2, 4, 8],
[0, 1, 2, 4, 8], [1, 2, 3, 6, 7]]↪→

[[4, 5, 8], [6, 7, 8], [6, 7, 8], [6, 7], [0, 5, 8], [0, 4, 8], [1, 2, 3, 7, 8],
[1, 2, 3, 6, 8], [0, 1, 2, 4, 5, 6, 7]]↪→

[[4, 7, 8], [5, 6, 7, 8], [5, 6, 7, 8], [5, 6, 7, 8], [0, 7, 8], [1, 2, 3, 7,
8], [1, 2, 3], [0, 1, 2, 3, 4, 5], [0, 1, 2, 3, 4, 5]]↪→

[[4, 7, 8], [5, 6, 7, 8], [5, 6, 7, 8], [5, 6, 7, 8], [0, 7, 8], [1, 2, 3, 6],
[1, 2, 3, 5], [0, 1, 2, 3, 4], [0, 1, 2, 3, 4]]↪→

[[4, 7, 8], [5, 6, 7, 8], [5, 6, 7, 8], [5, 6, 7], [0, 7, 8], [1, 2, 3, 6, 8],
[1, 2, 3, 5, 8], [0, 1, 2, 3, 4, 8], [0, 1, 2, 4, 5, 6, 7]]↪→

[[4, 5, 6, 7, 8], [5, 6, 7, 8], [5, 6, 7, 8], [8], [0, 5, 6, 7, 8], [0, 1, 2, 4,
8], [0, 1, 2, 4, 8], [0, 1, 2, 4], [0, 1, 2, 3, 4, 5, 6]]↪→

[[4, 5, 6, 7, 8], [5, 6, 7, 8], [5, 6, 7, 8], [6, 7, 8], [0, 5, 6, 7, 8], [0, 1,
2, 4, 8], [0, 1, 2, 3, 4, 8], [0, 1, 2, 3, 4], [0, 1, 2, 3, 4, 5, 6]]↪→

[[4, 5, 6, 7, 8], [5, 6, 7, 8], [5, 6, 7, 8], [6, 7, 8], [0, 5, 6, 7, 8], [0, 1,
2, 4], [0, 1, 2, 3, 4, 8], [0, 1, 2, 3, 4, 8], [0, 1, 2, 3, 4, 6, 7]]↪→

[[4, 5, 6, 7, 8], [4, 5, 6, 7, 8], [5, 6, 7, 8], [8], [0, 1, 5, 6, 7, 8], [0, 1,
2, 4, 7], [0, 1, 2, 4, 8], [0, 1, 2, 4, 5], [0, 1, 2, 3, 4, 6]]↪→

[[4, 5, 6, 7, 8], [4, 5, 6, 7, 8], [5, 6, 7, 8], [6, 7, 8], [0, 1, 5, 6, 7, 8],
[0, 1, 2, 4], [0, 1, 2, 3, 4, 8], [0, 1, 2, 3, 4], [0, 1, 2, 3, 4, 6]]↪→

[[4, 5, 6, 7, 8], [4, 5, 6, 7, 8], [5, 6, 7, 8], [6, 7], [0, 1, 5, 6, 7, 8], [0,
1, 2, 4], [0, 1, 2, 3, 4, 8], [0, 1, 2, 3, 4, 8], [0, 1, 2, 4, 6, 7]]↪→

[[4, 5, 6, 7, 8], [4, 5, 6, 7, 8], [5, 6, 7, 8], [6, 7, 8], [0, 1, 5, 6, 7, 8],
[0, 1, 2, 4, 8], [0, 1, 2, 3, 4, 8], [0, 1, 2, 3, 4], [0, 1, 2, 3, 4, 5, 6]]↪→

[[4, 5, 6, 7, 8], [4, 5, 6, 7, 8], [5, 6, 7, 8], [6, 7, 8], [0, 1, 5, 6, 7, 8],
[0, 1, 2, 4], [0, 1, 2, 3, 4, 8], [0, 1, 2, 3, 4, 8], [0, 1, 2, 3, 4, 6, 7]]↪→

