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Andrin Pelican

Tomils, 17 Februar 2019

II



Acknowledgement

I want to thank my supervisor Prof. Dr. Winfried Hochstättler for the excellent
support and the targeted answers to my questions.
My family supported me in this work and during my studies. Their encourage-
ment and trust in me was a great motivation. I want to take this opportunity
to express my sincere thanks.
I am grateful to Fabia Weber, Vincent Johal, Daniele Ballinari and Käıla A.
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1 Introduction

In the analysis of real-world graphs one is interested in inquiring to which extent
an observed graph differs from a ensemble of graphs with a given characteristic.
This comparison allows to detect deviations from randomness, which are caused
by different factors than the characteristics used to construct the ensemble.
The most frequent characteristic, which determines the comparison graphs, is
the degree sequence. Restricting the comparison ensemble to graphs with a
fixed degree sequence accounts for node heterogeneity, which is not considered
in the Erdős Rényi model.
The set of characteristics used to construct the comparison ensemble determines
a null-model. Under this null-model the only non random features of the graph
are these characteristics used to construct the ensemble. The rest is completely
random (for a formal description see Section 4). Such null-models are widely
used in computational biology [1]. Furthermore, the interest in network analysis
is increasing for social sciences. In such a field, there is often the need for
controlling different sources of heterogeneity. Consider a network of social
relations, where the nodes are persons and an edge is formed if two of them
are friends. Certainly one would expect the formation of edges between same
sex friendships to be different from the formation of male-female friendship.
However, this heterogeneity is not captured by the degree sequence. The main
result of this paper is a random draw algorithm which allows to account for
such heterogeneity.

As an example we observe the Nyakatoke network. The Nyakatoke net-
work is a social network. It is based on the survey conducted by De Weerdt
in Nyakatoke, a small Haya village in the Kagera region of Tanzania [2]. The
nodes are the households in that village and the edges are connections of
risk-sharing.
The topic of interest is whether risk-sharing links depend on wealth. In
particular, we have the

Claim: There are less risk-sharing links between poor and rich house-
holds.

Explanation: Links have to be formed with consent of both par-
ties. Links are only beneficial for the poor household. Therefore, the
probability of a link between these groups is low.

However, we also suspect that education has an impact on the link formation.
Since the richer households are usually better educated, the impact of education
has to be considered to test the 0-hypothesis.

The ensemble of graphs with a given characteristic is usually by magni-
tudes too large to be computed explicitly. The method followed in the
literature to overcome this problem is to compute a representative sample out
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of the total ensemble and subsequently compare it to the observation graph.
There are two main approaches taken to compute a representative sample:

1. Importance Sampling:
The idea behind importance sampling is to start with an empty graph and
iteratively add edges to it until a graph with the required probabilities is
constructed. At each step, the edge to be added is chosen randomly but
with known probability, such that the importance sampling can be applied
to correct for the probability of construction.
The importance sampling algorithm for graphs with a fixed degree se-
quence was developed contemporaneously by Blitzstein, Diaconis [3] and
Del Genio, Kim, Toroczkai, Bassler [4]. The method was consequently
extended to directed graphs [5].

2. Markov-Chain:
The idea behind the Markov-Chain approach is to iteratively apply a
random modification on the observed graph. The random modification
has certain properties such that after sufficiently many modifications, the
distribution of all the graphs is uniform. For a general overview of the
Markov-Chain sampling methods, see [6] [7]. The method for bipartite
graphs with fixed degree sequence was introduced by Kannan et. all. [8].
Subsequently, the method was generalized to undirected graphs with a
fixed degree sequence by Miklos, Podani [9] and for directed graphs by
Berger, Hannemann [10].

Although the field of randomly generating graphs is recent, there have been
various extensions of the above mentioned methods. Most notable is the
curveball method [11], which mixes at least as fast as the classical algorithms
[12] [13] but is empirically better.
Fosdick et. all. [14] emphasize the importance of the choice on how to define
the ensemble, which the observed graph is compared to. In particular how
edge and node numbering of the configuration can influence estimations when
applied to multigraphs or graphs with self-loops.
The choice of the characteristics for determining the comparison ensemble can
require more than the fixed degree sequence. An obvious choice is to require
connectivity, as many observed graphs such as the road network of a city is
connected. These properties are inquired in [15] and [16].

The main contribution of this paper is a Markov-Chain sampling algorithm,
which considers partition adjacency matrix restrictions. This is a considerable
amplification of the configuration models. The correctness of the algorithm is
shown. A statistical motivation of the configuration model choice is given. The
algorithm is implemented and applied to a real world example1.

1The algorithm can be accessed as python package on PyPi under the name ugd. It includes
an API documentation and an overview of the architecture.
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Section 2 proposes a Markov-Chain draw algorithm which considers group con-
straints. In particular, Section 2.1 determines the notation and defines the
algorithm. In Section 2.2, the proof of the correctness of the algorithm is de-
veloped. Section 2.3 proposes some modifications for efficiency optimization. A
discussion of the properties as well as a differentiation to other approaches in the
literature is given in Section 2.4. The problem of deciding whether a realization
exists to a given set of constraints is examined in Section 3. In a first step a
necessary condition is given by a modification of the Havel-Hakimi algorithm
in Section 3.1. A literature overview on the existing approaches for a sufficient
statistic is given in Section 3.2. Section 4 gives a statistical motivation for the
choice of the comparison ensemble. In Section 5, the algorithm is applied to the
Nyakatoke network in order to inquire it’s properties. The conclusion gives a
short summary on the results and makes remarks on further work to be done.

2 The Markov Draw Algorithm

2.1 The Algorithm

We define a degree sequence S as a sequence of integers (a1, ..., an) with
ai ∈ N, i ∈ {1, ..., n} where ai > 0. Let P be a partition of {1, ..., n}, the
elements Vi of the partition have a fixed enumeration. We define the partition
adjacency matrix, in short PAM, as a symmetric matrix M ∈ N|P|×|P|.
Let G = (V,E) be a labeled graph without loops and parallel edges and
with |V | = n. We define the degree-function dG : V → N which assigns to
each node vi ∈ V the number of incident edges and a cross-edge-function
cG : {1, ..., |P|} × {1, ..., |P|} → N which assigns to (i, j)with i, j ∈ {1, ..., |P|}
the number of edges with one node in Vi and the other in Vj .
We denote (S,M) as graphical if and only if there exists at least one graph
G = (V,E) without any loops or parallel edges which satisfies dG(vi) = ai for
all vi ∈ V and for every (i, j) with i, j ∈ {1, ..., |P|} holds cG((i, j)) = Mi,j . The
decision whether (S,M) is graphical is called the PAM-realization problem.
Any such graph G is called realization of (S,M). Let G be the set of all
realizations of (S,M).

This paper has the objective to deliver a random algorithm A. A has as
input a graph G ∈ G, node-set-partition P and a mixing parameter τ ∈ N. The
mixing parameter τ determines how long the algorithm runs until returning a
random graph. A generates a random graph G′ ∈ G, where the probability of
G′ depends on τ and is denoted with pA,τ (G′). In addition A has the property

∀ε > 0 ∃T ∈ N ∀τ > T, ∀G′ ∈ G :
1

|G|
− ε < pA,τ (G′) <

1

|G|
+ ε. (1)

The property (1) will be referred to uniform sampling out of G. The question
on how to construct a first realization G, or how to determine whether a
realization exists will also be discussed.
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For two realizations G,G′ of (S,M) the symmetric difference of their
edge sets E(G) and E(G′) is (E(G) \ E(G′)) ∪ (E(G′) \ E(G)). Consider
for example the realizations G and G′ with E(G) := {{v1, v2}, {v3, v0}} and
E(G′) := {{v1, v0}, {v3, v2}} consisting of exactly two edges. Then the symmet-
ric difference corresponds to an alternating closed walk C := (v1, v2, v3, v0, v1)
where {vi, vi+1} ∈ E(G) and {vi−1, vi} ∈ E(G′) for i ∈ 1, 3 taking indices i
mod 4. We define an alternating walk P for a graph G = (V,E) as a sequence
P := (v1, v2, ..., vl) of nodes vi ∈ V where either ( {vi, vi+1} ∈ E(G) and
{vi, vi−1} 6∈ E(G) ) or ( {vi, vi+1} 6∈ E(G) and {vi, vi−1} ∈ E(G) ) . We call an
alternating walk C alternating closed walk if v1 = vl and either ({v1, v2} ∈ E(G)
and {vl−1, vl} 6∈ E(G)) or ({v1, v2} 6∈ E(G) and {vl−1, vl} ∈ E(G)) is fulfilled.

Proposition 1. The symmetric difference of two realizations of (S,M) always
decomposes into a collection of alternating closed walks.

Proof. Let G = (V,E) and G′ = (V,E′) be two realizations of (S,M). The
symmetric difference of G and G′ is the graph G4 = (V,E4) with the edge set

E4 = E4E′ = (E ∪ E′) \ (E ∩ E′).

Consider a node v ∈ V . v has the same degree d in G as in G′. Let Ev be
the edges incident to v in both graphs G and G′. Then there are d − |Ev|
edges incident to v in G, which are not in G′ and there are d − |Ev| edges
incident to v in G′, which are not in G. In total, there are 2(d − |Ev|) edges
incident to v in G4. v has therefore an even degree in G4. Because v was
chosen arbitrarily, we conclude that every node has an even degree in G4.
With the algorithm of Hierholzer the edge set of G4 can be decomposed into a
collection of alternating closed walks [17]. We can further require the algorithm
to iteratively choose edges altering from E(G) and E(G′). Then the closed
walks can be decomposed into a set of even closed walks, which don’t contain
another even closed walk.

Consider a realization G of (S,M). We define the complementary edge-set of G
as

Ē(G) = {{v′, v′′}|v′, v′′ ∈ V (G) and {v′, v′′} 6∈ E(G)}.

A function m : Ē(G) ∪ E(G) → {0, 1} is called an edge marking. We call
an edge {v′, v′′} ∈ Ē(G) ∪ E(G) marked if m({v′, v′′}) = 1 and unmarked if
m({v′, v′′}) = 0. By the expression “mark an edge {v′, v′′}” is meant that
the marking function is changed such that m({v′, v′′}) = 1. The expression
“unmark” an edge is used analogically. The graph with the edges Ē(G) is
denoted with Ḡ = (V, Ē(G)). Let C be a closed alternating walk of even length
in G and EC the edges corresponding to the closed alternating walk C and
E′ = (E(G) \ EC) ∪ (Ē(G) ∩ EC). We say G′ = (V,E′) is the graph obtained
by switching C in G.
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Definition 1. An alternating walk (v1, v2, ..., vl) which uses only unmarked
edges and the first edge is in the graph is called a schlaufe if one of the fol-
lowing cases is fulfilled:

1. If there is a node vi ∈ {v1, v2, ..., vl−1}, with i 6= l, vi = vl and i −
l mod 2 = 0. Further it is required that for any two nodes vk, vh in
(v1, v2, ..., vl−1) with vk = vh, h 6= k is k − h mod 2 = 1.

