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1 INTRODUCTION 1

1 Introduction

Perfect graphs in terms of graph theory are a class of graphs for which every graph

G fulfills the following property:

The clique number ω(H) - the size of the largest complete subgraph of

H - equals the chromatic number χ(H) - the minimum number of colors

needed to achieve a proper coloring of H - for every induced subgraph

H of G.

In this case we consider graph coloring in the classical sense, i.e. two adjacent ver-

tices need to be colored differently. This means that perfect graphs are the class

of graphs for which the size of the largest clique is the key factor in determining

how many colors are needed to color a graph. Moreover this condition does not

only hold globally for the whole graph but also locally for every subgraph of a per-

fect graph. This class of graphs was first introduced by Berge [9;10] in the early

1960’s. (cf. [16;13])

Perfect graphs can be considered perfect in the way that many algorithmic prob-

lems that do not have an efficient solution in general can be solved efficiently for

perfect graphs. The problem that led Berge to introducing perfect graphs has to

do with the problem of errors in transmissions of information through a commu-

nication channel. Shannon [30] discussed the so-called zero error capacity of a

channel in a paper published in 1956. Zero error capacity defines the maximal

rate at which information can be transmitted through the channel without any

possibility of error. This problem can be modeled by a graph G in which the vertex

set represents the set of symbols that can be transmitted through the channel and

two vertices are adjacent if the symbols they represent cannot be confused for one

another. It is then possible to define graphs Gt, t > 1, whose vertex sets are all

t-tuples of the vertices in G and two vertices in Gt are adjacent if and only if for

some coordinate of the t-tuple the corresponding vertices in G are adjacent. So

what we are interested in is the size of the largest cliques in Gt. The Shannon

capacity of the original graph G is defined as

lim
n→∞

1

n
logω(Gn).

The following inequalities hold:

ωn(G) ≤ ω(Gn) ≤ χ(Gn) ≤ χn(G)

Hence if the graph G is perfect, i.e. especially χ(G) = ω(G), the Shannon capac-

ity is the same as the logarithm of this value. In general however the Shannon
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capacity is difficult to determine. (cf. [13])

Berge [9] conjectured one main property on perfect graphs that became the sub-

ject of studies in the field of graph theory for several decades, only being proven

in 2002. It was known as the Strong Perfect Graph Conjecture and is now referred

to as the Strong Perfect Graph Theorem after having been proven by Chudnovsky

et al. [12]. It states that a graph is perfect if and only if it is Berge, i.e. it does not

contain cycles of odd length nor complements of cycles of odd length as induced

subgraphs.

One important partial result to proving this theorem was already conjectured by

Berge [9] as well and is known as the Weak Perfect Graph Theorem. It was proven

by Lovász [26] in 1971. It states that a graph is perfect if and only if its comple-

ment is perfect.

Another main result on perfect graphs states that perfection of graphs is kept under

a certain kind of isomorphism of graphs, so-called P4-isomorphism. In fact if two

graphs G1 and G2 are P4-isomorphic, then G1 is perfect if and only if G2 is perfect.

This property known as the Semi-strong Perfect Graph Theorem was conjectured by

Chvátal [14] and proved by Reed [28] in 1985.

Once perfection of graphs is established for (undirected) graphs one can consider

the same for directed graphs. For the chromatic number we take Neumann-Lara’s

dichromatic number [27]. It corresponds to acyclic coloring of digraphs that for-

bids monochromatic cycles in a digraph. Andres and Hochstättler [4] used this

dichromatic number to introduce perfect digraphs as those digraphs D for which

the dichromatic number χ(H) equals the clique number ω(H) for every induced

subdigraph H of D.

Unfortunately it can quite easily be seen that perfection of digraphs does not be-

have as perfectly as perfection of graphs, since for example the directed cycle of

size four
−→
C4 is not perfect but its complement

−→
C4 is. So there is no analogon to the

Weak Perfect Graph Theorem for digraphs.

Andres and Hochstättler [4] however proved an analogon to the Strong Perfect

Graph Theorem. This Strong Perfect Digraph Theorem states that a digraph D is

perfect if and only if its symmetric part S(D) is perfect and if it does not contain

any directed cycle of length greater than three as an induced subdigraph.

It is also possible to formulate an analogon to the Semi-strong Perfect Graph The-

orem by modifying the isomorphism that is considered. Andres et al. [3] intro-

duced so-called P 4C-isomorphism and proved a Semi-strong Perfect Digraph Theo-
rem which states that for two P 4C-isomorphic digraphs D and D′, D is perfect if

and only if D′ is perfect.
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The fact that there is no analogon for the Weak Perfect Graph Theorem suggests

that acyclic coloring might not be the best way of coloring digraphs if we want

to define perfection for digraphs. We take another family of graphs respectively

digraphs into consideration, so-called cographs or directed cographs respectively.

Cographs are graphs that do not have a path of length four - a P4 - as an in-

duced subgraph (see [17]). Andres et al. [3] used this definition to transfer the

Semi-strong Perfect Graph Theorem to digraphs, since for graphs we considered

P4-isomorphism as precondition for this theorem. Directed cographs can be char-

acterized by a set of eight forbidden induced subdigraphs (see [18]). Therefore

Andres et al. [3] used five of these eight forbidden induced subdigraphs to define

P 4C-isomorphism as precondition for the analogon for digraphs.

In this thesis we examine what happens to the three main properties on perfect

(di)graphs if we take the remaining three forbidden subdigraphs into considera-

tion with the aim of finding a possibly better way of coloring digraphs to define

perfection.

We will determine that one of these subdigraphs is particularly interesting; a di-

graph we will call N -structure, that is a digraph with a set of four vertices v1,

v2, v3 and v4 and three arcs (v1, v2), (v3, v2) and (v3, v4). We will use this subdi-

graph to define a different way of coloring digraphs. We will say a digraph can be

(properly) acyclic N -freely colored if for every color c the subdigraph induced by

the vertices colored with c does not contain an induced N -structure nor a directed

cycle as subdigraphs.

As a main result we obtain a Strong N -perfect Digraph Theorem similar to the one

proven for acyclic coloring: A digraph is N -perfect if and only if its symmetric

part is perfect and it contains neither a directed cycle of length greater than three

nor an induced N -structure as subdigraphs. We will further modify the definition

of P 4C-isomorphism by adding the N -structure to the five considered forbidden

subdigraphs and prove a Semi-strong N -perfect Digraph Theorem.

Finally we will see that the digraphs that are N -perfect and whose complements

are also N -perfect require all eight of the forbidden subdigraphs to formulate a

Semi-strong Perfection Theorem, so they form a class that is closely related to

the class of directed cographs. Directed cographs are a class of digraphs that has

been studied concerning various problems and for which many problems can be

efficiently solved (cf. for example [23]). So one might say they are an easier class
than perfect digraphs. This yields the expectation that maybe N -perfect digraphs

are already a better way of looking at perfection of digraphs than acyclicly perfect

digraphs.
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2 Basic Terminology

In this section we want to introduce some basic terminology, notations and results

concerning digraphs and graphs which will be used in the following sections.

2.1 Digraphs and Graphs

We start with introducing terminology and notations for digraphs and graphs.

Moreover we show how a digraph can be transformed into a graph and vice versa.

If not mentioned otherwise the following information is oriented at [7].

Definition 2.1. A directed graph or a digraph D is a pair (V (D), A(D)) consisting

of a non-empty finite set V (D) and a finite set A(D) ⊆ V (D)× V (D). We further

define that A(D) may not contain loops, i.e. there cannot be an element (v, v),

v ∈ V (D), in A(D). If it is clear from context which digraph D we are talking

about, we will write V and A instead of V (D) and A(D). The elements of V are

called vertices and the elements of A are called arcs. Respectively V is called the

vertex set of D and A is called the arc set of D.

The first vertex v1 of an arc (v1, v2) is its tail and the second vertex v2 is its head,

both vertices are called its end-vertices. We will also say that v1 dominates v2 and

that v2 is dominated by v1 and denote their relation by v1 → v2. We say that two

vertices v1 and v2 are adjacent or connected if either (v1, v2) ∈ A or (v2, v1) ∈ A. A

vertex v1 is incident to an arc a if it is its tail or head.

Definition 2.2. For a digraph D = (V,A) and a vertex v0 ∈ V we define the sets

N+
D (v0) = {v ∈ V \ {v0} | (v0, v) ∈ A}, N

−
D (v0) = {v ∈ V \ {v0} | (v, v0) ∈ A}.

N+
D (v0) is called the out-neighborhood and N−D (v0) the in-neighborhood of v0. The

set ND(v0) = N+
D (v0) ∪ N

−
D (v0) is called the neighborhood of v0. Respectively the

vertices in N+
D (v0), N

−
D (v0) and ND(v0) are called out-neighbors, in-neighbors and

neighbors of v0.

We denote by d+D(v0) the number of arcs in D whose tail is v0 and call this number

the out-degree of v0. Analogously we denote by d−D(v0) the number of arcs in D

whose head is v0 and call this number the in-degree of v0. The degree of v0 is

dD(v0) = d+D(v0) + d−D(v0).

We will often use a graphic visualization of a digraph denoting its vertices by dots

and its arcs by arrows connecting the dots. An example is shown in Figure 1.