[[4, 5, 6, 7, 8], [4, 5, 6, 7, 8], [5, 6, 7, 8], [5, 6, 7], [0, 1, 5, 6, 7, 8],
[0, 1, 2, 3, 4, 8], [0, 1, 2, 3, 4, 8], [0, 1, 2, 3, 4], [0, 1, 2, 4, 5, 6]]↪→

[[4, 5, 6, 7, 8], [4, 5, 6, 7, 8], [5, 6, 7, 8], [5, 6, 7, 8], [0, 1, 5, 6, 7,
8], [0, 1, 2, 3, 4, 8], [0, 1, 2, 3, 4, 8], [0, 1, 2, 3, 4], [0, 1, 2, 3, 4,
5, 6]]

↪→

↪→

[[4, 5, 6, 7, 8], [4, 5, 6, 7, 8], [4, 5, 6, 7], [8], [0, 1, 2, 7, 8], [0, 1, 2,
7, 8], [0, 1, 2, 8], [0, 1, 2, 4, 5, 8], [0, 1, 3, 4, 5, 6, 7]]↪→

[[4, 5, 6, 7, 8], [4, 5, 6, 7, 8], [4, 5, 6, 7], [7, 8], [0, 1, 2, 7, 8], [0, 1,
2, 7, 8], [0, 1, 2, 8], [0, 1, 2, 3, 4, 5, 8], [0, 1, 3, 4, 5, 6, 7]]↪→

74

[[4, 5, 6, 7, 8], [4, 5, 6, 7, 8], [4, 5, 6, 7], [8], [0, 1, 2, 6, 8], [0, 1, 2,
7, 8], [0, 1, 2, 4, 8], [0, 1, 2, 5, 8], [0, 1, 3, 4, 5, 6, 7]]↪→

[[4, 5, 6, 7, 8], [4, 5, 6, 7, 8], [4, 5, 6, 7], [7, 8], [0, 1, 2, 6, 8], [0, 1,
2, 7, 8], [0, 1, 2, 4, 8], [0, 1, 2, 3, 5, 8], [0, 1, 3, 4, 5, 6, 7]]↪→

[[4, 5, 6, 7, 8], [4, 5, 6, 7, 8], [4, 5, 6, 7], [5, 6, 7], [0, 1, 2, 7, 8], [0,
1, 2, 3, 6, 8], [0, 1, 2, 3, 5, 8], [0, 1, 2, 3, 4, 8], [0, 1, 4, 5, 6, 7]]↪→

[[4, 5, 6, 7, 8], [4, 5, 6, 7, 8], [4, 5, 6, 7], [4, 5, 6, 7], [0, 1, 2, 3, 7,
8], [0, 1, 2, 3, 8], [0, 1, 2, 3, 8], [0, 1, 2, 3, 4, 8], [0, 1, 4, 5, 6,
7]]

↪→

↪→

[[4, 5, 6, 7, 8], [4, 5, 6, 7, 8], [4, 5, 6, 7], [4, 5, 6, 7], [0, 1, 2, 3, 6,
8], [0, 1, 2, 3, 7, 8], [0, 1, 2, 3, 4, 8], [0, 1, 2, 3, 5, 8], [0, 1, 4, 5,
6, 7]]

↪→

↪→

[[3, 6, 7], [4, 6, 8], [5, 7, 8], [0, 6, 7], [1, 6, 8], [2, 7, 8], [0, 1, 3, 4,
7, 8], [0, 2, 3, 5, 6, 8], [1, 2, 4, 5, 6, 7]]↪→

[[3, 5, 8], [4, 6, 7], [6, 7, 8], [0, 5, 8], [1, 6, 7], [0, 3, 8], [1, 2, 4, 7,
8], [1, 2, 4, 6, 8], [0, 2, 3, 5, 6, 7]]↪→

[[3, 5, 6], [4, 7, 8], [5, 6, 7, 8], [0, 5, 6], [1, 7, 8], [0, 2, 3, 7, 8], [0,
2, 3, 7, 8], [1, 2, 4, 5, 6], [1, 2, 4, 5, 6]]↪→