2. If at node vl there is no other node v such that the alternating walk could
be extended with the unmarked edge {vl, v}.

3. If the edge {vl−1, vl} is present in (v1, v2, ..., vl−1).

Proposition 2. In case 1 the schlaufe consists of an alternating walk (v1, ..., vi)
(which may have length 0) and exactly one even alternating closed walk
C := (vi, ..., vl) with vl = vi.

Proof. Let (v1, v2, ..., vl) be a schlaufe of case 1. By definition there is a vi
such that i 6= l, vi = vl and i − l mod 2 = 0. (v1, v2, ..., vl) is a schlaufe,
therefore in particular an alternating walk. The parts (v1, ..., vi) and (vi, ..., vl)
are alternating walks. C = (vi, ..., vl) is closed because vi = vl and even because
i− l mod 2 = 0.

For a schlaufe we define the violation matrix Z ∈ Z|P|×|P|. If the schlaufe is of
case 1 then Zi,j is the sum of edges in E(G) ∩ E(C) with nodes in Vi and Vj
minus the sum of edges in Ē(G) ∩ E(C) with nodes Vi and Vj . If the schlaufe
is of case 2 or case 3 then Z is zero.

Definition 2. We call a sequence of schlaufen R = (R1, ..., Rk) feasible if the
schlaufen are edge-disjoint, the sum of the violation matrices is zero and for
i < k the sum of the violation matrices is not zero.

For the algorithm two more edge marking functions are needed. One which
maps all the nodes V to {0, a, b} and one which maps the edges Ē(G) ∪ E(G)
to {0} ∪ {aij |i, j ∈ N} ∪ {bij |i, j ∈ N}. The 0 stands for not marked, a for
actively marked and b stands for passively marked. The indexing of the a and
b is needed to assign a number of the occurrence in the alternating path and
the number of the schlaufe. A passively or actively marked node is considered
marked. The language use of these functions is analogous to the marking
function previously defined.
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Figure 1: In A a graph G with marked edges is depicted. The edges in Ē(G) are dashed
and only drawn if they are in a schlaufe or marked. G has {5, 7}, {5, 8}, {8, 9}, {7, 9}
marked. B shows G with two schlaufen. The blue schlaufe (7, 8, 4, 5, 6, 3, 4) is of case
1. The red schlaufe (2, 5, 9) is of case 2. The red schlaufe cannot be extended at node
9 because the edge incident with 9 is marked. In C there is a schlaufe (8, 7, 3, 6, 7, 8) of
case 3 marked in green. It does not contain an even alternating closed walk, because
the closed walk starting at point 7 is of odd length.

The idea behind the Markov Draw algorithm is to construct randomly
schlaufen. If the sum of the violation matrices is 0 we switch the edges in the
closed walk of the schlaufen and the process is stopped. Otherwise, we stop
the process with a certain probability or construct another schlaufe, which
is edge-disjoint to the schlaufen already found. Such a process preserves the
correctness of the graph and alters the graph randomly. After a sufficient
number of process iterations, the distribution of the random graph approaches
the uniform distribution (see section 2.2).
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Markov Draw

Input: graph G, node-set-partition P, a mixing parameter τ
Procedure:

1. set t := 0

2. choose A with probability 0 < q < 1, otherwise B
if case A:

go to step 4
else:

go to step 3

3. find and mark schlaufe
if sum of violation matrices is 0:

switch the edges of the even closed alternating walk(s) of
the schlaufe(n)
set G′ to be the graph with the switched edges
set G := G′

and unmark edges
go to step 4

else:
choose with probability 1

2 case C or case D
if case C:

unmark edges and go to 4
else:

go to step 3

4. set t := t +1
if t = τ :

return G
else:

go to step 2

Output: the graph G

7



The Markov Draw Algorithm uses as a subroutine find and mark schlaufe.
This subroutine is described in the algorithm Schlaufen Detection. The
Schlaufen Detection algorithm constructs a random alternating walk. In
the construction of the alternating walk, we distinguish between an active visit
of a node in the walk, where the next edge in the walk is in the graph, and an
passive visit, where the next edge in the walk is not in the graph. At each node
it chooses uniformly among the feasible out-edges.

Definition 3. The set of feasible out-edges are

• in an active visit: the edges incident with node v in G, which are not
already marked in a schlaufe.

• in a passive visit: the edges incident with node v in Ḡ, which are not
already marked in a schlaufe.
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Schlaufen Detection

Input: a graph G (which may have marked edges in it), node-set-
partition P
Procedure:
initialization:

1 choose uniformly a node and go to step 2

active visit:

2 mark node as active
choose among all active feasible out-edges one
if no choice is possible:

go to step 6
if the chosen edge is already in the walk:

go to step 6
else:

go to step 3

3 if new node is marked as passive:
go to step 6

else:
go to step 4

passive visit:

4 mark node as passive
choose among all the passive feasible out-edges one
if no choice is possible:

got to step 6
if the chosen edge is already in the walk:

go to step 6
else:

go to step 3

5 if new node is marked as active:
go to step 6

else:
go to step 2

finalization:

6 create violation matrix
mark the edges in the created walk
unmark all nodes
return graph and violation matrix

Output: the graph and the violation matrix

9



Proposition 3. Let R = (v1, ..., vl) be a schlaufe in graph G. Let raG(vi) be
the cardinality of the set of feasible out-edges of node vi in G for an active visit
and rpG(vi) for a passive visit. The probability that the algorithm Schlaufen
Detection marks schlaufe R is strictly positive and equal to:

pG(R) =
1

n

l−1∏
i=1

(
1

raG(vi)
[i mod 2] +

1

rpG(vi)
[(i− 1) mod 2]

)
. (2)

Proof. The probability of a schlaufe R can be calculated as follows: in the
initialization phase a node is chosen uniformly. The probability that v1 is chosen
equals to 1

n . The edges are only marked at step 6 in the Schlaufen Detection
algorithm. This implies that previous visits of nodes in the walk do not alter
the set of feasible out-edges for node vi. By the definition of a schlaufe, vi+1

is a node reachable via a feasible out-edge of vi and is reached with probability
1

raG(vi)
in an active visit and with probability 1

rpG(vi)
in a passive visit. When vl

is visited then there is no further feasible out-edge or a even alternating walk is
closed or the edge {vl−1, vl} is present in the alternating walk (v1, ..., vl−1), in
all cases the algorithm Schlaufen Detection goes to step 6 and terminates.
The probability of R = (v1, ..., vl) is the product of the initializing probability
and the probability of each step:

pG(R) =
1

n

l−1∏
i=1

(
1

raG(vi)
[i mod 2] +

1

rpG(vi)
[(i− 1) mod 2]

)
.

The strict positivity follows directly because it is a product of strict positive
numbers.

If step 3 is reached, case B must have been chosen at step 2 with probability
1−q. The third step of the Markov Draw Algorithm constructs a schlaufen-
sequence R = (R1, ..., Rk), which is switched if it has 0 violation. After each
schlaufe found Ri, the corresponding schlaufe is marked in the graph. Let Gi be
the graph with the schlaufen (R1, ..., Ri−1) marked. The probability of finding
schlaufe the Ri is pGi(Ri). The total probability of R is strictly positive and
equals to:

pG(R) = (1− q) 1

2(k−1)

k∏
i=1

pGi(Ri). (3)

2.2 Correctness

2.2.1 Markov-Chains

In order to prove the correctness of the algorithm, we will use some properties of
Markov-Chains. Let (Ω,A, P ) be a probability space and (H,H) a measurable
space.

Definition 4. We call a sequence of random variables (Xi), i ∈ N a Markov-
Chain, if P (Xn = xn|X1 = x1, ..., Xn−1 = xn−1) = P (Xn = xn|Xn−1 = xn−1)
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for all x1, ..., xn ∈ H. And the transition probabilities P (Xn = x′|Xn−1 = x′′)
for x′, x′′ ∈ H do not depend on n.

The sub-indices of the random variables are referred to as time-periods. If H
is finite, it is called a discrete Markov-Chain and the elements of H can be
enumerated H = {x1, ..., x|H|}. In the discrete case, the Markov-Chain can be
represented by a directed graph with weighted arrows, which is called a state
graph. The state graph is characterized as follows: the vertex set is set H,
between two vertices xi, xj ∈ H there is an arrow (xi, xj) if P (Xn = xj |Xn−1 =
xi) > 0, and it has the weight P (Xn = xj |Xn−1 = xi). Similar to the adjacency
matrix for directed graphs, there is a matrix representation of the weighted
directed graph M . Instead of an indicator for the existence of an arrow, the
weight of the arrow (xi, xj) is the entry Mi,j .
We are interested in inquiring how the initial probability distribution of X0

changes over time (Xt for t → ∞). The distribution of X0 can be represented
as a vector p0, with pi0 equal to the probability of element xi in period 0. The
distribution vector p has only positive entries and they sum up to one.
The following proposition and corollary show how the initial distribution maps
into the distribution of subsequent periods.

Proposition 4. Let pn−1 be the distribution of Xn−1, then the distribution pn
of Xn is

pn = Mpn−1.

Proof. We consider the probability pin of the state i in period n. If the previous
state is known to be xj , then the probability of state xi in period n is P (Xn =
xi|Xn−1 = xj). The probabilities of the states in period n− 1 are known. The
probability of the event Xn−1 = xj and Xn = xi can be calculated and is equal
to P (Xn = xi|Xn−1 = xj)pjn−1. The total probability of state i in period n is
therefore the sum over all conditional probabilities weighted by the probability
of the previous state

pin =

|H|∑
j=1

P (Xn = xi|Xn−1 = xj)pjn−1.

11



Summing over all elements gives:

|H|∑
i=1

pin =

|H|∑
i=1

|H|∑
j=1

P (Xn = xi|Xn−1 = xj)pjn−1

=

|H|∑
j=1

|H|∑
i=1

P (Xn = xi|Xn−1 = xj)pjn−1

=

|H|∑
j=1

|H|∑
i=1

P (Xn = xi|Xn−1 = xj)P (Xn−1 = xj)

=

|H|∑
j=1

1P (Xn−1 = xj)

= 1,

which shows that pn is a distribution vector.

Corollary 1. Let p1 be the distribution of X1, then the distribution pn of Xn

is
pn = Mn−1p1

We say the state graph of a Markov-Chain has self-loops if every node has
a directed self-loop. For the algorithm Markov Draw we are particularly
interested in the case, where M is symmetric, the state graph has self-loops and
is strongly connected.

Lemma 1. Consider a Markov-Chain which is symmetric, strongly connected
and has self-loops. For any initial distribution p0, there is a k ∈ N such that pk
has only strictly positive entries.