Note that by definition a digraph cannot contain parallel arcs, i.e. there can only

be one arc connecting v1 and v2 in the same direction. There can however be a
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a b

cd

Figure 1: Example of a digraph D = (V,A) with V = {a, b, c, d} and A =
{(a, b), (b, d), (c, b), (d, a)}.

digraph D = (V,A) with (v1, v2) ∈ A and (v2, v1) ∈ A, in this case we call these

arcs a pair of antiparallel arcs ([4]). An arc (v1, v2) ∈ A is called a single arc if

(v2, v1) /∈ A ([4]). If a digraph D does not contain any pair of antiparallel arcs, D

is called an oriented graph.

We will sometimes use an arrow with two heads to visualize a pair of antiparallel

arcs due to conspicuousness.

Definition 2.3. An undirected graph or simply a graph G is a pair (V (G), E(G))

consisting of a non-empty set V (G) and a finite set E(G), consisting of unordered

pairs of elements of V (G). We define that E(G) may not contain loops, i.e. an

unordered pair of E(G) must contain two different elements of V (G). As for

digraphs we will use V and E instead of V (G) and E(G) if there is no chance of

misunderstanding. Again the elements of V are called vertices and V is called the

vertex set of G. The elements of E are called edges and respectively E is called the

edge set of G. We will denote edges the same way we denote arcs whereas in this

case (v1, v2) and (v2, v1) denote the same element in E.

If (v1, v2) ∈ E we call v1 and v2 adjacent.

If we use a graphic visualization of graphs, we again use dots to denote vertices

and lines connecting the dots to denote edges.

Definition 2.4. For a graph G and a vertex v0 ∈ V the neighborhood of v0 in G is

defined as NG(v0) = {v ∈ V \ {v0} | (v0, v) ∈ E}. The degree d(v0) of a vertex v0 is

the number of edges connected to v0.

Note that E(G) cannot contain parallel edges, i.e. there can only be one edge

connecting two specific vertices in G, so obviously we have d(v0) = |NG(v0)|.

Definition 2.5. For a graph G = (V,E) a digraph D = (V,A) is called a biorien-
tation or a superorientation ([4]) of G if D is obtained from G by replacing each
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edge (v1, v2) ∈ E by either one of the arcs (v1, v2) or (v2, v1) in D or the pair of

antiparallel arcs (v1, v2) and (v2, v1). If the digraph D obtained by a biorientation

of G is an oriented graph, D is called an orientation of G.

The underlying graph UG(D) of a digraph D is the unique graph G such that D is

a biorientation of G.

The complete biorientation
←→
G of a graph G is a biorientation D of G such that

every arc (v1, v2) ∈ A(D) implies (v2, v1) ∈ A(D).

A digraph D is called symmetric if (v1, v2) ∈ A(D) implies (v2, v1) ∈ A(D).

The symmetric part S(D) of D is the digraph D2 = (V,A2) where A2 is the union

of all pairs of antiparallel arcs of D, the oriented part O(D) of D is the digraph

D1 = (V,A1) where A1 = A \ A2 ([3]).

Remark 2.6. Regarding the definitions above an undirected graph G = (V,E) can

be identified with the symmetric digraph DG = (V,A) with A = {(v1, v2), (v2, v1) |
(v1, v2) ∈ E}, therefore we will not distinguish between G and DG in this thesis

([4]). Most definitions made hereafter for graphs or digraphs can therefore be

easily transferred to the other.

Definition 2.7. Two digraphs D1 and D2 are isomorphic if there exists a bijection

φ : V (D1)→ V (D2) such that (v1, v2) ∈ A(D1) if and only if (φ(v1), φ(v2)) ∈ A(D2)

for every ordered pair v1, v2 of vertices in V (D1).

Definition 2.8 ([28]). An endomorphism of a digraph D is a mapping f : V (D)→
V (D) such that if v1 → v2 in V (D) then f(v1)→ f(v2) in f(V (D)), note that there

is no condition for non-neighboring vertices in V (D). An endomorphism is called

a proper endomorphism if f(V (D)) is a proper subset of V (D).

Definition 2.9. A graph G is called planar if there exists a mapping f : G → R2

with the following properties:

• Every vertex of G is mapped to a point in R2 and different vertices are

mapped to different points and

• every edge (v1, v2) ∈ E(G) is mapped to a not self-intersecting curve Cv1v2

from f(v1) to f(v2) and no two curves corresponding to different edges in G

intersect (except for possibly at points corresponding to their end-vertices).

A digraph D is called planar if its underlying graph UG(D) is planar.

This simply means that for every planar (di)graph there exists a visualization of

the (di)graph drawn on a plane with no intersecting arcs/ edges.
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2.2 Specific Digraphs and Graphs

In this subsection we will define some specific digraphs and graphs. Again if not

mentioned otherwise the following information is oriented at [7].

Definition 2.10. A digraph H is called a subdigraph or a minor of a digraph D

if V (H) ⊆ V (D), A(H) ⊆ A(D) and for every arc in A(H) both end-vertices are

included in V (H). We will denote a subdigraph by H ⊆ D. If H 6= D we call H a

proper subdigraph of D.

If every arc of A(D) with both end-vertices in V (H) is included in A(H), we say

that H is induced by V ′ = V (H) and H is called an induced subdigraph of D. We

will denote the subdigraph of D induced by V ′ by D[V ′].

A set S ⊆ V which induces a subdigraph H = (S,∅) is called a stable set, a stable

set K ⊆ V is called a kernel in a digraph if it is absorbing, i.e. for any v1 ∈ V \K
there is an arc (v1, v2) ∈ A with v2 ∈ K ([4]).

Definition 2.11 ([4]). The complement D of a digraph D is the digraph with

the same vertex set V (D) = V (D) and an arc (v1, v2) is in A(D) if and only if

(v1, v2) /∈ A(D).

Definition 2.12. A walk inD is an alternating sequenceW = v1a1v2a2 . . . vk−1ak−1vk

of vertices vi and arcs aj from D such that ai = (vi, vi+1) for every i ∈ [1, k − 1].

v1 is the initial vertex of W and vk is its terminal vertex, both vertices are called

end-vertices of W . We also say that W is a [v1, vk]-walk.

A path W is a walk with distinct vertices and a cycle is a walk with distinct vertices

v1, v2, . . . , vk−1, k ≥ 3 and v1 = vk. A digraph is called acyclic if it neither contains

a cycle nor a pair of antiparallel arcs.

We will denote a (directed) path by
−→
Pn and a (directed) cycle by

−→
Cn where n is

the number of vertices of the path or cycle and we will call n the length of the

path or cycle. 1 According to Remark 2.6 walks, paths and cycles are also defined

for graphs. To differentiate between digraphs and graphs we will refer to those

structures in digraphs as directed walks, directed paths and directed cycles and in

graphs as undirected walks, undirected paths and undirected cycles. We will refer

to them simply as walks, paths and cycles if it is clear from context whether they

are directed or undirected. We will denote an undirected cycle of length n by Cn

and an undirected path of length n by Pn.

Definition 2.13 ([4]). A hole in a graph G is a cycle Cn ⊆ G that is induced in G.

An antihole of G is an induced subdigraph of G whose complement is a hole in G.

We define the size or length of a hole or an antihole by the number of its vertices.

1This definition of length does not correspond to [7], where the length of a path is defined as
the number of arcs.
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A disc is a hole or an antihole that has at least size five ([28]).

For a digraph D, a filled hole/ antihole is a subdigraph H ⊆ D, so that S(H) is a

hole/ antihole.

Definition 2.14. For a graph G that contains an undirected cycle C as a subgraph

an edge connecting two vertices v1, v2 ∈ V (C) that are not adjacent in C is called

a chord. A chordal graph is an undirected graph G in which every cycle Cn of G,

n ≥ 4, has a chord.

In a digraph D a chord can either be a pair of antiparallel arcs or a single arc.

Definition 2.15. The union D1 ∪ D2 of two digraphs D1 and D2 is the digraph

D such that V (D) = V (D1) ∪ V (D2) and (v1, v2) ∈ A(D) if (v1, v2) ∈ A(D1) or

(v1, v2) ∈ A(D2) or both.

The disjoint union D1⊕D2 of two vertex-disjoint digraphs D1 and D2 is the digraph

with vertex set V (D1) ∪ V (D2) and arc set A(D1) ∪ A(D2) ([23]).

Definition 2.16 ([23]). The series composition D1 ⊗ D2 of two digraphs D1 and

D2 is the digraph D with vertex set V (D) = V (D1) ∪ V (D2) and arc set A(D) =

A(D1)∪A(D2)∪{(v1, v2) | (v1 ∈ V (D1), v2 ∈ V (D2)) or (v1 ∈ V (D2), v2 ∈ V (D1))}.

Union, disjoint union and series composition of more than two digraphs are de-

fined recursively.

Definition 2.17 ([23]). The order composition D1 � D2 � · · · � Dk of k digraphs

D1, D2, . . . , Dk is the digraphD with vertex set V (D) = V (D1)∪V (D2)∪· · ·∪V (Dk)

and arc set A(D) = A(D1) ∪ A(D2) ∪ · · · ∪ A(Dk) ∪ {(v1, v2) | v1 ∈ V (Di), v2 ∈
V (Dj), 1 ≤ i < j ≤ k}.

a

b

c d

e

(a)

a

b

c d

e

(b)

a

b

c d

e

(c)

Figure 2: Example of the disjoint union (a), the series composition (b) and the
order composition (c) of three vertex-disjoint digraphs; D1 is the single vertex a,
D2 the directed path of length two and D3 the directed cycle of length two.