[[3, 5, 7, 8], [4, 6, 8], [5, 6, 7, 8], [0, 5, 7, 8], [1, 6, 8], [0, 2, 3, 6,
7], [1, 2, 4, 5, 7, 8], [0, 2, 3, 5, 6], [0, 1, 2, 3, 4, 6]]↪→

[[3, 5, 6, 7, 8], [4, 6, 7, 8], [5, 6, 7, 8], [0, 5, 6, 7, 8], [1, 6, 7, 8], [0,
2, 3, 7], [0, 1, 2, 3, 4, 8], [0, 1, 2, 3, 4, 5], [0, 1, 2, 3, 4, 6]]↪→

[[3, 5, 6, 7, 8], [4, 5, 6, 7, 8], [6, 7, 8], [0, 5, 6, 7, 8], [1, 5, 6, 7, 8],
[0, 1, 3, 4, 8], [0, 1, 2, 3, 4, 8], [0, 1, 2, 3, 4], [0, 1, 2, 3, 4, 5, 6]]↪→

[[3, 5, 6, 7, 8], [4, 5, 6, 7, 8], [6, 7, 8], [0, 5, 6, 7, 8], [1, 5, 6, 7, 8],
[0, 1, 3, 4], [0, 1, 2, 3, 4, 8], [0, 1, 2, 3, 4, 8], [0, 1, 2, 3, 4, 6, 7]]↪→

[[3, 5, 6, 7], [4, 5, 6, 7, 8], [4, 5, 6, 7, 8], [0, 5, 6, 7], [1, 2], [0, 1, 2,
3, 8], [0, 1, 2, 3, 8], [0, 1, 2, 3, 8], [1, 2, 5, 6, 7]]↪→

[[3, 5, 6, 7, 8], [4, 5, 6, 7, 8], [4, 5, 6, 7, 8], [0, 5, 6, 7, 8], [1, 2, 8],
[0, 1, 2, 3, 8], [0, 1, 2, 3, 8], [0, 1, 2, 3], [0, 1, 2, 3, 4, 5, 6]]↪→

[[3, 5, 6, 7, 8], [4, 5, 6, 7, 8], [4, 5, 6, 7, 8], [0, 5, 6, 7, 8], [1, 2, 7,
8], [0, 1, 2, 3, 6], [0, 1, 2, 3, 5], [0, 1, 2, 3, 4, 8], [0, 1, 2, 3, 4,
7]]

↪→

↪→

75

[[3, 5, 6, 7, 8], [4, 5, 6, 7, 8], [4, 6, 7, 8], [0, 5, 6, 7, 8], [1, 2, 5, 6,
7, 8], [0, 1, 3, 4], [0, 1, 2, 3, 4, 8], [0, 1, 2, 3, 4], [0, 1, 2, 3, 4,
6]]

↪→

↪→

[[3, 5, 6, 7, 8], [4, 5, 6, 7, 8], [4, 6, 7, 8], [0, 5, 6, 7, 8], [1, 2, 5, 6,
7, 8], [0, 1, 3, 4, 8], [0, 1, 2, 3, 4, 8], [0, 1, 2, 3, 4], [0, 1, 2, 3, 4,
5, 6]]

↪→

↪→

[[3, 5, 6, 7, 8], [4, 5, 6, 7, 8], [4, 6, 7, 8], [0, 5, 6, 7, 8], [1, 2, 5, 6,
7, 8], [0, 1, 3, 4], [0, 1, 2, 3, 4, 8], [0, 1, 2, 3, 4, 8], [0, 1, 2, 3, 4,
6, 7]]

↪→

↪→

[[3, 5, 6, 7, 8], [4, 5, 6, 7, 8], [4, 5, 6, 7, 8], [0, 5, 6, 7, 8], [1, 2, 5,
6, 7, 8], [0, 1, 2, 3, 4, 8], [0, 1, 2, 3, 4], [0, 1, 2, 3, 4], [0, 1, 2, 3,
4, 5]]

↪→

↪→

[[3, 5, 6, 7, 8], [4, 5, 6, 7, 8], [4, 5, 6, 7, 8], [0, 5, 6, 7, 8], [1, 2, 5,
6, 7, 8], [0, 1, 2, 3, 4, 8], [0, 1, 2, 3, 4, 8], [0, 1, 2, 3, 4], [0, 1, 2,
3, 4, 5, 6]]