Proof. There is at least one state xi which has strictly positive probability in
the initial distribution vector, pi0 > 0. P (Xn+1 = xi|Xn = xi) is strictly pos-
itive because the state graph has self-loops. The probability of pin is at least
pi0P (Xn+1 = xi|Xn = xi)n−1, which is strictly positive.
Let k be the length of the longest path between two vertices in the state graph.
Since the state graph is strongly connected k is well defined. Consider an arbi-
trary state xj . There is a path of (xi, ..., xj) with length mj ≤ k. Therefore the
probability of state xj in period h ≥ mj is at least

pjh = pih−mj

∏
(x′,x′′) is edge in (xi,...,xj)

P (Xn+1 = x′′|Xn = x′),

which is strictly positive. Note that the transition probabilities do not depend
on the period n. The lemma holds, because the probability of state xj is strictly
positive for all h bigger then mj and k is chosen such that it is bigger then mj

for every j ∈ {1, ..., |H|}.
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Definition 5. We call a distribution vector for a Markov-Chain represented by
M stationary if

p = Mp.

Proposition 5. Consider a Markov-Chain which is symmetric, strongly con-
nected and has self-loops. There exists at most one stationary distribution vec-
tor.

Proof. By definition a stationary distribution vector is an eigenvector of M
with eigenvalue 1. Assume there are two distinct stationary distribution vectors
p′, p′′. Then any linear combination of p′ and p′′ is also an eigenvector with
eigenvalue 1. Because p′ and p′′ are both distribution vectors and not equal,
p′ − p′′ has at least one positive and one negative entry. Therefore

k∗ = sup{k ∈ R|p′ + k(p′ − p′′) > 0}

is finite and we can set
p∗ = p′ + k∗(p′ − p′′).

p∗ is an intersection point of the affine hull of p′, p′′ with the borders of the
positive orthant. p∗ is still a distribution vector, because its elements sum to 1,
however p∗ has one 0 entry. p∗ is also an eigenvector of M with eigenvalue 1.
In particular

p∗ = p∗k = Mkp∗

for any k ∈ N. If we use p∗ as initial distribution vector then there is no k ∈ N
such that all entries of p∗k are strictly positive. This contradicts lemma 1.

Proposition 6. Let M be the matrix of a Markov-Chain with self-loops. Every
eigenvalue of M is in (−1, 1].

Proof. We denote the identity matrix I. The matrix M is stochastic, which
means that the sum of the entries of each column is one. Assume there is an
eigenvalue |λ| > 1, then the matrix M − λI is diagonal dominant. Therefore
M−λI is invertible, which contradicts the assumption of λ being an eigenvalue.
It remains to show that −1 is not an eigenvalue. Because of the self-loops all the
diagonal entries ofM are strictly positive. If λ is set equal to−1, M−λI = M+I
is also diagonal dominant.

It is possible to show that there is a stationary distribution and provide its
explicit form. The vector with each element equal to one will be denoted with
1.

Proposition 7. Consider a Markov-Chain which is symmetric, the vector 1
n1

is a stationary distribution vector.

Proof. The statement of the proposition is equivalent to the vector 1
n1 being an

eigenvector of M with eigenvalue 1. The column entries sum to one because they
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represent conditional probabilities. By symmetry, the sum of all the elements
in a row sum to one. And therefore:

1
n1 = M( 1

n1).

Theorem 1. Consider a Markov-Chain which is symmetric, strongly connected
and has self-loops. Then for any initial distribution p0 it holds

∀ε > 0 ∃T ∈ N ∀τ > T, ∀i ∈ {1, ..., n} :
1

n
− ε < piτ <

1

n
+ ε.

Proof. Because M is symmetric, there is a basis of orthogonal eigenvectors
(v1, ..., vn), with v1 = 1

n1. Their eigenvalues are (λ1, λ2, ..., λn) with λ1 = 1.
Without loss of generality we assume that λ2 is the second largest eigenvalue in
absolute terms. p0 can be written as linear combinations of all eigenvectors.

p0 = a1v1 +

n∑
i=2

aivi

By corollary 1 and the fact that (v1, ..., vn) are orthogonal eigenvectors we can
write the distribution vector in period τ as

pτ = a1
1
n1 +

n∑
i=2

λτ−1
i aivi.

By proposition 6 the eigenvalues (λ2, ..., λn) are all smaller then one in absolute
terms, the summands λτ−1

i aivi converge to 0 for τ → ∞. This implies that
a1 = 1.
Let q be the largest entry in all eigenvectors and a the absolute value of the
largest coefficient ai. For a given ε we set

T := −
log10

(
naq
ε

)
log10(|λ2|)

+ 1.

For τ > T we have as upper bound on pτ
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pτ = 1
n1 +

n∑
i=2

λτ−1
i aivi

≤ 1
n1 +

n∑
i=2

|λi|τ−1|ai||vi|

≤ 1
n1 +

n∑
i=2

|λ2|T−1|ai||vi|

≤ 1
n1 +

n∑
i=2

|λ2|−
log10(naqε )
log10(|λ2|) |ai||vi|

= 1
n1 +

n∑
i=2

10
log10(|λ2|)

− log10(naqε )
log10(|λ2|) |ai||vi|

= 1
n1 +

n∑
i=2

10log10( ε
naq )|ai||vi|

= 1
n1 +

n∑
i=2

ε

naq
|ai||vi|

= 1
n1 +

n∑
i=2

ε

n

|ai|
a

1

q
|vi|

≤ 1
n1 +

n∑
i=2

ε

n
1

≤ 1
n1 + ε1.

Reading the equation element wise gives the wanted upper bound piτ <
1
n + ε.

The lower bound can be derived analogously.

2.2.2 Uniform Draw

Definition 6. We define the state graph of the Markov Draw as Φ =
(VΦ, AΦ). Its underlying vertex set VΦ is the set of all realizations of (S,M).
For a realization G, we denote by VG the corresponding vertex in VΦ. It contains
double arrows, the arrow set AΦ is defined as follows:

1. For all vertices we set a directed loop (VG, VG) with probability q.

2. Let G′ be another realization. For each feasible schlaufen-sequence
R, which edge-set of the even closed alternating walks is equal to
E(G)∆E(G′), we set an arrow (VG, VG′) and assign the probability pG(R).

3. We set a directed loop (VG, VG) if the probability of all arrows leaving VG
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according to point 1 or 2 do not sum to 1. Its probability is 1 minus the
sum of the probability of all leaving arrows according to point 1 or 2.

The probability of any edge a ∈ Aφ we denote by p(a).

Lemma 2. For any two vertices VG, VG′ the transition probability (VG, VG′) in
Φ is equal to the transition probability (VG′ , VG).

Proof. Let AG,G′ be the set of edges from the vertex VG to the vertex VG′ . We
construct a bijection ϕ : AG,G′ → AG′,G. Then we show that the probability of
an edge p(a) is equal to p(ϕ(a)). If that is proven, the probability of a transition
from VG to VG′ can be transformed in the following manner:∑

a∈AG,G′

p(a) =
∑

a∈AG,G′

p(ϕ(a))

=
∑

ϕ−1(a′)∈AG,G′

p(a′)

=
∑

a′∈ϕ(AG,G′ )

p(a′)

=
∑

a′∈AG′,G

p(a′)

which is the probability for a transition from VG′ to VG.

For the construction of the bijection, consider that each edge AG,G′ cor-
responds uniquely to a feasible schlaufen-sequence R = (R1, ..., Rk). If
Ri = (v1, ..., vi, ..., vl) is a schlaufe of case 1 with vi as closed alternating walk
start, we define R̄i := (v1, ..., vi−1, vl, vl−1, ..., vi+1, vi). Note that by definition
vi = vl. If Ri is a schlaufe of case 2 or case 3, we set R̄i := Ri. We define
R̄ := (R̄1, ..., R̄k).
Note that the Ri, i ∈ {1, ..., k} are edge disjoint. As soon as the closed walk
of (R1, ..., Ri) are switched, R̄i is a schlaufe in the graph obtained by the
switching. The violation matrix of R̄i is the negative violation matrix of Ri.
This implies that if R is a feasible schlaufen-sequence for G, which defines an
edge in AG,G′ , then R̄ is a feasible schlaufen-sequence for G′ and defines an
edge AG′,G.
We now define ϕ as the function, which maps an edge in AG,G′ with schlaufen-
sequence R to the edge in AG′,G with schlaufen-sequence R̄. By construction,
ϕ is injective, which implies |AG,G′ | ≤ |AG′,G|. By symmetry, we conclude that
|AG′,G| ≤ |AG,G′ |, which implies |AG′,G| = |AG′,G| and that ϕ is bijective.

It remains to show that the probability of an edge p(a) is equal to p(ϕ(a)). Let
R = (R1, ..., Rk) be the feasible schlaufen-sequence corresponding to a. For
every node, there are equally many feasible active / passive out-edges in G as
in G′. This can be seen as follows, with no marked edges the number of feasible
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out-edges is directly derived from the degree of the node. Recall that with Gi
we denote the graph with the schlaufen (R1, ..., Ri−1) marked and with G′i the
graph with the schlaufen (R̄1, ..., R̄i−1). If for a node v, one (active or passive)
edge is marked due to an edge in Ri, then one (active or passive) edge for node
v is marked due to an edge in R̄i. Therefore, we conclude that for every node
there are equally many feasible active / passive out-edges in Gi as in G′i for all
i ∈ {1, ..., k}. Therefore, raG′i

(v) is equal to raGi(v) and rpG′i
(v) is equal to rpGi(v)

for i ∈ {1, ..., k}. Looking at equation (2), the pG(Ri) is only different from
pG′(R̄i) with respect to the numbering of the factors. But in a closed walk of a
schlaufe the start node vi and the end node vl are such that i− l mod 2 = 0.
The reordering leaves even indices even and odd indices odd. Therefore, pG(Ri)
= pG′(R̄i). From equation (3), it follows directly that pG(R) = pG′(R̄), which
completes the proof.

Lemma 3. The state graph Φ is strongly connected.

Proof. The symmetric difference of two realizations of (S,M), which we denote
by G and G′, is a set of alternating closed walks. Alternating closed walks are in
particular schlaufen (of case 1). We order the alternating schlaufen {R1, ..., Rk}
arbitrarily to obtain the sequence (R1, ..., Rk). The sum of the violation ma-
trices is 0. Therefore, (R1, ..., Rk) is either a feasible schlaufen-sequence or a
concatenation of feasible schlaufen-sequences. In the first case, there is an edge
from VG to VG′ . In the second case, all the feasible schlaufen-sequences define
an edge to a new vertex, resulting in a directed path starting at VG and ending
in VG′ . Thus between any two vertices in Φ there is a directed path.

Theorem 2. The algorithm Markov Draw is a random walk on the state
graph Φ which samples uniformly from the set all realizations of (S,M) for
τ →∞.