The following definition is needed only for undirected graphs.
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Definition 2.18 ([26]). Let G1 and G2 be two vertex-disjoint digraphs and v ∈
V (G1). By substituting G2 for v we mean the construction of a graph G′ with

V (G′) = (V (G1) \ {v}) ∪ V (G2) and the edge set of G′ consists of the following

edges: all edges of the subgraph of G1 induced by V (G1)\{v}, all edges of G2 and

thirdly all vertices of G1 that are adjacent to v in G1 are adjacent to all vertices of

G2 in G′.

Definition 2.19. For a digraph D the line digraph L(D) is the digraph with vertex

set V (L(D)) = A(D) and an arc (v, w) is in A(L(D)) if and only if v represents an

arc (ṽ1, ṽ2) in D and w represents an arc (ṽ2, ṽ3) in D.

2.3 Connectivity of Digraphs and Graphs

In this subsection we focus on connectivity of digraphs and graphs and define some

specific graphs and digraphs that are characterized by their connectivity. Again if

not mentioned otherwise the following information is oriented at [7].

Definition 2.20. A digraphD is strongly connected if for every pair v1, v2 of vertices

in D, v1 6= v2, there exists a [v1, v2]-path and a [v2, v1]-path in D.

A digraph D is connected if the underlying graph UG(D) is connected, i.e. the

complete biorientation of UG(D) is strongly connected.

An undirected graph is disconnected if it is not connected.

Definition 2.21. A strong component of a digraph D is an induced subdigraph H

of D which is strongly connected and for which every subdigraph of D induced by

V (H) ∪ v, v /∈ V (H), is not strongly connected.

For an undirected graph G the strong components of the complete biorientation
←→
G of G are called components of G.

Definition 2.22. A graph G = (V,E) is called a bipartite graph if there exists a

partition of the vertex set V = V1 ∪ V2, V1 ∩ V2 = ∅, such that every edge connects

a vertex of V1 to a vertex of V2.

G is a complete bipartite graph if for every pair vi ∈ V1 and vj ∈ V2 there is an edge

(vi, vj) ∈ E. We denote a complete bipartite graph by KV1,V2.

Definition 2.23. An undirected graph is called a tree if it is connected and does

not contain a cycle as a subgraph. An oriented tree is a superorientation of a tree.

The vertices of a tree with degree one are called leaves, all other vertices are called

inner or internal vertices.
Sometimes it is required to consider a kind of ordering of the vertices in a tree. A

tree T can be a rooted tree with root r ∈ V (T ), where r is one specified vertex of

the tree that we want to consider superior (or inferior, depending on the interpre-
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tation) to all the other vertices. Note that if we have a rooted tree the root is never

considered a leaf even if it has degree one. ([21])

In a rooted tree T we call a vertex v1 the child of the vertex v2, if there is a path

v1, v2, . . . , r in T . In this case v2 is called the parent of v1. ([17])

For two vertices v1, v2 in a rooted tree T a vertex v0 is called their lowest common
ancestor if v0 is on the unique path from v1 to r and on the unique path from v2

to r and if it is the first vertex where those paths intersect. Note that the lowest

common ancestor can be one of the vertices or r. ([1])

There are some equivalent definitions for trees. See [21] (Theorem 1.5.1) for the

proof of the following lemma.

Lemma 2.24 ([21], Theorem 1.5.1). If T is a graph with n vertices the following
assertions are equivalent:

1. T is a tree;

2. For any two vertices v1, v2 ∈ V (T ) there is a unique path between those vertices;

3. T is minimally connected, i.e. T is connected but every subgraph T ′ ⊆ T with
V (T ′) = V (T ) and E(T ′) = E(T ) \ {e} for any e ∈ E(T ) is not connected;

4. T is maximally acyclic, i.e. T does not contain a cycle but adding an edge
between any two non-adjacent vertices in T creates a graph that contains a
cycle;

5. T is connected and has n− 1 edges.

Definition 2.25 ([17]). In a graph G two vertices v1, v2 are called siblings if

NG(v1) \ {v2} = NG(v2) \ {v1}. They are strong siblings if they are adjacent and

weak siblings otherwise.

Definition 2.26 ([15;28]). A star-cutset S in a graphG is a set of vertices such that

V (G)\S induces a disconnected graph and some vertex v ∈ S, called the center, is

adjacent to all vertices in S \ {v}. We call a graph G unbreakable if neither G nor

its complement G contains a star-cutset. If a graph is not unbreakable it is called

fragile.

Definition 2.27. A complete digraph D = (V,A) is a digraph with (v1, v2) ∈ A and

(v2, v1) ∈ A for all v1, v2 ∈ V . We denote a complete digraph with n vertices by

Kn.

Definition 2.28 ([4]). A subdigraph H ⊆ D is called a clique in D if for all v1, v2 ∈
V (H) both arcs (v1, v2) and (v2, v1) exist in H (and D), hence if H is a complete

digraph. The clique number ω(D) of D is the size of the largest clique in D.
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a

b

c

d

e

f

Figure 3: The subdigraph induced by the vertex subset {a, b} and the subdigraph
induced by {d, e, f} are cliques of size two and three in the digraph. As they are
no larger cliques in D we have ω(D) = 3.

Observation 2.29 ([4]). For a digraph D we have ω(D) = ω(S(D)).

Definition 2.30 ([17]). A graph G has the clique-kernel intersection property (or

CK-property) if every clique of G has exactly one vertex in common with every

kernel of G.

2.4 Cographs and Directed Cographs

Complement reducible graphs or cographs is the name of a family of graphs that oc-

curred independently in different areas of mathematics. An overview on different

characterizations and basic properties was given by Corneil et al. [17] in 1981,

the following information is oriented at this work. In this subsection we will begin

with the definition for undirected graphs and transfer it to digraphs later on.

Definition 2.31. A complement reducible graph or cograph is a graph constructed

recursively as follows:

1. A single vertex is a cograph,

2. if G1, G2, . . . , Gk are cographs, then so is their (disjoint) union G1∪G2∪· · ·∪
Gk and

3. if G is a cograph, then so is its complement G.

Corneil et al. defined a normalized form of a cograph to establish a notation of a

certain cograph that is unique up to isomorphism.

A connected cograph is in normalized form if it is a single vertex or the com-

plemented union (i.e. the complement of the union) of at least two connected

cographs in normalized form. A disconnected cograph is in normalized form if it

is the complement of a connected cograph in normalized form.
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Figure 4 shows the construction of the cograph of the normalized form

∪(∪(∪(a, b), c),∪(d, e, f)),

where ∪ stands for the complemented union (example taken from [19]).

Figure (a) shows the union ∪(∪(a, b), c), Figure (b) shows the complement of Fig-

ure (a), Figure (c) shows ∪(d, e, f) and Figure (d) the complemented union of

Figures (b) and (c), the actual cograph represented by the normalized form.

b

a

c

(a)

b

a

c

(b)

e

d

f

(c)

b

a

c

e

d

f

(d)

Figure 4: Example of a cograph and its construction. (Example taken from [19])

Definition 2.32. A cotree for a cograph is a tree representing the normalized form

of a cograph in the following way:

1. The leaves of the cotree are the vertices of the cograph,

2. the internal vertices of the cotree represent the complemented unions, i.e.

two or more vertices v1, v2, . . . , vk are children of an internal vertex if there is

an expression ∪(v1, v2, . . . , vk) in the normalized form of the cograph where

every v1, v2, . . . , vk is either a vertex in the cograph or a complemented union

itself and

3. the root of the cotree represents the outer most complemented union of the

normalized form of the cograph.

To establish various properties later on, we label the internal vertices of a cotree

in the following way: the root is labeled 1, the children of a vertex with label 1

are labeled 0 and vice versa.

The internal vertices of a cotree can be interpreted in an alternative way: A vertex

labeled 1 represents a series composition of all its children and a vertex labeled 0

represents a (disjoint) union of its children. This interpretation corresponds with

Definition 2.32, because of the following observations. Firstly a series composition

of two single vertices is the same as the complemented union of these two vertices.

Secondly all children of vertices labeled 1 have an odd number of complemented

unions operating on them. An odd number of complemented unions is again a
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c

a b

d e f

1

1

0 0

Figure 5: Cotree for the cograph in Figure 4. The green labels are the labels for
the internal vertices as described above. (Figure taken from [19])

complemented union. And the children of vertices labeled 0 have an even number

of complemented unions operating on them and the complemented union of a

complemented union is just a union.

The two proofs of the following lemma clarify how the two interpretations of the

construction of a cograph from a cotree lead to the same cograph.

Lemma 2.33. Let G be a cograph with cotree T . Two vertices v1, v2 ∈ V (G) are
adjacent in G if and only if their lowest common ancestor in T is labeled 1.

Proof. Assume the lowest common ancestor v of two vertices v1, v2 in T has label

1. This means that the first operation that operates on both vertices is a series

composition, so v1 and v2, which were non-adjacent until this operation is exe-

cuted, get connected by that operation in the construction process of G. All the

remaining operations that are executed do not have any effect on the connection

of v1 and v2 since they are just (disjoint) unions and series compositions with other

vertex sets.

Similarly it follows that if v has label 0, the first operation that operates on both

vertices is a (disjoint) union, so v1 and v2 remain disconnected and all the follow-

ing operations do not have any effect on that.