↪→

↪→

[[3, 4, 5, 6, 7], [4, 5, 6, 7, 8], [5, 6, 7, 8], [0, 4, 5, 6, 7], [0, 1, 3, 7,
8], [0, 1, 2, 3, 6, 8], [0, 1, 2, 3, 5, 8], [0, 1, 2, 3, 4, 8], [1, 2, 4, 5,
6, 7]]

↪→

↪→

[[3, 4, 5, 6, 7], [4, 5, 6, 7, 8], [4, 5, 6, 7, 8], [0, 4, 5, 6, 7], [0, 1, 2,
3, 6, 8], [0, 1, 2, 3, 7, 8], [0, 1, 2, 3, 4, 8], [0, 1, 2, 3, 5, 8], [1, 2,
4, 5, 6, 7]]

↪→

↪→

[[2, 3, 4, 5, 6, 7], [3, 4, 5, 6, 7, 8], [0, 4, 5, 6, 7, 8], [0, 1, 5, 6, 7, 8],
[0, 1, 2, 6, 7, 8], [0, 1, 2, 3, 7, 8], [0, 1, 2, 3, 4, 8], [0, 1, 2, 3, 4,
5], [1, 2,

↪→

↪→

3, 4, 5, 6]]

[[6, 8], [6, 8], [6, 8], [7, 9], [7, 9], [7, 9], [0, 1, 2, 8], [3, 4, 5, 9], [0,
1, 2, 6], [3, 4, 5, 7]]↪→

[[4, 6, 7, 8, 9], [5, 9], [6, 7, 8, 9], [7, 8], [0, 6, 7, 8, 9], [1, 9], [0, 2,
4], [0, 2, 3, 4, 9], [0, 2, 3, 4, 9], [0, 1, 2, 4, 5, 7, 8]]↪→

[[4, 6, 7, 8, 9], [5, 9], [6, 7, 8, 9], [6, 7, 8, 9], [0, 6, 7, 8, 9], [1, 9],
[0, 2, 3, 4, 8], [0, 2, 3, 4, 9], [0, 2, 3, 4, 6], [0, 1, 2, 3, 4, 5, 7]]↪→

[[3, 6, 7, 8, 9], [4, 6, 7, 8, 9], [5, 9], [0, 6, 7, 8, 9], [1, 6, 7, 8, 9], [2,
9], [0, 1, 3, 4, 8], [0, 1, 3, 4, 9], [0, 1, 3, 4, 6], [0, 1, 2, 3, 4, 5,
7]]

↪→

↪→

real 1135m42.488s
user 1059m52.558s
sys 3m57.298s

76

The game [A,B]

$ time sage -python forbidden.py Alice Bob 10

5 forbidden graphs were found:
[[2, 3], [3], [0], [0, 1]]

[[2, 3], [2, 3], [0, 1], [0, 1]]

[[3, 4, 5], [3, 4, 5], [3, 4, 5], [0, 1, 2, 4, 5], [0, 1, 2, 3, 5], [0, 1, 2, 3,
4]]↪→

[[4, 6, 7], [4, 6, 7], [5, 6, 7], [5, 6, 7], [0, 1, 6, 7], [2, 3, 6, 7], [0, 1,
2, 3, 4, 5, 7], [0, 1, 2, 3, 4, 5, 6]]↪→

[[6, 8], [6, 8], [6, 8], [7, 9], [7, 9], [7, 9], [0, 1, 2, 8], [3, 4, 5, 9], [0,
1, 2, 6], [3, 4, 5, 7]]↪→

real 406m34.237s
user 356m6.363s
sys 1m22.497s

The game gB = [B,−]

$ time sage -python forbidden.py Bob - 10

15 forbidden graphs were found:
[[3, 4], [4], [], [0], [0, 1]]

[[3, 4], [4], [4], [0], [0, 1, 2]]

[[3, 4], [3, 4], [], [0, 1], [0, 1]]

[[3, 4], [3, 4], [3, 4], [0, 1, 2, 4], [0, 1, 2, 3]]