Proof. Every time the algorithm arrives at step 4, a new edge of the state
graph is crossed. If at step 2 A is chosen, it follows a loop edge of type 1 with
probability q. Else, it proceeds to step 3. In step 3, a schlaufen-sequence R
is constructed. The probability with which R is constructed in the algorithm
Schlaufen Detection is given by equation (3). If the violation matrices sum
up to 0, the closed walks are switched and an edge of type 2 is followed with
probability pG(R). If the violation matrices do not sum up to 0, then an edge
of type 3 is followed. The probability of the cases of type 3 equals to 1 minus
the probability of the cases of type 1 and of type 2. Therefore algorithm 1 is a
random walk on the state graph Φ.
According to lemma 2, Φ is (weighted) symmetric and according to lemma 3,
it is strongly connected. Φ has self-loops. According to theorem 1, the limit
distribution is uniform.
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2.3 Hard Constraints

Erdős et al. inquired in “Graph Realizations Constrained by Skeleton Graphs”
the PAM-realization problem for the case that the partition restriction have
special topological characteristics. The crucial idea in dealing with the
PAM-realization problem is to consider hard constraints. Hard constraints are
0 entries in the PAM. The PAM can be interpreted as an adjacency matrix,
where an edge exists for each nonzero entry. In this way they define a skeleton
graph, which captures the topology of the constraints [18].

In practice, hard constrained partitions occur often. The most prominent
examples are k-partite graphs, where there are no edges within the k edge
groups. The case k = 2 corresponds to a bipartite graph. Another example are
graphs with node groups corresponding to geographical areas. If only nodes
belonging to neighboring areas can be connected, then the resulting partition
adjacency matrix contains many hard constraints.

Apart from the edges not possible due to the hard partition constraints, it is
also clear that an alerting path never passes a node with degree 0 or a node
with degree |V | − 1. This is the case because the alternating walk contains
for every node except the start node one edge in G and one edge in Ḡ. This
observation motivates the definition of forbidden edges.

Definition 7. Let (S,M) be the degree sequence and the partition adjacency
matrix to a node set V . Let

E = {{v′, v′′}|v′, v′′ ∈ V, v′ 6= v′′}

be the set of possible edges. We call an edge e ∈ E forbidden if and only if

• e is incident to a node v with degree 0 or degree |V | − 1.

• e is incident to two nodes, v′ belonging to node group i and v′′ belonging
to node group j, which are hard constrained, Mi,j = 0.

Proposition 8. A forbidden edge occurs either in all the realizations of (S,M)
or occurs in no realization of (S,M)

Proof. Let e be a forbidden edge.

Case 1: e is incident to a node v with degree 0. The node v has degree
0 in all the realizations of (S,M). Therefore, e it cannot occur in any realization.

Case 2 : e is incident with a node v with degree |V | − 1. The node
v is adjacent to all other vertices in V . Because the degree of v is the same
in all the realizations of (S,M), v is incident to all other vertices in all the
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realization. In particular the edge e occurs in all the realizations.

Case 3: e is incident to two nodes, v′ belonging to node group i and
v′′ belonging to node group j, which are hard constrained, Mi,j = 0.
Then e cannot occur in any realization of (S,M) because it would violate the
partition constraints.

The above algorithm deals with forbidden edges by rejecting to switch schlaufen
containing them or by creating schlaufen of case 2 with no closed alternating
walk. In a partition with many hard constraints or in a graph with many isolated
nodes, the probability that a schlaufe contains a forbidden edge is high. The
forbidden edges are known from the start of the algorithm. It is sensible to
consider them at construction time. This is done by adjusting the set of feasible
out nodes.

Definition 8. The set of strictly feasible out-edges is equal to the set difference
of the set of feasible out-edges according to definition 3 minus the set of forbidden
edges.

We now adjust the Schlaufen Detection by replacing the feasible out-edges
in step 2 and 4 with the strongly feasible out-edges. We call the new schlaufen
detection algorithm Improved Schlaufen Detection.

Proposition 9. Let R = (v1, ..., vl) be a schlaufe in graph G. Let r̃aG(vi) be
the cardinality of the set of strictly feasible out-edges of node vi in G for an
active visit and r̃pG(vi) for a passive visited. The probability that the algorithm
Improved Schlaufen Detection marks schlaufe R is equal to:

pG(R) =

{
0 if R contains a forbidden edge
1
n

∏l−1
i=1

(
1

r̃aG(vi)
[i mod 2] + 1

r̃pG(vi)
[(i− 1) mod 2]

)
else

(4)

Proof. Case R contains a forbidden edge:
Let the forbidden edge be {vi, vi+1}. When the node vi is reached by the
algorithm Improved Schlaufen Detection, {vi, vi+1} is not among the
strictly feasible out-edges. Therefore the probability that vi+1 comes after vi
in the schlaufen construction is 0.

Case R does not contain a forbidden edge:
The probability of a schlaufe R can be determined similarly to the proof of
proposition 3 : in the initialization phase a node is chosen uniformly. The
probability that v1 is chosen is 1

n .
The edges are only marked at step 6 in the Schlaufen Detection algorithm.
Additionally, because of proposition 8, the set of forbidden edges never changes
during the algorithm. This implies that previous visits of nodes in the walk do
not alter the set of feasible out-edges for node vi. By the definition of a schlaufe
and the fact that the schlaufe does not contain a forbidden edge, vi+1 is a node
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reachable via a strictly feasible out-edge. vi+1 is reached with probability 1
r̃aG(vi)

in an active visit and with probability 1
r̃pG(vi)

in a passive visit. When vl is visited

then there is no further strictly feasible out-node or an even alternating walk is
closed or the edge {vl−1, vl} is present in the alternating walk (v1, ..., vl−1), in
all cases the algorithm Improved Schlaufen Detection goes to step 6 and
terminates. The probability of R = (v1, ..., vl) is the product of the initializing
probability and the probability of each step:

p̃G(R) =
1

n

l−1∏
i=1

(
1

r̃aG(vi)
[i mod 2] +

1

r̃pG(vi)
[(i− 1) mod 2]

)
.

The probability of a schlaufen-sequence R = (R1, ..., Rk) is:

p̃G(R) = (1− q) 1

2(k−1)

k∏
i=1

p̃Gi(Ri). (5)

For every schlaufen-sequence R the probability pG(R) is strictly positive. How-
ever, this is not the case with p̃G(R).

Definition 9. We call a sequence of schlaufen R = (R1, ..., Rk) strictly feasible
if no schlaufe contains a forbidden edge, the schlaufen are edge-disjoint, the sum
of the violation matrices is zero and for i < k the sum of the violation matrices
is not zero.

Proposition 10. For each strictly feasible schlaufen-sequence R = (R1, ..., Rk)
the probability p̃G(R) is strictly positive.

Proof. Due to equation (5) it is sufficient to show that for each schlaufe Ri, i ∈
{1, ..., k} the value p̃Gi(Ri) is strictly positive. Because the schlaufen-sequence
is strictly feasible every schlaufe Ri = (v1, ..., vl) does not contain any forbidden
edge. Because of proposition 9, p̃Gi(Ri) is equal to

1

n

l−1∏
j=1

(
1

r̃aGi(vj)
[j mod 2] +

1

r̃pGi(vj)
[(j − 1) mod 2]

)
,

which is a product of strictly positive values.

We can now define

Definition 10. We define the state graph of the of the Markov Draw, which
uses the subroutine Improved Schlaufen Detection as Φ̃ = (VΦ̃, AΦ̃). Its
underlying vertex set VΦ̃ is the set of all realizations of (S,M). For a realization
G, we denote by VG the corresponding vertex in VΦ̃. It contains double arrows,
the arrow set AΦ is defined as follows:
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1. For all vertices we set a directed loop (VG, VG) with probability q.

2. Let G′ be another realization. For each feasible schlaufen-sequence R,
which circle edge-set is equal to G∆G′ we set an arrow (VG, VG′) and
assign the probability p̃G(R).

3. We set a directed loop (VG, VG) if the probability of all arrows leaving VG
according to point 1 or 2 do not sum to 1. Its probability is 1 minus the
sum of the probability of all leaving arrows according to point 1 or 2.

The probability of any edge a ∈ AΦ̃ we denote by p̃(a). Note the only difference

of Φ and Φ̃ are the probabilities of the edges.

Lemma 4. For any two vertices VG, VG′ the transition probability (VG, VG′) in
Φ̃ is equal to the transition probability (VG′ , VG).

Proof. Let AG,G′ be the set of edges from the vertex VG to the vertex VG′ .

Because the vertex set of Φ and Φ̃ is the same, the existence of a bijection
ϕ : AG,G′ → AG′,G follows analogically to the proof of lemma 2. We show that
the probability of an edge p̃(a) is equal to p̃(ϕ(a)).

For any node, there are equally many feasible active / passive out-edges
in G as in G′. Because the set of forbidden edges doesn’t change, there are
equally many forbidden active/passive out-edges and therefore equally many
strictly feasible out-edges in G as in G′. If for a node v, one to v incident edge
is marked due to an edge in Ri, then, one to v incident edge is marked due to an
edge in R̄i. Therefore, r̃aG′i

(v) is equal to r̃aGi(v) and r̃pG′i
(v) is equal to r̃pGi(v).

Looking at equation (4), the p̃Gi(Ri) is only different from p̃G′i(R̄i) with respect
to the numbering of the factors. But in a closed walk of a schlaufe the start
node vi and the end node vl are such that i − l mod 2 = 0. The reordering
leaves even indices even and odd indices odd. Therefore, p̃G(Ri) = p̃G′(R̄i).
From equation (5), it follows directly that p̃G(R) = p̃G′(R̄). The equation∑

a∈AG′,G

p̃(a) =
∑

a′∈AG,G′

p̃(a′)

follows also analogically as in the proof of lemma 2.

Lemma 5. The state graph Φ̃ is strongly connected.

Proof. The proof is analogous to the proof of lemma 3. However we have to
show that the schlaufen (R1, ..., Rk) in the symmetric difference of G and G′

all have a positive probability. The schlaufen (R1, ..., Rk) can be split into a
concatenation of schlaufen-sequences. By proposition 10 we have to show that
the schlaufen-sequences are all strictly feasible. By construction all edges in all
the Schalufen are switched. By proposition 8, forbidden edges cannot occur in
exactly one graph of G′ and G. Therefore all schlaufen don’t contain a forbidden
edge, which concludes the proof.
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Theorem 3. Algorithm Markov Draw, which uses the subroutine Improved
Schlaufen Detection is a random walk on the state Graph Φ̃ which samples
uniformly a feasible graph for τ →∞.

Proof. The proof is analogous to the proof theorem 2. The symmetry and strong
conceitedness is ensured by lemma 4 and lemma 5.