If we consider the interpretation of the internal vertices of T being complemented

unions the following argumentation leads to the same assertion. Let v be the

lowest common ancestor of v1 and v2. Both vertices get connected through the

complemented union represented by v since this is the first one that effects both

of them and they were non-adjacent until this point. If v has label 1, there is an

even number of complementations executed after the step of construction repre-

sented by v since the root is also labeled 1. Hence in the final graph v1 and v2 are

again adjacent. If on the other hand v has label 0, there are an odd number of

complementations executed after the step of construction represented by v, hence
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the complement of the graph constructed in the step of construction represented

by v is a subgraph of G and therefore v1 and v2 are non-adjacent in G.

Lemma 2.34 ([17], Lemma 1). Every induced subgraph of a cograph is a cograph.

Proof. The assertion is obviously true for a graph with less than three vertices,

thus assume the cograph G = (V,E) has at least three vertices.

Any induced subgraph ofG can be obtained by removing vertices (and correspond-

ing edges) one by one. Hence it is sufficient to show that the graph obtained by

removing a single vertex from a cograph is again a cograph.

Let T be the cotree for G. The subgraph G′ induced by V \ {v} is a cograph if and

only if there is a cotree T ′ representing it. Let v0 be the parent of v in the cotree. If

v0 has more than two children, T ′ can be constructed by removing the leaf v from

T . If v0 has exactly two children, v and v′, there are two possible cases. Firstly if

v′ is a leaf, we can construct T ′ by removing v0 and v from T and connecting v′ to

the parent of v0. Secondly if v′ is an internal vertex, we remove v, v′ and v0 from

T and connect all children of v′ to the parent of v0.

In all cases T ′ is a cotree representing the induced subgraph G′ thus G′ is a co-

graph.

The fundamental theorem on cographs gives a variety of equivalent definitions. It

was formulated by Corneil et al. [17]. We will only state the equivalent definitions

we need to prove the one we will refer to later on. It states that a graph is a

cograph if and only if it does not contain a P4 as an induced subgraph.

Theorem 2.35 ([17], Theorem 2). Let G be a graph. The following properties are
equivalent:

1. G is a cograph.

2. Any nontrivial induced subgraph of G has at least one pair of siblings.

3. Any nontrivial induced subgraph of G has the CK-property.

4. G does not contain a P4 as an induced subgraph.

5. If a nontrivial induced subgraph of G is connected, its complement is discon-
nected.

Proof. (1) ⇒ (2). Since every induced subgraph of a cograph is again a cograph

it suffices to prove the property for any nontrivial cograph. If we consider the

corresponding cotree T for the cograph G, we see that any two leaves in T with

the same parent are strong siblings in G if the parent is labeled 1 and weak siblings

if the parent is labeled 0. Every nontrivial cotree has at least one parent with at
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least two leaves, hence the property follows.

(2) ⇒ (3). This is proved by induction on p = |V (H)| for an induced subgraph

H ⊆ G. Obviously a subgraph with one vertex has the CK-property. Let H ′ be an

induced subgraph with p+1 vertices and let v, v′ be siblings in H ′. We can express

the cliques and kernels of H ′ by the cliques and kernels of the induced subgraph

H with V (H) = V (H ′) \ {v′} which obviously has p vertices and therefore fulfills

the property by induction. If v and v′ are strong siblings, any clique of H not

containing v remains a clique in H ′ and any clique containing v becomes a clique

with one additional vertex v′, since v′ is adjacent to the same vertices as v and

v itself. Any kernel of H remains a kernel in H ′ and for every kernel containing

v we obtain an additional kernel of the same size in H ′ if we replace v by v′.

Comparing all pairs of kernels and cliques we can differentiate three cases. Firstly

they could both be the same as for H hence they have one intersecting vertex by

induction. Secondly we could have a clique not containing v that has exactly one

intersecting vertex with a new kernel - the one it had before with the kernel the

new one was constructed of. Thirdly we could have a new clique that has exactly

one intersecting vertex with a new kernel - v′ and with an old kernel - the one

the original clique had with it. If v and v′ are weak siblings the assertion follows

exactly the same way if we interchange the notions for cliques and kernels.

(3)⇒ (4). A P4 does not have the CK-property since the second and third vertex

form a clique that does not intersect the kernel formed by the first and fourth

vertex. Hence G does not contain a P4 as an induced subgraph.

(4)⇒ (5) ([29]). We prove this implication through contraposition. Assume there

is a nontrivial induced subgraph of G that is connected and whose complement is

also connected. Let X be a vertex set that induces such a subgraph in G and let

X be the smallest possible vertex set fulfilling this property. The vertex set X ′ =

X \ {v1}, v1 ∈ X, induces a subgraph that is not connected in G or not connected

in G since X is the smallest vertex set with the assumed property. Without loss of

generality assume that it is not connected in G (otherwise change the roles of G

and G).

There is a vertex v2 ∈ X ′ that is adjacent to v1 in G since G[X] is connected and

X ≥ 2. Let X ′′ be the vertex-set of the component of the subgraph induced by X ′

in G that contains v2. There are no edges between X ′′ and X ′ \X ′′.
Since G[X] is connected there are vertices v3 ∈ X ′′ and v4 ∈ X ′ \X ′′ that are both

adjacent to v1 in G. Let S ′ be the vertex set of all vertices of X ′′ adjacent to v1

in G and let S ′′ be the vertex set of all vertices of X ′′ adjacent to v1 in G. Since

those two sets are complementary vertex subsets of a component of an induced

subgraph in G, there are vertices v′2 ∈ S ′ and v′3 ∈ S ′′ that are adjacent in G.

We obtained the edges (v′2, v
′
3), (v

′
3, v1), (v1, v4) in G and the edges (v1, v′2), (v

′
2, v4),
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(v4, v
′
3) in G (see Figure 6). Hence the subgraph induced by these four vertices is

an induced P4 in G and G.

(5) ⇒ (1). This is proved by induction on the number of vertices n in G. The

statements holds for n ≤ 3 trivially. Assume the property holds for all n < p and

consider a graph G with p vertices. If property (5) holds for G than it also holds

for G. Being a cograph is also kept under complementation by definition. Thus we

might examine G or G and choose the one that is not connected. All components

of this graph are cographs by induction. Hence the graph is a cograph by Definition

2.31.

(a) (b)

Figure 6: Construction used for the deduction of (4)⇒ (5) in the proof of Theorem
2.35.

Bechet et al. [8] transferred the idea of cographs to directed graphs. The following

information is oriented at Crespelle and Paul [18] and Gurski [23] who introduced

algorithms on directed cographs.

Definition 2.36. A directed cograph is a digraph constructed recursively as follows:

1. A single vertex is a directed cograph,

2. if D1, D2, . . . , Dk are directed cographs, then so is their disjoint union D1 ⊕
D2 ⊕ · · · ⊕Dk,

3. if D1, D2, . . . , Dk are directed cographs, then so is their series composition

D1 ⊗D2 ⊗ · · · ⊗Dk and

4. if D1, D2, . . . , Dk are directed cographs, then so is their order composition

D1 �D2 � · · · �Dk.

In the following we call the three compositions - disjoint union, series composition

and order composition of directed graphs - the operations to construct a directed

cograph.
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Figure 7 shows the construction of the directed cograph D = ((a� b)⊕ c)� (d⊗e),
where a single vertex v stands for the digraph ({v},∅) (example taken from [23]).

We see a � b in Figure (a), (a � b) ⊕ c in Figure (b), in Figure (c) d ⊗ e is added

and Figure (d) is the actual directed cograph D.

a

b

(a)

a

b

c

(b)

a d

e

b

c

(c)

a d

e

b

c

(d)

Figure 7: Example of a directed cograph and its construction. (Example taken
from [23])

Definition 2.37. The di-cotree of a directed cograph is a tree with the following

properties:

1. The leaves of the di-cotree are the vertices of the cograph and

2. an inner vertex of the di-cotree represents the operation applied on the chil-

dren of this vertex.

Note that with this formulation a di-cotree must be interpreted in a specific order,

since the order composition is not commutative, to correspond to a unique directed

cograph. We can reduce the number of directed cographs represented by the same

di-cotree by using the associativity of the operations to transfer a di-cotree into a

binary di-cotree in which every inner vertex has exactly two children.

Lemma 2.38 ([23], Lemma 1). Every di-cotree T for a directed cograph D can be
transformed into a binary di-cotree.

Proof. Let v be a vertex in T with more than two children v1, . . . , vn. Since the

operation v1 ◦ · · · ◦ vn (◦ being one of the three operations) represented by v is

associative it can also be written as (((v1 ◦ v2) ◦ v3) ◦ . . . ) ◦ vn. Hence it can also be

represented by a corresponding di-cotree in which every inner vertex has exactly

two children.

Similar as for cotrees we label the internal vertices of a di-cotree in the following

way: the root is labeled 1, the children of a vertex with label 1 are labeled 0 and

vice versa.
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Note that the di-cotree is an undirected graph not a digraph.

a b

d ec

Figure 8: Corresponding di-cotree of the directed cograph in Figure 7. (Figure
taken from [23])

Lemma 2.39 ([23], Lemma 2). For a directed cograph D its complement D is a
directed cograph.

Proof. Let D be constructed by a series of operations performed on the directed

cographs D1, D2, . . . , Dn, n ∈ N . The series of operations to construct D from the

directed cographs D̃1, D̃2, . . . , D̃n can be recursively defined as follows.

If Di is a single vertex v, than D̃i is as well the single vertex v. If Di = Dj ⊕ Dk,

then D̃i = D̃j ⊗ D̃k. If Di = Dj ⊗Dk, then D̃i = D̃j ⊕ D̃k. If Di = Dj �Dk, then

D̃i = D̃k � D̃j.