[[2, 4], [3, 4], [0], [1], [0, 1]]

[[2, 3], [3, 4], [0, 4], [0, 1], [1, 2]]

[[2, 3, 4], [3, 4], [0, 4], [0, 1, 4], [0, 1, 2, 3]]

[[2, 3, 4], [2, 3, 4], [0, 1, 4], [0, 1, 4], [0, 1, 2, 3]]

[[4, 6], [5, 6], [5, 6], [5], [0, 6], [1, 2, 3, 6], [0, 1, 2, 4, 5]]

[[4, 6], [4, 6], [5, 6], [5, 6], [0, 1, 6], [2, 3, 6], [0, 1, 2, 3, 4, 5]]

[[3, 5], [4, 6], [5, 6], [0, 5], [1, 6], [0, 2, 3, 6], [1, 2, 4, 5]]

[[3, 5, 6], [4, 6], [5, 6], [0, 5, 6], [1, 6], [0, 2, 3], [0, 1, 2, 3, 4]]

77

[[3, 5, 6], [4, 5, 6], [6], [0, 5, 6], [1, 5, 6], [0, 1, 3, 4], [0, 1, 2, 3, 4]]

[[3, 5, 6], [4, 5, 6], [5, 6], [0, 5, 6], [1, 5, 6], [0, 1, 2, 3, 4], [0, 1, 2,
3, 4]]↪→

[[3, 5, 6], [4, 5, 6], [4, 5, 6], [0, 5, 6], [1, 2, 6], [0, 1, 2, 3], [0, 1, 2,
3, 4]]↪→

real 398m44.609s
user 370m36.084s
sys 1m40.220s

The game [B,A]

$ time sage -python forbidden.py Bob Alice 10

16 forbidden graphs were found:
[[3, 4], [4], [4], [0], [0, 1, 2]]

[[3, 4], [3, 4], [3, 4], [0, 1, 2, 4], [0, 1, 2, 3]]

[[2, 4], [3, 4], [0], [1], [0, 1]]

[[2, 3], [3, 4], [0, 4], [0, 1], [1, 2]]

[[4, 6], [5, 6], [5, 6], [5], [0, 6], [1, 2, 3, 6], [0, 1, 2, 4, 5]]

[[4, 6], [4, 6], [5, 6], [5, 6], [0, 1, 6], [2, 3, 6], [0, 1, 2, 3, 4, 5]]

[[3, 5], [4, 6], [5, 6], [0, 5], [1, 6], [0, 2, 3, 6], [1, 2, 4, 5]]

[[3, 4, 5, 6], [4, 5, 6], [6], [0, 5, 6], [0, 1, 5, 6], [0, 1, 3, 4], [0, 1, 2,
3, 4]]↪→

[[3, 4, 5, 6], [4, 5, 6], [5, 6], [0, 5, 6], [0, 1, 5, 6], [0, 1, 2, 3, 4], [0,
1, 2, 3, 4]]↪→

[[3, 6], [4, 5, 6], [4, 5, 6], [0, 6], [1, 2, 5, 6], [1, 2, 4], [0, 1, 2, 3, 4]]

[[3, 4, 5, 6], [3, 4, 5, 6], [5, 6], [0, 1, 5, 6], [0, 1, 6], [0, 1, 2, 3], [0,
1, 2, 3, 4]]↪→

[[3, 4, 5, 6], [3, 4, 5, 6], [6], [0, 1, 5, 6], [0, 1, 5, 6], [0, 1, 3, 4], [0,
1, 2, 3, 4]]↪→

[[3, 4, 5, 6], [3, 4, 5, 6], [5, 6], [0, 1, 5, 6], [0, 1, 5, 6], [0, 1, 2, 3,
4], [0, 1, 2, 3, 4]]↪→

[[2, 3, 4, 6], [3, 4, 5, 6], [0, 4, 5, 6], [0, 1, 5, 6], [0, 1, 2], [1, 2, 3],
[0, 1, 2, 3]]↪→

78

[[2, 3, 4, 5], [3, 4, 5, 6], [0, 4, 5, 6], [0, 1, 5, 6], [0, 1, 2, 6], [0, 1, 2,
3], [1, 2, 3, 4]]↪→