2.4 Discussion

Other approaches have been developed in order to draw out of a set with
more complex constraints. Most notable are the k-switching procedure from
Tabourier [19]. The idea is to choose k edges at random, choose a random
permutation which defines how the edges have to be switched. Then check
if the new graph fulfills the double-edge, self-loops and complex constraints.
If it fulfilled the constraints, the edges are swapped. This approach has two
disadvantages:
For any two graphs fulfilling the constraints, there is a k, such that one can be
transformed into another by an edge-swap of k edges. However, this does not
imply connectivity of the Markov-Chain graph. It is not clear how to choose
the k. To illustrate this problem two example are given. The first one is given
in figure 2 . It has nodes {1, ..., 8} all with degree 1, 4 edges and as additional
constraint no edge from the group {1, ..., 4} to {5, ..., 8}. There are 4 graphs
satisfying this constraints. With the choice of k = 2, the Markov-Chain can
reach all of them. With a four edges switch, the Markov-Chain always performs
a switch in both groups and therefore, can reach only 2 of the 4 feasible
graphs. This problem can be overcome by randomly choosing subsamples of
the k-edges, which are to be swapped.
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Figure 2: Example graph: The four realizations of the first example-graph. If 4 edges
are swapped in one step, it is not possible to reach all the examples.

The second example has for the node-set {0, ..., 2n − 1} where the nodes 0 to
n−1 have degree 3 and the nodes n to 2n−1 have degree 1. We define n groups.
In group i are all the nodes j for which j ≡ i mod n. The group constraints
are: the number of cross-edges between two groups is 2 if i − j ≡ 1 mod n.
Any realization of this graph has no edges between nodes from {n, ..., 2n − 1},
because adding an edge to these two nodes would isolate them from the rest of
the graph and the degree-sequence of the residual graph would not be graphical
anymore. Every node of {1, ..., n − 1} has to be adjacent to at least one node
of {n, ..., 2n − 1}. By the pigeonhole principle, it follows that every node of
{1, ..., n−1} has to be adjacent to exactly one node of {n, ..., 2n−1} and therefore
any realization has to have the edge-set A = {{i, i+1 mod n}|i ∈ {0, ..., n−1}}.
Every node in {0, ..., n−1} has to be connected with one node of {n, ..., 2n−1}.
Due to the double arrow and partition restrictions, there is only one node of
{n, ..., 2n − 1} feasible in each one of the two neighboring groups. If one is
chosen, then the others are implied by this choice. Therefore, there are only two
options for the other edges either B = {{i, (i+1 mod n)+n}|i ∈ {0, ..., n−1}}
or B = {{i, (i − 1 mod n) + n}|i ∈ {0, ..., n − 1}}. Figure 3 shows the two
possible realizations.
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Figure 3: Example graph: The two realizations of the second example-graph. In order
to reach the other realization by a swap, n edges have to be swapped simultaneously.

The symmetric difference of the two possible realization has 2n edges. For the
k-switch algorithm to work for this case, k = n has to be chosen in advance.
The proposed algorithm solves this problem by not having to define in advance
how many edges have to be swapped.

Another problem, which the k-switching procedure has, is that for high
k, there is a high rejection of constraints. As Tabourier puts it:

“The reason why large values of k are not necessarily advisable actually
lies in the possibility of k-switch failures, i.e. such that the resulting
graph does not anymore belong to the set of feasible graphs and thus the
walk stays on the same graph at the next step. Odds of such failure
depend in a complicated way on k.[..] In practice, given an a priori fixed
number of trials, we observe that the number of successful alterations
tends to decrease sharply for large values of k.” 2

This is in particular a problem when the graph is dense, due to the double-arrow
restriction. The example above showed a case, where for correctness, k had to
be chosen as half of the edge-set. In a practical example, choosing k as half of
the edge-set will almost never find a possible switch. The proposed algorithm
alleviates this problem, because by construction of the switching edge set, there
is neither double arrow nor loop violation. Further partition restriction which
are 0 can be considered while constructing the schlaufen, which is particular
interesting when looking at graphs with hard constraint such as bipartite
graphs or the graph in figure 3.

A common problem, which all the Markov-Chain sampling methods face, is
how long it is necessary to run the algorithm until the generated sample is from
a uniform distribution. In other words, how fast is the Markov-Chain mixing.

2from section 2.4 in [19]
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This is for the general edge-swap algorithm an open problem. There are mixing
results for regular graphs [20], which where subsequently amplified to a broader
class of graphs [21]. The mixing properties of the proposed algorithm are to be
inquired for future work.

2.5 Implementation

The package Uniform Graph Draw implements the Markov Draw algorithm
and provides a simple API. It is written in Python. The source code is openly
available under the MIT Licence at:

https://github.com/AndrinPelican/ugd.

A documentation on the API, architecture, and testing is included. The package
is published on the Python Package Index (PyPI):

https://pypi.org/project/ugd/

and is installable via pip.

3 The Realization Problem

The algorithm Markov Draw is able to draw uniformly out of the feasible
set G if an element of G is provided. If one is interested in inquiring a specific
observed graph, then the observed graph is the element for the input to the
algorithm. Otherwise a natural question is whether such an element exists and
how to construct it. We first provide a necessary condition for the existence of
a graph. We then discuss the steps and challenges of extending it to a sufficient
condition.

3.1 A Necessary Condition

Consider the node-set {1, ..., n}, the degree-sequence S, the node groups Vi and
the partition matrix M ∈ N|P|×|P|. Assume there exists a realization G of
(S,M). The nodes in group V1 fulfill the degree sequence. For each other node
group Vj , j ∈ {2, ..., |P|} there are M1,j edges from V1 to Vj . Each node in V1 is
connected to at most |Vj | nodes in Vj , since otherwise a double edge constraint is
violated. We now derive a multigraph H1 from G by shrinking the node-groups
{V2, ..., V|P|}. This gives the motivation for the following definition:

Definition 11. For a graph G satisfying (S,M) we define for i = 1, ..., |P|
the to i corresponding multigraph Hi = (V,E). The node-set V is equal to
Vi ∪ {V1, ..., Vi−1, Vi+1, ..., V|P|}. The nodes {V1, ..., Vi−1, Vi+1, ..., V|P|} are
referred to as outer nodes. For each edge e in G that is incident with an node

25



in Vi we create an edge in Hi as follows. If e is incident to two nodes in Vi, it
is incident to the same two nodes in Hi. If e is incident with a node in Vi and
a node in group Vj, it is in Hi incident with the same node in group Vi and it
is incident to the node Vj.

The next definition clarifies how the to i corresponding multigraph relates to
the (S,M) restrictions.

Definition 12. We call the to i corresponding multigraph Hi feasi-
ble if the following condition are fulfilled. There are no edges between
{V1, ..., Vi−1, Vi+1, ..., V|P|} and no parallel edges within Vi. For node Vj and
a node in Vi there are at most |Vj | parallel edges. Vj has degree M1,j.

The to i corresponding feasible multigraph is therefore characterized by the
degree-sequence of S restricted on Vi and the tuples (aj ,mj) = (Mi,j , |Vj |) for
j ∈ {1, ..., i− 1, i+ 1, ..., |P|}.

Proposition 11. If there exists a graph G satisfying (S,M), then for each
i = 1, ..., |P| there exists a to i corresponding feasible multigraph Hi = (V,E).

Proof. Definition 11 gives an explicit construction from G to a to i cor-
responding multigraph Hi. By definition there are no edges between the
nodes {V1, ..., Vi−1, Vi+1, ..., V|P|}, no parallel edges within Vi. The nodes in
Vi have degrees of the restricted degree-sequence SVi . And the outer nodes
Vj ∈ {V1, ..., Vi−1, Vi+1, ..., V|P|} have aj incident edges and at most mj parallel
edges.
Therefore there exists a to i corresponding feasible multigraph Hi.

Corollary 2. If it is not possible to construct a feasible multigraph Hi for each
node-group Vi, then there is no realization of (S,M).

Corollary 2 delivers a necessary condition for the existence of a realization. For
the construction of Hi it is convenient to consider another type of restricted,
called feasible extended graph F i.

Definition 13. We define a to i corresponding feasible extended graph

F i = (V,A). The node set V is equal to
⋃|P|
k=1 Vk. The nodes are enumerated by

their respective group Vk, k ∈ {1, ..., |P|}. In particular, vkj is the node number

j of group Vk. The nodes vkj , k 6= i are referred to as outer nodes.

The degree of vij equals the corresponding degree in S. For the calculation of the

degree of vkj , k 6= i we determine b ∈ N and r < mk such that ak = bmk + r. If

k ≤ r the degree of vkj is b+ 1. Otherwise the degree is b. Further it is required
that no two outer nodes are adjacent.

The relationship between the feasibility of a multigraph and the feasibility of
an extended graph is given by the following lemma.
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Lemma 6. There exists a to i corresponding feasible extended graph if and only
if there exists a to i corresponding feasible multigraph.

Proof. ⇒:
There exists a to i corresponding feasible multigraph Hi. Consider the outer
node Vk. We enumerate the incident edges. For the enumeration we start
with an edge, which is among the ones with the most parallel edges. Then we
enumerate all its parallel edges. This procedure is iterated until all the edges
incident with Vk are enumerated. Consider the mk nodes vk1 , ..., v

k
mk

in F i. For

edge h leave the node in Vi unaltered and replace Vk with node vkh mod mk
.

There will be no double arrows because in the multigraph the node Vk has at
most mk parallel edges.
This can be done for all outer nodes in Hi. The edges in Hi with only incident
nodes in Vi map in a natural manner to edges in F i with only nodes in Vi.
This gives a feasible realization of F i.
⇐:
We start with the to i corresponding feasible extended graph. Since in each
outer node-group Vk there are at most mk nodes, contracting the nodes in the
node-group k to a single node will lead to a multigraph with node k having at
most mk parallel edges.
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3.1.1 The Extended Havel-Hakimi Algorithm

We are now able to define the Extended Havel-Hakimi. It can be applied
to each node group. The nodes in the node-group, which it is applied to, are
called inner nodes. The restriction of the degree sequence S on the inner nodes
is refereed to a Sin.

Extended Havel-Hakimi:

Input: The degree sequence of the inner nodes Sin, the sequence
(a1,m1), ..., (a|P|,m|P|) of tuples with the degree of the outer nodes and
maximal parallel edges.
Procedure:
Outer node expansion phase

1. Start an empty degree series, it is called the outer degree sequence
Sout

2. For each outer node tuple (ak,mk)
Calculate r, b such that ak = bmk + r, with b ∈ N and r < mk

Add mk − r entries to the outer degree sequence with value b
Add r entries to the outer degree sequence with value b+ 1

Cross-edge addition phase

1. Start an empty graph with length(Sin) + length(Sout) nodes.

2. For each outer node vout:
For i in degree(vout):

Find inner node vin with highest residual degree not
adjacent to vout

If degree of vin is 0:
Return FALSE

Else:
Add the edge {vout, vin} to the graph

Havel-Hakimi phase

1. Add inner edges to the graph using the Havel-Hakimi algorithm on
the residual inner degree-sequence.
If possible:

Return TRUE and the realization
Else:

Return FALSE

Output: TRUE and the realization/FALSE.
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Theorem 4. The algorithm Extended Havel-Hakimi, returns TRUE if and
only if there exists a feasible multigraph.