Since the disjoint union of two directed cographs creates no arcs between the

two directed cographs and the series composition of these two directed cographs

includes all arcs between these directed cographs, the two operations are com-

plementary to one another. An order composition of two directed cographs is

complementary to its reversion since they create arcs of different directions be-

tween the two directed cographs. Hence the defined operations on D̃1, D̃2, . . . , D̃n

construct D.

Lemma 2.40 ([23], Lemma 3). If D is a directed cograph, every induced subdigraph
of D is a directed cograph.

Proof. The proof is similar to the one for undirected cographs. Again the assertion

is obviously true for a digraph with less than three vertices. Let D be a directed

cograph with at least three vertices, v ∈ V (D) and let T be the corresponding

binary di-cotree. The subdigraph D′ induced by V (D) \ {v} is a directed cograph

if and only if there is a di-cotree representing it. We obtain the corresponding

di-cotree T ′ for the subdigraph D′ by the following method.

If v is a leaf in T , then T ′ is obtained by deleting v and the parent of v and
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connecting the other child of the parent of v to the parent’s parent. T ′ is obviously

a di-cotree, hence D′ is a directed cograph.

Any induced subdigraph of D can be obtained by removing vertices one by one,

so inductive application of the method above proves the assertion.

The following theorem gives another characterization of directed cographs. Cre-

spelle and Paul [18] concluded it from a result of [22]. See those papers for

further details.

Theorem 2.41 ([18], Theorem 2). A digraph D is a directed cograph if and only if
it does not contain any of the digraphs in Figure 9 as an induced subdigraph.

Figure 9: Set of forbidden subdigraphs for directed cographs. (Figure taken from
[18])

Observation 2.42. The set of forbidden subdigraphs for directed cographs is closed
under complementation.

As we will refer to it later on, we will give a name to the forbidden subdigraph in

the right bottom corner of Figure 9. Clearly the name descends from the visual-

ization shown in Figure 9.

Definition 2.43. We call a digraph D = (V,A) with V = {v1, v2, v3, v4} and A =

{(v1, v2), (v3, v2), (v3, v4)} an N -structure.

2.5 Hypergraphs

Hypergraphs can be considered as a generalization of graphs with regard to edges

containing not only exactly two vertices, but also just one vertex or more than
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two vertices and multiple edges with the same vertices being allowed. We will use

hypergraphs later on to replicate a proof by Lovász [26] for a theorem on perfect

graphs (see Section 4.1). Therefore the terminology in this subsection is also taken

from the same paper.

Definition 2.44. A hypergraph is a pair H = (V,E) consisting of a finite vertex

set V and a non-empty finite collection of edges E of non-empty finite sets Ei ⊆
V . We allow multiple edges containing exactly the same vertices. If there are

n ∈ {1, . . . , |V |} edges with exactly the same vertices, we call n the multiplicity of

them. The degree δ(v) of a vertex v ∈ V is the number of edges containing v, we

denote by δ(H) the maximum degree of vertices in H. A partial hypergraph of a

hypergraph H is a hypergraph H̃ consisting of a subset of edges of H.

Definition 2.45. A set T ⊆ V is called a transversal of a hypergraph H = (V,E) if

there is at least one vertex from every edge Ei ∈ E in T . We denote by τ(H) the

size of the smallest transversal T of H.

Definition 2.46. We denote by ν(H) the maximum number of pairwise disjoint

edges of a hypergraph H. If ν(H̃) = τ(H̃) for every partial hypergraph H̃ of H we

say that H is τ -normal.

There have to be at least as many vertices in a minimal transversal T of a hy-

pergraph H as is the size of the maximum set of pairwise disjoint edges in H (at

least one vertex from each edge of this set has to be in T ). Hence we always have

ν(H) ≤ τ(H).

Definition 2.47. A hypergraph H has the Helly property if any set of edges Ẽ ⊆ E

(with at least three edges) with
⋂

Ei∈Ẽ Ei = ∅ contains at least two disjoint edges.

A hypergraph that does not have the Helly property cannot be τ -normal, since

exists a partial hypergraph with edge set Ẽ with
⋂

Ei∈Ẽ Ei = ∅ that has no pairwise

disjoint edges but requires a transversal of at least size two. Hence ν(Ẽ) = 1 <

2 = τ(Ẽ). So τ -normal hypergraphs always have the Helly property.

There is a way we can transform hypergraphs into undirected graphs and vice

versa:

Given a hypergraph H = ((V (H), E(H)) we can define its edge-graph G(H) = G

which is an undirected graph with vertex set V (G) = E(H) and two vertices are

adjacent in G if the two corresponding edges in H intersect.

Given an undirected graph G we can construct a hypergraph H(G) = H with the

vertices of H corresponding to the maximal cliques (in the sense of these cliques

not being part of larger cliques) in G and a vertex v in G creating an edge Ev in H

such that Ev equals the set of maximal cliques containing v.
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G

d

ba

ce

(a)

H(G)

abd bcd

de

a-edge c-edge

e-edge

b-edge

d-edge

(b)

G(H(G))

a-edge b-edge

c-edged-edge

e-edge

(c)

Figure 10: The edges of the hypergraph H(G) with vertices abd, bcd and de are
symbolized by different colors (b) and form the vertices of G(H(G)), they are
adjacent in G(H(G)) if and only if the two corresponding edges in H(G) intersect
(c).

If a hypergraph H does not have the Helly property there exists a partial hyper-

graph with edge set Ẽ with
⋂

Ei∈Ẽ Ei = ∅ that has no pairwise disjoint edges. So

all of its edges intersect pairwise. If there was a graph G with H = H(G), the fact

that all edges of Ẽ intersect pairwise would correspond to the fact that for any

two vertices in the vertex subset of V (G) corresponding to Ẽ there is a clique in

G (i.e. a vertex in H) containing both vertices. But if these kind of cliques exist

for any pair of vertices in this subset, all these vertices are in a single clique in G.

This contradicts the maximality of the cliques used to determine the vertices of H.

Hence H(G) always has the Helly property.

By construction we have G(H(G)) = G for any undirected graph G. An example

can be seen in Figure 10.
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3 Coloring

In this section we give a summary of the idea of coloring graphs and digraphs.

This will lead us to the definition of perfect graphs and perfect digraphs in the

following sections.

In this thesis we will mainly discuss the vertex coloring of graphs and digraphs

therefore the term coloring will be used instead of vertex coloring. For the idea of

edge coloring see for example [32].

Before we give a formal definition we would like to motivate the idea of coloring

a graph by illustrating a famous problem that can be represented by graphs. The

history of this problem dates back to 1852 when the British mathematician de

Morgan mentioned it in a letter (see [25]). We will see how this idea can be

transferred to digraphs and hypergraphs later on.

Imagine you have a map of different states or countries and for reasons of con-

spicuity you want to color each state with a certain color such that no state has

the same color as a bordering state. One question you could ask if presented with

this task could be: How many colors do I need at least to find a proper coloring of

the map? You may also ask for an instruction on how to start coloring states.

This problem can be modeled by a graph. We set V as the set of states on the

map and connect two vertices by an edge if the two corresponding states have a

common border.

We will get back to the questions above later after we made some formal defini-

tions concerning coloring of graphs.

3.1 Coloring of Graphs

The following information is oriented at [21] (Chapter 5).

Definition 3.1. A coloring of a graph G is a mapping f : V (G) → C, C ⊆ Z, such

that f(v1) 6= f(v2) if v1 and v2 are adjacent. The elements of C are called colors.
We call f an n-coloring if C has n elements. The set of vertices colored with the

same color is called a color class.

We will say that a coloring is proper or feasible if it fulfills the above condition,

even though we defined colorings only as proper colorings, to emphasize that we

are considering a coloring and not just any mapping on the vertices of a graph.

Formally C is considered a set of integers but we will often use an actual set of

colors to illustrate coloring of graphs, especially in graphic visualizations.

Definition 3.2. The chromatic number χ(G) of a graph G is the smallest integer n
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(a)

BYBW

NW
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HH
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SN
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SH

TH

(b)

Figure 11: A proper coloring of a map of the German federal states (a) and the
corresponding graph (b). (Map taken from [20])

such that there exists an n-coloring of G. We say that G is n-colorable if χ(G) ≤ n.

The most famous theorem concerning coloring of graphs answers the question

discussed above on how many colors we need to color a map.

Theorem 3.3 (Four Color Theorem, [5;6]). Every planar graph is 4-colorable.

See [5] and [6] for the exact proof of this theorem. We will just give the idea of

the proof here oriented at [21] (Notes at the end of Chapter 5).

The proof of this theorem was one of the first to be done with great support of

computers, it was criticized and not accepted by some colleagues for using this

then unknown method. The idea of the proof is to first show that every maximal

planar graph - that is any graph that is planar and that would turn non-planar by

adding any further edge between its vertices - must contain at least one of 1482

unavoidable configurations. After that it is shown with the assistance of a computer

that each of these unavoidable configurations can be four-colored. This gives an

inductive proof that any maximal planar graph is four-colorable and therefore

every planar graph as well.

So we always need at most four colors if we want to color a map since every map

can be represented by a planar graph as described above.

We only considered planar graphs so far. In the following we will take a look at
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some upper bounds for the chromatic number in general.

Proposition 3.4 ([21], Proposition 5.2.1). For every graph G = (V,E) with |E| =
m we obtain

χ(G) ≤ 1

2
+

√
2m+

1

4
.