[[2, 3, 4, 5, 6, 7], [3, 4, 5, 6, 7, 8], [0, 4, 5, 6, 7, 8], [0, 1, 5, 6, 7, 8],
[0, 1, 2, 6, 7, 8], [0, 1, 2, 3, 7, 8], [0, 1, 2, 3, 4, 8], [0, 1, 2, 3, 4,
5], [1, 2, 3, 4, 5, 6]]

↪→

↪→

real 898m52.379s
user 848m49.826s
sys 2m38.561s

The game [B,B]

$ time sage -python forbidden.py Bob Bob 10

4 forbidden graphs were found:
[[2, 3], [3], [0], [0, 1]]

[[2, 3], [2, 3], [0, 1], [0, 1]]

[[3, 4], [3, 4], [3, 4], [0, 1, 2, 4], [0, 1, 2, 3]]

[[4, 6], [4, 6], [5, 6], [5, 6], [0, 1, 6], [2, 3, 6], [0, 1, 2, 3, 4, 5]]

real 477m48.122s
user 376m1.383s
sys 2m54.458s

79

80

Bibliography

[1] S. D. Andres. The game chromatic index of forests of maximum degree ∆ ≥ 5. Discrete
Applied Mathematics, 154(9):1317–1323, 2006.

[2] S. D. Andres. Digraph Coloring Games and Game-Perfectness. PhD thesis, Universität zu
Köln, Verlag Dr. Hut, München, 11 2007.

[3] S. D. Andres. Game-perfect graphs. Math. Methods Oper. Res., 69:235–250, 2009.

[4] S. D. Andres. The incidence game chromatic number. Discrete Applied Math., 157(9):1980–
1987, 2009.

[5] S. D. Andres. The positive lightness of digraphs, embeddable in a surface, without 4-cycles.
Discrete Math., 309:3594–3579, 2009.

[6] S. D. Andres. Directed defective asymmetric graph coloring games. Discrete Applied Math.,
158:251–260, 2010.

[7] S. D. Andres. Game-perfect digraphs. Math. Meth. Oper. Res., 76:321–341, 2012.

[8] S. D. Andres. On characterizing game-perfect graphs by forbidden induced subgraphs.
Contributions to Discrete Math., 7(1):21–34, 2012.

[9] S. D. Andres, W. Hochstättler, and C. Schallück. The game chromatic index of wheels.
Discrete Applied Math., 159(16):1660–1665, 2011. 8th Cologne/Twente Workshop on Graphs
and Combinatorial Optimization (CTW 2009).

[10] T. Bartnicki and J. Grytczuk. A note on the game chromatic index of graphs. Graphs and
Combinatorics, 24(2):67–70, 2008.

[11] C. Berge. Färbung von Graphen, deren sämtliche bzw. deren ungerade Kreise starr sind.
Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg Math.-Natur. Reihe, 10:114, 1961.

[12] A. Beveridge, T. Bohman, A. Frieze, and O. Pikhurko. Game chromatic index of graphs
with given restrictions on degrees. Theoretical Computer Science, 407(1):242–249, 2008.

[13] H. L. Bodlaender. On the complexity of some coloring games. In R. H. Möhring, ed-
itor, Graph-Theoretic Concepts in Computer Science: 16th International Workshop WG ’90
Berlin, Germany, June 20–22, 1990 Proceedings, pages 30–40, Berlin, Heidelberg, 1991.
Springer Berlin Heidelberg.

[14] L. Cai and X. Zhu. Game chromatic index of k-degenerate graphs. Journal of Graph Theory,
36(3):144–155, 2001.

[15] W. H. Chan and G. Nong. The game chromatic index of some trees of maximum degree 4.
Discrete Applied Mathematics, 170:1–6, 2014.

[16] W. Chan, W. Shiu, and X. Zhu. The strong game colouring number of directed graphs.
Discrete Math., 313:1070–1077, 2013.

81

[17] C.-Y. Chou, W. Wang, and X. Zhu. Relaxed game chromatic number of graphs. Discrete
Math., 262:89–98, 2003.