Proof. The phase outer node expansion phase transforms the constraints of the
sequence (a1,m1), ..., (a|P|,m|P|) of tuples with the degree of the outer nodes
and the maximal parallel edges to the constraints of the extended graph.
Assume: the cross-edge addition phase and Havel-Hakimi phase construct a
realization of the extended graph if and only if a feasible extended graph exists.
Then the algorithm returns TRUE if and only if there exists a feasible extended
graph. Lemma 6 ensures that the algorithm Extended Havel-Hakimi,
returns TRUE if and only if there exists a feasible multigraph.

It remains to show that: The cross-edge addition phase and Havel-Hakimi
phase construct a realization of the extended graph if and only if a feasible
extended graph exists.
⇐:
If the algorithm returns TRUE, then it also delivers a realization of the
extended graph. During the cross-edge addition phase an edge is only added if
it does not form a double edge and the residual degrees of the two nodes are not
0. Further no edges between outer nodes can be added. In the Havel-Hakimi
phase only edges between inner nodes are added, which do not form double
edges or loops and are incident to nodes with residual degree bigger then 0.
Therefore the constructed realization of the extended graph is feasible.
⇒:
We assume the algorithm returns FALSE, despite the existence of a correct
graph.
Let (e1, e2, ..., eh) be the edges added by the algorithm until it returns FALSE.
Let Gi for 0 ≤ i ≤ h be the set of admissible extended graphs sharing the first
i edges of (e1, e2, ..., eh). By assumption G0 6= ∅. Since the algorithm returns
FALSE, Gh is empty. Therefore there exists a unique index 0 ≤ j < h, such
that Gj 6= ∅ and Gj+1 = ∅.

case 1: ej+1 is added in the outer node expansion phase.

Let G be a graph in Gj . We construct from G a graph G̃ ∈ Gj+1 leading to the
desired contradiction. ej+1 has the shape {o, s} and let {o, s̃} be an edge in G,
which is not in (e1, ..., ej).
By construction of the algorithm the residual degree of s̃ is smaller or equal to
the residual degree of s. Since {o, s̃} is in G, there is at least one edge {k, s},
which is not in (e1, ..., ej), such that k is not adjacent (and not equal) to s̃ in
G.
{k, s}, {o, s̃} are in G and {k, s̃}, {o, s} are not in G. We define G̃ by deleting
{k, s}, {o, s̃} from G and adding {k, s̃}, {o, s} to G. The nodes s, s̃ are both
inner-nodes. Therefore independent of the node-group of o and k there are
equally many cross-group edges in G and G̃. G̃ is still admissible, because
the degree-sequence is the same as of G and there are no double edges nor
self loops in G̃. However ej+1 = {o, s} is in G̃, hence G̃ ∈ Gj+1. A contradiction.
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case 2: ej+1 is added in the Havel-Hakimi phase.
Let el+1 be the first edge added in the Havel-Hakimi phase. When el+1 is added
only inner-nodes have a positive residual degree. Because l < j there exists a
feasible graph G ∈ Gl sharing all the edges, which were added up to el. Because
G satisfies the degree-sequence, the residual inner degree-sequence is graphical.
Due to the correctness of the Havel-Hakimi algorithm the Extended Havel-
Hakimi algorithm would return TRUE. A contradiction.

3.1.2 Examples

In order to illustrate the above derived procedure we give two examples. The
first is a positive example, where there exists a realization of the graph with
partition constraints. The second shows for a given partition constraint that
there exists no realization of a graph fulfilling the constraint.

First example:
The restrictions of the graph are:

• Degree sequence: S = (3, 1, 1, 3, 1, 1).

• Partitions: P = {V1, V2, V3} with V1 = {1, 2}, V2 = {3, 4} and V3 = {5, 6}.

• Partition matrix:

M =

0 3 1
3 0 1
1 1 0

 .

In order to check the necessary condition we construct for each node group Vi
a feasible multigraph Hi. For the illustration we give the conditions for the
feasible multigraph H1:

• Degree sequence: SV1 = (3, 1).

• The outer edge tuple for V2 is (3, 2) and for V3 is (1, 2).

• No edges between outer nodes are allowed.

The conditions for the feasible extended graph F 1 are:

• Degree sequence: S = (3, 1, 2, 1, 1, 0), were the entries 3−6 belong to outer
nodes.

• No edges between the outer nodes are allowed.

The figure 4 shows example realization of G, H1 and F 1. The algorithm Ex-
tended Havel-Hakimi would construct F 1.
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Figure 4: Realizations of G, H1 and F 1 for the restrictions of the first example

Second example:
The restrictions of the graph are:

• Degree sequence: S = (3, 1, 1, 3, 1, 1).

• Partitions: P = {V1, V2, V3} with V1 = {1, 2}, V2 = {3, 4} and V3 = {5, 6}.

• Partition matrix :

M =

0 4 0
4 0 0
0 0 1

 .

In order to check the necessary condition we construct for each node group Vi a
feasible multigraph Hi. For the example we give the conditions for the feasible
multigraph H1:

• Degree sequence: SV1 = (3, 1).

• The outer edge tuple for V2 is (4, 2) and for V3 is (0, 2).

• No edges between outer nodes are allowed.

The conditions for the feasible extended graph F 1 are:

• Degree sequence: S = (3, 1, 2, 2, 0, 0), were the entries 3−6 belong to outer
nodes.

• No edges between the outer nodes are allowed.

The algorithm Extended Havel-Hakimi would construct the restriction of
the feasible extended graph F 1 in the the outer node expansion phase.
In the cross-edge addition phase it adds the edges {3, 1}, {3, 2} and {4, 1}. After
the edges were added, the residual degree of node 4 is not zero. The only node
in V1 not adjacent to node 4 is node 2. Node 2 has residual degree 0. Therefore
the Extended Havel-Hakimi returns FALSE. No realization of the restriction
of example 2 is possible.
Note that the degree sequence (3, 1, 2, 2, 0, 0) is graphical. The restriction, that
the outer nodes cannot be connected, imply that there is no feasible extended
graph.
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3.2 Approaches for Sufficiency

For a sufficient condition it is necessary to answer the question, whether there
exists a graph with the degree sequence S, respecting the partition constraints
given by the partition matrix M . This problem is often referred to as the
Partition Adjacency Matrix realization problem. In short PAM-realization
problem. The PAM realization problem is conjectured to be np−complete
[18],[22].

It turned out to be helpful to consider the following help graph T . We
denote the degree of a node v in the degree sequence S with d(v). The node
set of T is

V (T ) = {vu|v, u ∈ V, u 6= v} ∪ {av1, ..., avn−1−d(v)|v ∈ V }

and the edge set of T is:

Ein(T ) = {{vu, avi }|v, u ∈ V, u 6= v, i = 1, ..., n− 1− d(v)}

Eout(T ) = {{vu, uv}|v, u ∈ V, u 6= v}

E(T ) = Eout(T ) ∪ Ein(T )

We call T the Tutte gated. The above graph is a special case of a help graph,
which Tutte originally introduced in 1954 in order to solve the f -factor problem
[23].

Proposition 12. T has the following property: There is a graph with degree
sequence S if and only if T has a perfect matching. From a perfect matching in
T we define the edge set

E = {{u, v}|{vu, uv} is in the matching}

Proof. See [23] [18].

We illustrate the statements in figure 5.
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Figure 5: A shows the Tutte gadget of the degree sequence S = (2, 2, 1, 1). The
edges in Ein(T ) are colored blue and the edges in Eout(T ) are colored black. There
is a perfect matching, and the edges in the matching are marked bold. B shows the
realization of the degree sequence, which corresponds to the matching.

3.2.1 The Two Group Case

Erdős et al. had the following idea to solve the case of two node groups [18].
They propose to find a realization of the degree sequence with the maximum
number of cross edges Gmax and a realization with the minimal number of cross
edges Gmin. Let P = {V1, V2} be the partition of the node set with only two
node groups. Finding a graph with the maximum number of crossing edges is
equivalent to the problem of finding a perfect matching in T with the maximum
number of edges in

Ecross(T ) = {{vu, uv}|v ∈ V1, u ∈ V2}.

We assign the weight 1 to the edges in Ecross and weight 0 to the edges in
E(T ) \Ecross(T ) and then apply Edmond’s algorithm for the maximal weighed
matching [24] on T in order to find a maximal perfect matching. A maximum
perfect matching corresponds to a graph Gmax satisfying the degree sequence
and having the maximal number of cross edges. When we assign weight 0 to
all edges in Ecross and weight 1 to the edges in E(T ) \ Ecross(T ), we find in a
similar way a realization Gmin of the degree sequence with the minimal possible
crossing edges.
The symmetric difference of Gmax and Gmin is an Eulerian graph and the edge
set decomposes in a collection of closed altering walks. It is possible to iteratively
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apply a 2−edge swap on Gmin in order to transform it into Gmax [10]. This pro-
cedure gives a graph-sequence (Gmin, G1, ..., Gk−1, G

max). Let a be the number
of crossing edges in Gmin and b be the number of crossing edges in Gmax. A
2−edges swap changes the number of crossing edges by 0 or by 2. Therefore for
any c in {a, a+2, a+4, ..., b−2, b} there is a graph in (Gmin, G1, ..., Gk−1, G

max)
with c crossing edges. Let h be an odd number smaller then b−a. There cannot
be a realization of the degree sequence with a+h crossing edges. Assume there
is, then we can remove all the crossing edges in a realization and look at the
remaining graph with only the nodes in the first group. The sum of its degrees
would be odd, a contradiction. Therefore the set {Gmin, G1, ..., Gk−1, G

max}
contains for each possible number of crossing arrows one realization.

3.2.2 An Algebraic Monte-Carlo Approach

The Tutte gadget allows to reduce the degree sequence problem to a matching
problem. In the PAM-realization problem, we are interested in a particular
matching. All possible edges between two node groups correspond to a subset
E′ of the edges in Eout(T ). We want to find a matching which has exactly
as many edges in E′ as the number of desired crossing edges. Because any
realization of the Tutte gadget corresponds to a realization of the degree
sequence, it is sufficient to require at least as many edges in E′ as the number
of desired crossing edges. By the pigeonhole principle any realization which
has at least as many edges in E′ as the number of desired crossing edges, has
exactly as many edges in E′ as the number of desired crossing edges. This
motivates the Dominating Matching Problem.

Dominating Matching Problem: Given a graph G, disjoint subsets
E′1, ..., E

′
k ⊂ E(G), integers (m1, ...,mk), is there a perfect matching in

G, which uses at least mj edges from the edge-set E′j for all j ∈ {1, ..., k}?