Proof. Let f be a coloring of G with n = χ(G) colors. There is at least one edge

between every pair of color classes since f uses the minimum number of colors

possible. This means that m ≥
∑n−1

i=1 i =
1
2
· n · (n− 1). Solving this inequation for

n yields the assertion.

We obtain another upper bound by an intuitive algorithm for coloring graphs (cf.

[21]). We order the vertices randomly by labeling them v1, v2, . . . , vt, t = |V |, and

color them one after another with the lowest possible integer from C such that

non of the neighbors colored already has the same color. We never need more

than max{d(vi) | vi ∈ V } + 1 colors to color a graph with this method. We can

improve this algorithm by considering a helpful ordering of the vertices rather

than a random one.

We can also give a lower bound for the chromatic number.

Proposition 3.5. For a graph G we obtain ω(G) ≤ χ(G).

Proof. Let H ⊆ G be a clique of size k = ω(G). Since every vertex is adjacent to

every other vertex in this clique we need exactly k colors to color H. Hence we

need at least k colors to color G.

This simple observation will later lead to the definition of perfect graphs.

3.2 Coloring of Digraphs

Transferring the idea of coloring graphs to digraphs can be realized in different

ways. The most intuitive way may be the following: A coloring of a digraph D is

a mapping f : V (D)→ C such that f is a proper coloring of the underlying graph

UG(D) (see for example [11]). For an oriented graph the following property is

often added and the coloring is then called oriented coloring: all arcs linking one

color class to another have the same direction (see for example [31]).

We will focus on a different definition of coloring in this thesis which is called

acyclic coloring of digraphs.
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Neumann-Lara [27] used this way of coloring digraphs to define an analogon

to the chromatic number for digraphs - the dichromatic number, the following

definitions are oriented at his paper.

Definition 3.6. An acyclic coloring of a digraph D is a mapping f : V (D) → C,

C ⊆ Z such that for every c ∈ C the vertices colored by c induce an acyclic

subdigraph in D.

For n = |C| we call f : V (D)→ C an acyclic n-coloring of D.

Definition 3.7. The dichromatic number χ(D) of a digraph D is the smallest num-

ber n such that there exists an acyclic n-coloring of D.

Note that the definition of acyclic coloring of digraphs is compatible with the def-

inition of classic coloring of graphs in the following way: If f : V (
←→
G ) → C is

a proper acyclic coloring of the complete biorientation
←→
G of a graph G then f

induces a proper coloring of G, since a proper acyclic coloring is forbidding cy-

cles of length two in
←→
G which correspond to edges in G. Moreover the opposite

assertion also holds: If f : V (G) → C is a proper coloring of a graph G then f

induces a proper acyclic coloring of the complete biorientation
←→
G of G, since a

proper coloring of G forbids two neighboring vertices of G to be colored the same

way which corresponds to cycles of length two not being monochromatic in
←→
G .

Obviously every cycle of length greater than two in
←→
G contains cycles of length

two and is colored with at least two different colors.

We therefore obtain χ(G) = χ(
←→
G ).

Acyclic coloring of digraphs has not been studied as much as classical coloring of

(undirected) graphs, but there is still an upper bound known for the dichromatic

number. It is given in dependence on the length of cycles in a digraph. See [11]

(Theorem 3) for the proof of the following theorem.

Theorem 3.8 ([11], Theorem 3). Let n and r be integers with n ≥ 2 and n ≥ r ≥ 1.
If a digraph D does not contain a cycle of length r modulo n, then D is n-colorable,
hence χ(D) ≤ n.

Just as for (undirected) graphs a lower bound for the dichromatic number of a

digraph is given by the clique number.

Lemma 3.9. For a digraph D we have ω(D) ≤ χ(D).

Proof. Let H be a clique of size ω(D) = k in D. Since H is a complete digraph

there is a cycle of length ω(D) = k in H. To have a proper coloring of H at

least one vertex in the cycle has to be colored differently from the others. Assume

vertices v1, . . . , vk−1, are colored with color c1 and vertex vk is colored with color c2.
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Since the subdigraph induced by v1, . . . , vk−1 is again a complete digraphs, there

is a cycle of length k − 1 in this subdigraph which requires at least one vertex to

be colored with an additional color c3 to maintain a proper coloring, assume that

this vertex is vk−1. The additional color c3 obviously has to be different from c1. It

also has to be different from c2 since vk and vk−1 also induce a complete digraph.

Inductively it follows that we need ω(D) = k colors to achieve a proper coloring

of H and therefore at least ω(D) = k colors to achieve a proper coloring of D.

3.3 Coloring of Hypergraphs

We already know from Section 2.5 that there is a close connection between graphs

and hypergraphs by loosely speaking exchanging edges and vertices. Therefore we

consider vertex coloring and edge coloring for hypergraphs to be able to transfer

assertions made for hypergraphs concerning coloring to undirected graphs and

vice versa. We again refer to Lovász [26] for the information presented in this

subsection.

Definition 3.10. A vertex coloring of a hypergraph H = (V,E) is a mapping f :

V → C, C ⊆ Z such that for every Ei ∈ E with |Ei| > 1 the vertices in Ei are

colored with at least two colors c1, c2 ∈ C, c1 6= c2. The chromatic number χ(H) of

a hypergraph H is the minimal number n = |C| such that there is a proper vertex

coloring f : V → C of H.

Definition 3.11. An edge coloring of a hypergraph H = (V,E) is a mapping f :

E → C, C ⊆ Z such that if there are two edges E1 and E2 with f(E1) = f(E2), we

have E1 ∩ E2 = ∅. The chromatic index ρ(H) of a hypergraph H is the minimal

number n = |C| such that there is a proper edge coloring f : E → C of H.

Definition 3.12. A hypergraph H is called normal if ρ(H̃) = δ(H̃) for every partial

hypergraph H̃ of H.

As we need at least as many colors to color the edges of H as there are edges

containing one certain vertex of H, we have ρ(H) ≥ δ(H) for every hypergraph

H.

If a hypergraphH does not have the Helly property it contains a partial hypergraph

H̃ with edge set Ẽ with
⋂

Ei∈Ẽ Ei = ∅ that has no pairwise disjoint edges. So

every edge in Ẽ intersects any other edge in Ẽ, which requires all edges in Ẽ

to be colored pairwise differently. Hence ρ(H̃) = |Ẽ|. On the other hand every

vertex of H̃ has a maximal degree of |Ẽ| − 1 since
⋂

Ei∈Ẽ Ei = ∅. So we obtain

δ(H̃) ≤ |Ẽ|−1 < |Ẽ| = ρ(H̃), hence H is not normal and every normal hypergraph

has the Helly property.
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4 Perfect Graphs

The term perfect graph was established by Berge [9;10] in the early 1960’s. He

also formulated two famous conjectures on perfect graphs which only got proven

significantly later and are now known as the (weak) Perfect Graph Theorem and

the Strong Perfect Graph Theorem. (cf. [16;13])

In this section we will take a closer look at these two theorems and a third one

called the Semi-strong Perfect Graph Theorem. We will proceed in a chronological

order on when these theorems were proven and partially replicate their historic

proofs, although, as we will see in Subsection 4.3, we could just deduce the Weak

and the Semi-strong Perfect Graph Theorem from the Strong Perfect Graph Theo-

rem nowadays.

Definition 4.1 ([12]). A graph G is Berge if every hole and antihole induced in G

has even length.

Definition 4.2 ([12]). A graph G is perfect if for every induced subgraph H of G

its chromatic number χ(H) equals its clique number ω(H). If a graph is not perfect

it is called imperfect.

a

b

c

d

e

f

Figure 12: Example of a perfect graph with a proper 3-coloring (red, green and
blue). It can easily be seen that for every subgraph H (and the graph itself) we
obtain χ(H) = ω(H).

We already know from Proposition 3.5 that the clique number of a graph is always

a lower bound to the chromatic number. This of course raises the question when

it is also an upper bound for the chromatic number and whether graphs fulfilling

this criterion form a some-how uniform class of graphs. It turns out this is not

quite the case. You cannot really tell anything about the properties of a certain

graph G1 just because it fulfills χ(G1) = ω(G1) and there is another graph G2 with

χ(G1) = ω(G1) = χ(G2) = ω(G2), apart from the fact that both graphs contain a

clique that determines the colors needed to color the respective graph. The class

of graphs however becomes a lot more restricted if we make the property of the
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chromatic number equaling the clique number hereditary, as we just defined it for

perfect graphs, because this is a restriction that operates locally on every part of

the graph rather than just globally on the whole graph. We will see in the following

how the class of perfect graphs can be characterized.

4.1 The Weak Perfect Graph Theorem

Lovász [26] published a proof of one of Berge’s conjectures in 1972, which is

now known as the (weak) Perfect Graph Theorem. This conjecture states that the

complement of a perfect graph is again perfect. In this subsection we will replicate

Lovász’ proof using hypergraphs and the observation that perfection of graphs is

the equivalent to normality respectively τ -normality of hypergraphs (cf. [26]).

The following information is oriented at Lovász’ paper.

Theorem 4.3 ([26], Theorem 1). Let G1 and G2 be two perfect graphs. Substituting
G2 for a vertex v of G1 we obtain again a perfect graph.

Proof. Let G′ be the graph we obtain from substituting G2 for v. We will show

that χ(G′) = ω(G′) since the equality follows by the same construction for every

induced subgraph of G′. We use induction on k = ω(G′).

For k = 1 the assertion is trivial, since every graph with no clique greater than one

can be colored with just one color.