[18] M. Chudnovsky, N. Robertson, P. Seymour, and R. Thomas. The strong perfect graph
theorem. Annals of Mathematics, 164:51–229, 2006.

[19] M. B. Cozzens and L. L. Kelleher. Dominating cliques in graphs. Discrete Mathematics,
86(1):101–116, 1990.

[20] T. S. Developers. SageMath, the Sage Mathematics Software System (Version 6.10), 2015.
http://www.sagemath.org.

[21] R. Diestel. Graph Theory. Electronic library of mathematics. Springer, 2006.

[22] C. Dunn. The relaxed game chromatic index of k-degenerate graphs. Discrete Math.,
307(14):1767–1775, 2007.

[23] P. Erdős and A. Hajnal. On chromatic number of graphs and set-systems. Acta Math. Acad.
Sci. Hungar., 17:61–99, 1966.

[24] P. L. Erdős, U. Faigle, W. Hochstättler, and W. Kern. Note on the game chromatic index
of trees. Theoretical Computer Science, 313(3):371–376, 2004. Algorithmic Combinatorial
Game Theory.

[25] U. Faigle, U. Kern, H. Kierstead, and W. Trotter. On the game chromatic number of some
classes of graphs. Ars Combin., 35:143–150, 1993.

[26] T. Gallai. Transitiv orientierbare graphen. Acta Mathematica Academiae Scientiarum Hun-
garicae, 18:25–66, 1967.

[27] M. Gardner. Mathematical games. Scientific American, 23, 1981.

[28] P. Hall. On representatives of subsets. J. London Math. Soc., 10:26–30, 1935.

[29] J. Nešetřil and E. Sopena. On the oriented game chromatic number. Electronic J. Comb.,
8(2):R14, 2001.

[30] H. Kierstead and W. Trotter. Competitive colorings of oriented graphs. Electronic J. Comb.,
8(2), 2001.

[31] H. Kierstead and Z. Tuza. Marking games and the oriented game chromatic number of
partial k-trees. Graphs Comb., 19:121–129, 2003.

[32] K. Kuratowski. Sur le problème des courbes gauches en topologie. Fund. Math., 15:271–283,
1930.

[33] B. D. McKay and A. Piperno. Practical graph isomorphism, ii. J. Symbolic Computation,
60:94–112, 2013.

[34] E. Sidorowicz. The game chromatic number and the game colouring number of cactuses.
Information Processing Letters, 102(4):147–151, 2007.

[35] M. Tedder, D. Corneil, M. Habib, and C. Paul. Simpler Linear-Time Modular Decomposition
Via Recursive Factorizing Permutations, pages 634–645. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2008.

[36] X. Zhu. The game coloring number of planar graphs. Journal of Combinatorial Theory,
Series B, 75(2):245–258, 1999.

[37] X. Zhu. Refined activation strategy for the marking game. Journal of Combinatorial Theory,
Series B, 98(1):1–18, 2008.

82

	Introduction
	The aim of this thesis
	Playing the game gB on a P5 with (P5)=2 colours
	Graph colouring games in literature

	Terminology and graph colouring
	Basic terms
	Classes of graphs
	Competitive and non-competitive graph colouring

	Identifying forbidden subgraphs
	Determining forbidden subgraphs computationally
	Proving that F1, ..., F15 are forbidden subgraphs

	Characterising connected triangle-free gB-perfect graphs
	Our result
	The structure of triangle-free gB-perfect graphs
	Strategies for Alice

	Characterising gB-perfect graphs
	The main result
	A key to the graph depictions throughout this chapter
	The graph classes E1 to E13
	The 13 possible structures of gB-perfect graphs
	Induced subgraphs of an E1,E2, …, E13 are again instances of the same
	Instances of E1, E2, …, E13 are gB-nice

	Outlook
	Open problems
	Algorithmic challenges

	The vertex colouring game implemented as a backtracking algorithm
	Basic principles
	Pruning
	The file game.py

	Systematically finding forbidden induced subgraphs
	The file forbidden.py

	Computational forbidden subgraph results for Andres's six vertex colouring games
	A brief note on the results

	Bibliography