Czabarka et al. proposed an algebraic Monte-Carlo algorithm in order to solve
the dominating matching problem [22] . The idea is based on another result
from Tutte described in The Factorization of Linear Graphs [25]. We briefly
state the main results:

Definition 14. Let A be a skew-symmetric matrix, with an even number
of rows 2h. Let Q be the set of all partitions of {1, 2, ..., 2h} into pairs.
An element q ∈ Q can be written as q = {(i1, j1), (i2, j2), ..., (ih, jh)} with
i1 < j1, i2 < j2, ..., ih < jh and i1 < i2 < ... < ih. For the element q ∈ Q the
corresponding permutation is defined as

πq =

[
1 2 3 4 ... 2h− 1 2h
i1 j1 i2 j2 ... ih jh

]
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The pfaffian of A is

Pf(A) =
∑
q∈Q

sign(πq)Ai1,j1Ai2,j2 ·Aih,jh

where sign(πq) is the signature of πq.

For a graph G the matrix A is defined as:

Ai,j =


xi,j if {i, j} ∈ E(G) and i < j

−xi,j if {i, j} ∈ E(G) and i > j

0 else

where the xi,j are indeterminate variables.

Theorem 5. A graph G has an perfect matching if and only if Pf(A) is not the
0 polynomial.

Proof. See [25].

The key idea to consider the edge sets E′1, ..., E
′
k in the dominating matching

problem is to modify the matrix A. Given a graph G and disjoint edge-subsets
E′1, ..., E

′
k ⊂ E(G) a matrix Ã is defined as:

Ãi,j =



xi,jzl if {i, j} ∈ E(G) and i < j and {i, j} ∈ E′l
−xi,jzl if {i, j} ∈ E(G) and i > j and {i, j} ∈ E′l
xi,j if {i, j} ∈ E(G) and i < j and {i, j} 6∈ ∪kl=1E

′
l

−xi,j if {i, j} ∈ E(G) and i > j and {i, j} 6∈ ∪kl=1E
′
l

0 else

where the xi,j and zl are indeterminate variables. With the matrix Ã it is
possible to state the following proposition.

Proposition 13. Given a graph G, disjoint subsets E′1, ..., E
′
k ⊂ E(G), integers

(m1, ...,mk). There is a perfect matching in G, which uses at least mj edges

from the edge-set E′j for all j ∈ {1, ..., k} if and only if the polynomial Pf(Ã)
has a term in which the exponent of zl is at least ml for every l ∈ {1, ..., k}.

Proof. See [22].

Let W be space space of multivariate polynomials in the variables z1, z2, ... .
We define the difference operator ∇z1 : W →W as

∇z1f = f(z1, z2, ...)− f(z1 − 1, z2, ...).

Note that the exponent of z1 is strictly smaller in ∇z1f than in f . The com-
position of h times the ∇z1 operator is denoted with ∇hz1 and the of different

operators we use the product notations
∏2
i=1∇zi = ∇z1∇z2 . The composition

is commutative [22]. Recall that Pf(Ã) is a polynomial in the variables zl for
l ∈ {1, ..., k} and xi,j for i, j ∈ {1, ..., n}. We now can state
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Theorem 6. Given a graph G, disjoint subsets E′1, ..., E
′
k ⊂ E(G), integers

(m1, ...,mk). There is a perfect matching in G, which uses at least mj edges
from the edge-set E′j for all j ∈ {1, ..., k} if and only if the polynomial(

k∏
l=1

∇mlzl

)
Pf(Ã) (6)

is not the 0 polynomial.

Proof. See [22].

Theorem 6 gives a sufficient condition for the existence of a dominating
matching. The polynomial (6) cannot be computed efficiently because the
pfaffian polynomial cannot be computed efficiently. However, if the variables
are substituted, the pfaffians can be evaluated efficiently [26]. Polynomial (6)

can be written out as the sum of
∏k
l=1(ml+1) summands where each summand

consists of a pfaffian and a coefficient.

The procedure to determine whether the polynomial is the zero polyno-
mial is to randomly select values form a Galois field and substitute the
variables. Then evaluate the polynomial (6). If the evaluated polynomial is not
0 then the polynomial in not the zero polynomial and we know with certainty
that a dominating matching exists and the procedure returns TRUE. If the
evaluated polynomial is 0 we repeat the random substitution. After a given
number of repetitions the procedure returns FALSE.

If the result is 0 then either we evaluated the zero polynomial or the
polynomial is not the zero polynomial and we the randomly have chosen a root.
The probability of randomly choosing a root of a non 0 polynomial depends
on the Galois field. The error probability can be controlled by the number
of random trials and by choosing the Galois field sufficiently large using the
Schwartz-Zippel Lemma [27].

Theorem 7. There is a Monte-Carlo procedure for the Dominating Matching
Problem, which runs in polynomial time under the assumption that

∏k
l=1(ml +

1) = O(polynomial(n)), which certainly holds for a constant k. If the proce-
dure returns TRUE, then the sought after graph exists, if the procedure returns
FALSE, then with high probability such a graph does not exist.

Proof. See [22].

4 A Statistical Motivation of the State Space

The goal of this section is to inquire what ensemble is a sensible comparison
for the observed graph. For this purpose it is necessary to specify the proba-
bility space from which the observed graph is suspected to be. Based on the
probability space the comparison is formulated as a test.
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4.1 Probability Distributions on Graphs

Let G be the set of all graphs with a given number of nodes and A its power set
P(G). A is a sigma algebra with the basic set G. We start with a few statements
for discrete probability spaces.

Definition 15. For any function p : G → R we call Pp : A → R with

Pp(A) :=
∑
G∈A

p(G)

the from p induced set function.

Proposition 14. For any probability measure P on (G,A) there is a function
p : G → R such that P = Pp.

Proof. Let p be defined as p : G → R with p(G) := P({G}). Then for any A ∈ A

P(A) = P(∪G∈A{G})

=
∑
G∈A

P({G})

=
∑
G∈A

p(G)

= Pp(A)

Proposition 15. For any function p : G → [0, 1] with
∑
G∈G p(G) = 1, the

from p induced set function Pp is a probability measure.

Proof. The sigma additivity follows directly from the definition 15. The posi-
tivity follows from the positivity of p and Pp(G) =

∑
G∈G p(G) = 1.

We consider probability distributions of the exponential family. Models of the
exponential family are among the most studied and used.

Definition 16. We call a probability measure P of the exponential family if
there is a function T : G → Rk, with the components T1, ..., Tk, coefficients
β ∈ Rk and a constant φ such that P is induced by p : G → [0, 1] with

p(G) := exp(

k∑
i=1

βiTi(G)− φ). (7)

T1, ..., Tk are usually functions such as number of edges or number of incident
edges to a particular node3. The triple SG = (G,A,P), where P is a probability

3We use the notation of [28], for a general introduction to statistical network models, see
[29].
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measure of the exponential family, is a probability space.

The exponential family includes many of the well known random graphs.

Consider T1 equal to the number of edges, define q := exp(β)
exp(β)+1 and set

φ(β) = −log(1− q)
(
n
2

)
.

P (G) = exp(β1T1(G)− φ(β)) (8)

= exp(log(
q

1− q
)T1(G) + log(1− q)

(
n

2

)
) (9)

=
q

1− q
T1(G)

(1− q)(
n
2) (10)

= qT1(G)(1− q)(
n
2)−T1(G) (11)

which is the Erdős Rényi model, where each edge has independently a
probability of q. Another common choice for T1, ..., Tk is that for each node i,
Ti is the degree of node i. This model allows to capture degree heterogeneity in
a network. The corresponding β has the interpretation of affinity of this node.
A natural extension would be to further consider groups of nodes, which
influence the edge formation between them. In the context of social networks
an example would be the node groups induced by gender. This is captured
by additional statistic Tj , j > n which counts the edges between two groups,
or within one group. The corresponding βj has the interpretation of affinity
between these groups.

The set of all graphs with a given number of nodes G is finite. There-
fore the function T can only take on finitely many values (a1, ..., am).

Definition 17. Let Gah be equal to {G ∈ G|T (G) = ah}, Aah be the power set
of Gah and Pah : Aah → [0, 1] be a measure with

Pah(A) :=
P(A)

P(Gah)
.

We call the triple Sah = (Gah ,Aah ,Pah) the on ah conditional probability space.

Note that A ⊃ Aah and P is of the exponential family and thus positive for any
except the empty set. Therefore the on ah conditional probability space is well
defined.

Proposition 16. Let (Gah ,Aah ,Pah) be the on ah conditional probability space.
Pah is the uniform distribution.

Proof. We have to show that for any G1, G2 ∈ Gah is Pah({G1}) = Pah({G2}).
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Let G1, G2 be two graphs from Gah , then

Pah({G1}) =
p(G1)

P(Gah)

=
exp(

∑k
i=1 βiTi(G1)− φ)

P(Gah)

=
exp(

∑k
i=1 βi(ah)i − φ)

P(Gah)

=
exp(

∑k
i=1 βiTi(G2)− φ)

P(Gah)

=
p(G2)

P(Gah)

= Pah({G2})

4.2 Test

We are interested in comparing the observed graph to an ensemble. Usually
the graphs are not compared directly but a set of characteristics is used for
comparison. Based on the characteristics it is decided, whether the observed
graph differs substantially form the ensemble. This can be formalized using test
theory. The 0-hypothesis is: the observed graph does not differ substantially
from the ensemble.

Definition 18. Let SΩ = (Ω,AΩ,PΩ) be a probability space, with AΩ be-
ing the power set of Ω. Let X : Ω → Rl be a function of character-
istics, O = (O1, O2, O3) where O1, O2, O3 are disjoint subsets of Rl with
PΩ(X−1(O1 ∪O2 ∪O3)) = 1 and r, α ∈ [0, 1].
We call the quintuple (SΩ, X,O, r, α) test of X to significance level α if

α = PΩ(X−1(O3)) + rPΩ(X−1(O2))

The interpretation is that O3 is the area in which the 0-hypothesis is rejected.
O2 is the area in which the 0-hypothesis rejected with probability r. O1 is the
area in which the 0-hypothesis is not rejected.
We call a test (SΩ, X,O, r, α), where SΩ is a conditional probability space, a
conditional test.

Theorem 8. Let (Sah , Xah ,Oah , rah , α) , h ∈ {1, ...,m} be conditional tests
to significance level α for all possible values ah, which T can take on.
Then there is a test (SG , X,O, r, α) to the significance level α, such that
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for any graph G for which the 0-hypothesis is with certainty rejected by
(ST (G), XT (G),OT (G), rT (G), α), the 0-hypothesis is with certainty rejected by
(SG , X,O, r, α).

Proof. For every G ∈ G there is a h ∈ {1, ...,m} such that T (G) = ah. Recall
Oah = (O1

ah
, O2

ah
, O3

ah
). Since P({G}) > 0, G is either in X−1

ah
(O1

ah
) or in

X−1
ah

(O2
ah

) or in X−1
ah

(O3
ah

). Therefore Gi = ∪mh=1X
−1
ah

(Oiah) with i = 1, 2, 3 is a
disjoint partition of G.