Assume k > 1 and the assertion is true for k − 1. We want to find a stable set T of

G′ that intersects all cliques with k elements, since then we can color the vertices

of the stable set with one color and the remaining vertices with k− 1 colors by the

induction hypothesis and we therefore obtain a k-coloring of G′.

We put m = ω(G1), n = ω(G2) and p the maximum cardinality of a clique in G1

containing v. Then we have k = max{m,n+p−1} because either a greatest clique

of G1 is also a greatest clique of G′ or we obtain a greatest clique of G′ by joining

the p − 1 vertices (all but v) of a greatest clique in G1 containing v with the n

vertices of a greatest clique in G2.

We denote by K the set of vertices in G1 having the same color as v considering an

m-coloring ofG1. By Lwe denote a set of pairwise non-adjacent vertices ofG2 that

intersect every clique with n vertices of G2. We can then define T := L∪ (K \{v}).
T is a stable set. Since on the one hand the vertices of K are pairwise non-adjacent

(as they are colored by the same color) and also non-adjacent to any vertex of L

(since only vertices originally adjacent to v are adjacent to vertices in G2 and all

vertices of K have the same color as v and are therefore non-adjacent to v) and

since on the other hand the vertices of L were chosen pairwise non-adjacent.

Moreover T intersects all cliques of size k in G′. On the one hand if we consider a
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clique of size k that intersects G2 this clique contains a former clique of size n of

G2 and, by definition of L, T contains a vertex of this clique. On the other hand if

we consider a clique of size k that does not intersect G2 it has to be a clique of size

m in G1 and therefore it has to contain a vertex colored the same way as v thus a

vertex from K \ {v}.

Note that recursive implementation of Theorem 4.3 gives us: Substituting perfect

graphs for some vertices of a perfect graph we again obtain a perfect graph.

Observation 4.4. For a hypergraph H and its edge-graph G(H) we have χ(G(H)) =

ρ(H), since the edges of H correspond to the vertices of G(H) in a way that coloring
either of them is a proper coloring for the other.
Furthermore we have ω(G(H)) = ν(H), since pairwise disjoint edges in H are not
adjacent in G(H), so they form a clique in G(H).
If H has the Helly property the following holds as well:

• χ(G(H)) = τ(H), since the size of a minimal transversal in H equals the
number of maximal cliques in G(H) and because of the Helly property this
determines the minimal number of colors needed to color G(H), and

• ω(G(H)) = δ(H), since for a vertex v with maximum degree in H all the edges
containing this vertex intersect, by construction all corresponding vertices (to
these edges) must be pairwise adjacent in G(H), hence they form a clique.

We therefore obtain the following four equations:

• χ(G) = ρ(H(G)),

• ω(G) = δ(H(G)),

• χ(G) = τ(H(G)) and

• ω(G) = ν(H(G)).

The observations above imply the following theorem:

Theorem 4.5 ([26], Theorem 2). For a hypergraph H and its edge-graph G(H) the
following holds:

• H is normal if and only if G(H) is perfect and

• H is τ -normal if and only if G(H) is perfect.

For an undirected graph G and the corresponding hypergraph H(G) the following
holds:

• G is perfect if and only if H(G) is normal and
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• G is perfect if and only if H(G) is τ -normal.

From Theorem 4.3 and Theorem 4.5 we obtain the following lemma:

Lemma 4.6 ([26], Theorem 1’). Let H be a normal hypergraph. Multiplying some
of its edges, the obtained hypergraph is again normal.

Proof. Since H is normal we know that G(H) is perfect. We can therefore sub-

stitute any vertex v of G(H) by a graph with two vertices v1, v2 that are adjacent

(which is obviously perfect) and obtain a perfect graph according to Theorem 4.3.

This substitution is equivalent to doubling the corresponding edge in H. Recursive

implementation of this method yields a perfect graph G̃(H) and a corresponding

hypergraph H̃ that can be obtained from H by multiplying edges. Since G̃(H) is

perfect Theorem 4.5 implies that H̃ is normal.

We can now prove an analogon of the Perfect Graph Conjecture for hypergraphs.

Theorem 4.7 ([26], Theorem 3). A hypergraph is τ -normal if and only if it is
normal.

Proof. By Theorem 4.5 it suffices to prove one direction. Thus we will show that

if a hypergraph H is normal then τ(H) = ν(H), since the assertion for partial

hypergraphs follows in the same way.

We will use induction on n = τ(H), the assertion can be considered true for n = 0.

We want to find a vertex v such that the partial hypergraph H ′ consisting of all

edges that do not contain v has ν(H ′) < ν(H). Because if we find such a vertex,

H ′ would have a transversal T of size n− 1 and T ∪ {v} would be a transversal of

size n of H ′ showing that τ(H) ≤ n = ν(H).

Assume that there is no such vertex v, thus for every vertex v of H there is a set Fv

of n disjoint edges not containing v. Put H0 =
⋃

v Fv and consider edges occurring

in multiple Fv ’s with corresponding multiplicity in H0. H0 can be constructed from

H by removing and multiplying edges, therefore by Lemma 4.6 H0 is normal.

Hence we have ρ(H0) = δ(H0).

By construction H0 has n · m edges, m being the number of vertices of H. Since

there are at most n disjoint edges in H0 and edges colored the same way have to

be disjoint, we have ρ(H0) ≥ m.

Since we defined Fv as a set of disjoint edges, a given vertex v is only contained

in at most one edge of Fx, x 6= v, and in no edge of Fv. We therefore obtain

δ(H0) ≤ m− 1.

This yields a contradiction (cf. the observation after Definition 3.12) and we have

proven that there is a vertex v with the properties stated above. Hence we have
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τ(H) ≤ n = ν(H) and we always have τ(H) ≥ ν(H) (cf. the observation after

Definition 2.46 so H is τ -normal.

Theorem 4.8 (Weak Perfect Graph Theorem, [26]). A graph G is perfect if and
only if its complement G is perfect.

Proof. The assertion follows directly from Theorem 4.5 and Theorem 4.7:

G is perfect if and only if H(G) is normal,

H(G) is normal if and only if H(G) is τ -normal,

H(G) is τ -normal if and only if G is perfect.

4.2 The Semi-strong Perfect Graph Theorem

Reed [28] published the proof of another conjecture concerning perfect graphs

in 1987 made by Chvátal [14] a few years earlier. It is now known as the Semi-

strong Perfect Graph Theorem. It shows that perfection of graphs is invariant

under the premise of a certain kind of isomorphism between graphs, so called P4-

isomorphism. We will replicate the proof of this theorem by referring to [28] for

the proof of some lemmas and observations that are essential for the argumenta-

tion. The information in this subsection is taken from [28].

Definition 4.9. Two graphs G1 and G2 with the same vertex set are P4-isomorphic
if the following holds. Every set of four vertices {a, b, c, d} induces a path of length

four (i.e. a P4) in G1 if and only if the same vertex set induces a P4 in G2.

Lemma 4.10 (Star-cutset Lemma, [15]). No minimal imperfect graph has a star-
cutset.

Proof. Let G be a minimal imperfect graph. The following conditions hold for G:

1. every proper induced subgraph of G is ω(G)-colorable and

2. we have ω(G[V (G) \ S]) = ω(G) for every stable set S in G.

The implication of the second condition can be proved via contraposition. Assume

that there is a at least one stable set S ′ in G such that ω(G[V (G) \ S ′]) 6= ω(G).

So S ′ contains exactly one vertex from every largest clique in G. Since no vertices

in S ′ are connected in G they can be colored with one color in G. This implies

that the largest cliques in G are not all interconnected in a way that would require

more colors than ω(G). Hence G is perfect.

We will prove that no graph with the properties (1) and (2) has a star-cutset.
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Assume thatG is a graph that fulfills condition (1) and has a star-cutset C ⊆ V (G),

we will prove that G does not fulfill (2).

Since V (G) \ C induces a graph that is not connected, we can divide this vertex

set into two disjoint sets V1, V2, such that there is no edge between any vertex in

V1 and any vertex in V2. Let Gi, i = 1, 2, be the subgraph induced by the vertex

set Vi ∪C. According to condition (1) there is a proper coloring fi of Gi with ω(G)

colors. Let w ∈ V (C) be the center of the star-cutset, so w is adjacent to all other

vertices in C. Define the vertex sets Si = {v | v ∈ Gi, fi(v) = fi(w)}. Each Si is

again a stable set and Si ∩ C = {w}. According to the construction of the sets Si

the union S = S1 ∪ S2 is also a stable set. Let Q ⊆ V (G) be a clique in V (G) \ S.

Q is fully contained in either V (G1) \ S1 or V (G2) \ S2. Since each of these graphs

can be colored with ω(G) − 1 colors, we obtain |Q| ≤ ω(G) − 1. Hence condition

(2) does not hold.

See [24] for the proof of the following lemma.

Lemma 4.11 ([24]). Every graph with at least three vertices that does not contain
a disc as an induced subgraph is fragile.

The proof for the following lemma can be found in [28] (Theorem 2).

Lemma 4.12 ([28], Theorem 2). If G1 and G2 are P4-isomorphic graphs and if for
some disc of size at least six induced by the vertex set S in G1 the vertex set S induces
exactly the same disc in G2, then one of the following holds:

1. G1
∼= G2, or

2. G2 or G2 has a star-cutset, or

3. G2 contains a C5 as a proper induced subgraph.

Observation 4.13 ([28], Chapter 3). All discs except for the ones of size six are
P4-isomorphic only to themselves and their complements.
C6 is P4-isomorphic to itself, its complement C6, the graph F from Figure 13 and F .