P(G1) =
∑

h∈{1,...,m}

P(X−1
ah

(O1
ah

))

=
∑

h∈{1,...,m}

P(Gah)Pah(X−1
ah

(O1
ah

))

≤
∑

h∈{1,...,m}

P(Gah)(1− α)

= (1− α)

Analogously follows P(G3) ≤ α. If G2 6= ∅ then P(G2) > 0 and the inequalities

are strict. If G2 6= ∅ set r := α−P(G3)
P(G2) = 1− (1−α)−P(G1)

P(G2) otherwise set r := 0.5 .

r is strictly between 0 and 1. We now define X : G → R with

X(G) :=


0 if G ∈ G1

r if G ∈ G2

1 if G ∈ G3.

Set O = ({0}, {r}, {1}). (SG , X,O, r, α) is a test with the desired properties.

The challenge of setting up a test for a characteristic of interest X is to
determine the rejection sets O. To do so, the probability distribution of X has
to be known. This is especially problematic because the parameters β as well
as the normalizing constant are usually unknown. In order to circumvent this
problem we propose to evaluate T at the observed graph Gobs and conduct
a conditional test (ST (Gobs), XT (Gobs),OT (Gobs), rT (Gobs), α), where XT (Gobs) is
the restriction of X on GT (Gobs). According to proposition 16 the graphs in
GT (Gobs) are uniformly distributed independent of β. Theorem 8 states that
the conditional test to significance level α corresponds to a test to significance
level α on the whole graph space G.

The image space of XT (Gobs) is finite {x1, ..., xo}. The probability distri-
bution of XT (Gobs) is therefore fully described by the probability of the elements
in the image space (px1 , ..., pxo). The set GT (Gobs) is usually too big as to
be computed explicitly. The distribution of XT (Gobs) can be estimated by
uniformly drawing G out of GT (Gobs) and calculate XT (Gobs)(G). For n draws
G1, ..., Gn let nxi be

∑n
k=1 1(XT (Gobs)(Gk) = xi), where 1 is an indicator

function. Set as the estimated distribution p̃xi :=
nxi
n for i ∈ {1, ..., o}.
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Proposition 17. The distrubtion estimate p̃xi for i ∈ {1, ..., o} is consistent.

Proof. Let Y ik : GT (Gobs) → R with

Y ik (G) :=

{
1 if XT (Gobs)(G) = xi

0 else

for k ∈ N be a series of i.i.d. random variables. p̃xi can be written as

p̃xi =
1

n

n∑
k=1

Y ik .

The expectation of p̃xi is

E(p̃xi) = E

(
1

n

n∑
k=1

Y ik

)
=

1

n

n∑
k=1

E(Y ik ) = pxi .

The Y ik are uncorrelated because the draws are independent, therefore the vari-
ance is

V ar(p̃xi) = V ar

(
1

n

n∑
k=1

Y ik

)
=

1

n2

n∑
k=1

V ar(Y ik ) =
V ar(Y ik )

n

which converges to 0 for n→∞. The point estimates p̃xi are therefore consis-
tent. The distribution estimate is composed of finite many point estimates and
therefore is the estimated distribution is consistent.

4.3 Procedure

Let Gobs be the observed graph. First consider the characteristics, which are
suspected to influence the graph-probability. Common characteristics are:

1. Degree-sequence in order to capture the node heterogeneity.

2. Number of crossing edges between node groups in order to capture affinity
between groups.

3. Number of edges within a particular group in order to capture affinity
within the group (or maybe impossibility of edge-formation within the
group).

4. Triangle count, in order to capture the transitivity index of the graph.

These characteristics correspond to the statistic T . Choose a graph character-
istic, which influence has to be tested. This characteristic corresponds to the
statistic X. Estimate the distribution of X by uniform sampling from GT (Gobs).
Define the rejection areas O, using the estimated distribution. Evaluate X at
Gobs and decide on whether to reject the 0-hypothesis based on the area, which
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X(Gobs) falls in.

The algorithm proposed in Section 2 allows to draw uniformly out of the
set GT (Gobs), where T corresponds to characteristics 1-3. The algorithms
discussed in the introduction account exclusively for characteristic 1. As
discussed in Section 2.4, there are swap algorithms which try to account
for characteristic 4 [19]. However, depending on the configurations, this
could potentially cause the state graph to be disconnected, even for simple
graphs [30]. Note that the proposed algorithm can be extended in order to
account for more complex constraints, such as number of triangles. This is
done by modifying the constraint check. However, apart from the constraint
concerning the partition adjacency matrix restriction, the constraints may be
computational expensive to check.

5 Application

The theory developed in the previous section helps to understand the Nyaka-
toke risk sharing network. Nyakatoke is a small Haya village in the Kagera
Region of Tanzania. In 2001, Joachim De Weerdt conducted a census of all
119 households and documented the links between them [31]. The nodes of
the network are the households. The edges are risk sharing relationships. In
order to determine the links, the following questions have been asked to the
households:

“Can you give a list of people from inside or outside of Nyakatoke, who
you can personally rely on for help and/or that can rely on you for help
in cash, kind or labour.”[2]

If two households refer reciprocally to each other, a link is formed. There are
738 links in the network. Apart from the relationships between them, also a
variety of household characteristics were collected. The most important ones
are:

• head age

• head sex

• education

• wealth

• religion

• tribe

• occupation (with multiple occupation allowed)

Figure 6 depicts the Nyakatoke network. Despite its modest size of only 119
nodes, it is impossible to gain some information on the link formation properties
by visual analysis.
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Figure 6: The Nyakatoke network: A plot illustrating the Nyakatoke network. The
red dots are the households, the edges are the risk sharing links. 4

We were interested in the link formation between households of different wealth.
A link is formed if two households claim to seek help from each other in case of
financial distress. A link can impact a household in two ways. Either it has to
help or it can seek help from another household. While one way is positive for
the household, the other way is negative. The overall benefit, however, can be
positive because households valuate income more in distressed situation than
in a situation of abundance 5. If, however, there are asymmetries in wealth
between the households, then the richer household has less chance to obtain
meaningful help in case of distress. Therefore, a positive net benefit of the
richer household is less likely and the probability of link-formation is decreased.
This is the reasoning we try to falsify by setting up the

0-hypothesis: There are equally many (or more) risk-sharing links
between poor and rich households than in a random network.

Apart from wealth we also suspect that education has an influence on the link

4Source: plot taken from the survey-paper [2]
5This statement is based on decreasing marginal utility or equivalently concavity of the

utility function, which is a standard assumption.
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of network formation. There may be a connection based on friendship obtained
during school time. Additionally, for a connection involving two households
with the same educational background, there is less asymmetry in knowledge.
Education often goes with wealth. Less links between the rich and poor
households may be due to different education levels predominant in groups
of different wealth. Comparing the observed network to networks with the
same degree sequence, could, therefore, lead to a distorted estimate of the
distribution. It is important to consider education when determining which
ensemble of graphs the observation is compared to. For the test distribution,
the comparison ensemble was chosen as all the graphs with the same degree-
sequence and the same number of links between the different educational
groups.
Since the alternative hypothesis is a reduction in the number of links, the test
is one-sided. The level of significance is set at 5%.

The estimated distribution under the null-model is shown in figure 7. The
observed graph is marked by the red line. It lies in the 0.021 quantile of
the test-distribution. We therefore reject the 0−hypothesis, which can be
interpreted as statistical evidence for our reasoning about link formation
between households of different wealth.

Figure 7: The distribution of risk sharing links between poor and rich households in
the Nyakatoke network under the null-model. The red line marks the number of links
in the observed network.

The estimated test distribution was estimated considering the effect of educa-
tion. In order to see how education is influencing the results, the distribution
is estimated without fixing the number of links across educational groups. The
resulting distribution is shown in Figure 8 (a). The observed graph lies in the
0.011 quantile. Also in this case, the 0-hypothesis is rejected. The mean of the
distribution is shifted down by 0.5 links if education is not controlled for. The
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shift in the mean is significant6, and goes in the expected direction. However,
the magnitude of the change in distribution when controlling for the effect of
education is very low.
In order to understand the minor impact of education on the test distribution,
the influence of education on link formation is inquired. Figure 8 (b) shows
the crossing of high (secondary) to low (primary) educated households (head of
household is relevant) of the observed graph in comparison to graphs with the
same degree sequence. The assumption that the level of education has an im-
pact on link formation is not supported. More precisely, the hypothesis stating
that education has no impact, cannot be rejected (at any reasonable level of
significance). This is consistent with the small change in distribution, as when
we considered education in the distribution estimate for rich-poor links.7

(a) Wealth (b) Education

Figure 8: Inquiring the influence of education on the link distribution. (a) shows the
distribution of risk sharing links between poor and rich households in the Nyakatoke
network when education is not controlled for. (b) shows the number of risk-sharing
links between high (secondary) and low (primary) educated households. The red lines
mark the number of links in the observed network.

6 Conclusion

This thesis inquiries graphs with a fixed degree sequence under partition
constraints.

The main result is an algorithm which generates for a given graph a uniform
sample out of the same PAM-restriction class. This algorithm can be used
for a Markov-Chain Monte Carlo estimation of a distribution of a graph
characteristic. We prove the correctness of the algorithm using only elementary
results. Improvements on the original algorithm are discussed. In particu-
lar, how hard constraints and isolated nodes can be considered during the

6to a significance level of 5 %
7The paragraph Further Inquire of the Network also uses the sample algorithm. However,

its purpose is rather of the type descriptive statistics than testing because the procedure:
setting up model, deriving the 0-hypothesis, defining level of significance and then testing is
not followed. Nevertheless, it is helpful to reveal interesting network properties.
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construction of the switch set. This leads to a lower rejection rate of switch sets.

We provide examples, showing that for existing edge swap algorithms, the
state graph becomes unconnected when considering the PAM-restrictions.
Alternative proposed procedures to randomly rewire the edges and reject the
step if the new network violates any restriction. This class of procedures is
not practical because the rejection probability approaches 1 rapidly with the
increasing size of the network.

A central question in all Markov-Chain algorithms used to generate graphs is
whether the Markov-Chain is strongly mixing. This question is still open for
the case, with no partition constraints. It is also open for the PAM-restricted
case.

A natural question which arises is whether there exists a feasible realization
to a given degree sequence and partition restrictions. In the literature, this
problem is referred to as Partition Adjacency Matrix realization problem and
is conjectured to be np-complete. We discussed the solution approach. In the
two group case, there is a polynomial decision algorithm. In the general case,
there is an algebraic random decision algorithm. The error probability can be
set minimal but positive.

A connection between the PAM-restricted network and the theory of random
graphs is established. In particular, it is elaborated how the partition con-
straints relate to random graphs of the exponential family as sufficient statistic.
The knowledge about the probability distribution of the graphs is used to
construct a test framework for the random network. Using this test framework
the choice of the comparison is statistically justified.

The developed theory is applied to analyze the risk sharing network of Nyaka-
toke. The procedure provides evidence that wealth does play a role when de-
ciding which risk sharing links to form.
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