The following lemma therefore focuses on a vertex set that induces a C6 in one

graph and an F in a P4-isomorphic graph, see [28] (Theorem 3) for the proof.

Lemma 4.14 ([28], Theorem 3). Let G1 and G2 be P4-isomorphic graphs such that
G2 is unbreakable and does not contain an induced C5. If some vertex set S induces
a C6 in G2 and an F (see Figure 13) in G1, then G2 has a proper endomorphism.

Lemma 4.15 ([28], Theorem 1). Let G1 and G2 be two P4-isomorphic graphs such
that G1 is neither G2 nor G2. Then at least one of the following holds:

1. G2 contains a C5 as a proper induced subgraph, or
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F

Figure 13: The graph F. (Figure taken from [28])

2. G2 or G2 contains a star-cutset (i.e. it is fragile), or

3. G2 or G2 has a proper endomorphism.

Proof. Let G1 and G2 be two P4-isomorphic graphs such that G1 is neither G2 nor

G2. If G1 has less than three vertices we have G1
∼= G2 or G1

∼= G2, contradicting

the assumptions, let therefore G1 have at least three vertices.

If G2 has no disc (2) follows by Lemma 4.11.

If G2 contains a disc of size five, clearly (1) is true since C5
∼= C5.

If G2 contains a disc of size at least six we have to consider three different cases.

Let S be the vertex set of this disc. Denote by SG1 and SG2 the subgraphs induced

by S in G1 and G2.

If SG1
∼= SG2 Lemma 4.12 can be applied and, since the first condition of this

lemma is a contradiction to our assumption, (1) or (2) must be true.

If SG1

∼= SG2 we can apply Lemma 4.12 onG1 andG2 (since P4 is self-complementary)

and it follows that (1) or (2) must be true.

If neither SG1
∼= SG2 nor SG1

∼= SG2, we can assume by Observation 4.13 that SG1

or SG1
is the graph F from Figure 13. In both cases one of the three conditions of

the theorem follows from Lemma 4.14 (in the case of SG1
being the graph F , we

can apply Lemma 4.14 on G1 and G2 because P4 is self-complementary).

We will see in the following theorem that this lemma already proves the Semi-

strong Perfect Graph Theorem.

Theorem 4.16 (Semi-strong Perfect Graph Theorem, [28]). If two graphs G1 and
G2 with the same vertex set are P4-isomorphic, then G1 is perfect if and only if G2 is
perfect.

Proof. Assume the assertion is not true. Thus there are two P4-isomorphic graphs

G1 and G2 such that G1 is perfect and G2 is not. Let G2 be minimal imperfect, i.e.
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every proper induced subgraph of G2 is perfect but G2 is imperfect.

Obviously G1 is not G2 and by the Weak Perfect Graph Theorem 4.8 G1 is not G2.

We know from Lemma 4.15 that in this case at least one of the three conditions of

this lemma must hold for G2. We will show that a minimal imperfect graph cannot

fulfill any of these conditions.

If G2 has five or less than five vertices it obviously does not contain a proper in-

duced C5. Assume G2 has at least six vertices and contains an induced C5. Since

ω(C5) = 2 and χ(C5) = 3, C5 is imperfect and G2 contains a proper induced sub-

graph that is imperfect, a contradiction to G2 being imperfect.

The second condition is excluded by the Star-Cutset Lemma 4.10. Due to the Weak

Perfect Graph Theorem 4.8 the Star-Cutset Lemma can also be applied on the com-

plement of an imperfect graph.

Assume that G2 has a proper endomorphism f and let H be the subgraph of G2

induced by f(G2). Due to the minimal imperfection of G2, H is perfect and there-

fore ω(H)-colorable. Hence there exists an endomorphism g on H such that g(H)

is a clique with ω(H) vertices where every vertex of g(H) is the image of all ver-

tices with the same color in H. The composition of the two endomorphism g and

f is again an endomorphism. So there is an endomorphism g∗ = g ◦ f such that

g∗(G2) = (g◦f)(G2) = g(f(G2)) = g(H) is a clique with ω(f(G2)) = ω(H) vertices.

Therefore G2 is ω(H)-colorable and since ω(H) ≤ ω(G2) also ω(G2)-colorable, a

contradiction.

4.3 The Strong Perfect Graph Theorem

The proof of another famous conjecture called the Strong Perfect Graph Conjecture
by Berge was published by Chudnovsky et al. [12] in 2006, the conjecture is now

known as the Strong Perfect Graph Theorem.

Theorem 4.17 (Strong Perfect Graph Theorem, [12]). A graph G is perfect if and
only if it is Berge, i.e. G does not contain odd length holes nor odd length antiholes
as induced subgraphs.

Chudnovsky et al. needed roughly 150 pages to prove this theorem, so for obvious

reasons we will not replicate their proof in this thesis and therefore refer to [12]

for the complete proof and only give a short summary of the idea of the proof

oriented at [13] here.

It is easily seen that every perfect graph is Berge since odd length holes and odd

length antiholes are not perfect and therefore any graph containing them is not

perfect either.

The converse however is difficult to prove. Chudnovsky et al. consider five classes
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of graphs and three certain partitions of graphs to prove this inclusion.

Those five classes are bipartite graphs, complements of bipartite graphs, line graphs

of bipartite digraphs, complements of line graphs of bipartite graphs and so-called

double split graphs. A double split graph G is a graph constructed the following

way. Take a bipartite graph H with bipartition (A,B) and define two new vertices

sv and tv for every vertex v ∈ V (H). Then set V (G) = {sv, tv | v ∈ V (H)} and the

edges of G are given by:

• (sv, tv) ∈ E(G) if and only if v ∈ A,

• for v1 6= v2, v1, v2 ∈ A, there are no edges between the vertex sets {sv1 , tv1}
and {sv2 , tv2},

• for v1 6= v2, v1, v2 ∈ B, there are four edges between the vertex sets {sv1 , tv1}
and {sv2 , tv2} and

• for v1 ∈ A and v2 ∈ B, there are exactly two edges connecting one vertex of

{sv1 , tv1} to one vertex of {sv2 , tv2}: if (v1, v2) ∈ E(H) then (sv1 , sv2), (tv1 , tv2) ∈
E(G) and otherwise (sv1 , tv2), (tv1 , sv2) ∈ E(G).

All these five classes of graphs are perfect.

The three partitions considered are 2-joins, M -joins and even skew partitions.

A 2-join in G is a partition of the vertex set (X1, X2) such that there exist disjoint

non-empty sets Ai, Bi ⊆ Xi, i ∈ {1, 2} with:

• every vertex of A1 is adjacent to every vertex of A2 and every vertex of B1 is

adjacent to every vertex of B2, and there are no further edges between X1

and X2,

• for i ∈ {1, 2}, every component of G[Xi] intersects with both Ai and Bi and

• for i ∈ {1, 2}, if |Ai| = |Bi| = 1 and G[Xi] is a path joining the vertices of Ai

and Bi, it has odd length ≥ 3.

AnM -join inG is a partition of the vertex set into six non-empty sets (A,B,C,D,E, F )

such that:

• every vertex in A is adjacent to at least one vertex in B and non-adjacent to

at least one other vertex in B, and vice versa,

• for the pairs (C,A), (A,F ), (F,B), (B,D) every vertex of one set is connected

to every vertex of the other set and

• for the pairs (D,A), (A,E), (E,B), (B,C) there are no edges between the

two sets.
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A skew partition in G is a partition (A,B) of the vertex set such that

• A does not induce a connected subgraph in G and A is not empty and

• B does not induce a connected subgraph in G and B is not empty.

A skew partition is even, if every induced path of length at least two, whose begin-

ning and end are in B and all other vertices are in A, has even length and every

induced complement of a path (whose complemented path has at least length

two), whose beginning and end are in A and all other vertices are in B, has even

length.

By referring to some earlier results (see [13] for details) Chudnovsky et al. prove

that no minimal imperfect graph has a 2-join or an M -join and furthermore that

the complement of a minimal imperfect graphs does not have a 2-join either. Addi-

tionally they prove that, assuming a Berge graph G is not perfect but every Berge

graph H with |V (H)| < |V (G)| is perfect, G does not have an even skew partition.

So what Chudnovsky et al. proved is that for every Berge graph G exactly one of

the following holds:

• G is in one of the five classes,

• G or G has a 2-join,

• G has an M -join or

• G has an even skew partition.

With the observations above this proves the theorem.

Remark 4.18 ([28]). If G is a graph without odd length holes and without odd

length antiholes as induced subgraphs, then its complement G does not have an

odd length hole or an odd length antihole as induced subgraph either. It is there-

fore perfect as well. Since G = G we obtain that:

G is perfect

⇔ G does not have an odd length hole or an odd length antihole as an

induced subgraph

⇔ G does not have an odd length hole or an odd length antihole as an

induced subgraph

⇔ G is perfect

So the Strong Perfect Graph Theorem 4.17 implies the (weak) Perfect Graph The-

orem 4.8, which also explains the naming as Weak and Strong Perfect Graph The-

orems.
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Remark 4.19 ([28]). If G1 is a perfect graph and G2 is P4-isomorphic to G1, then

G2 is also a perfect graph according to Theorem 4.16. Since the complement of a

P4 is again a P4, we obtain thatG2 is also P4-isomorphic toG1 and therefore perfect

as well. Since G2 = G2, Theorem 4.16 implies the Weak Perfect Graph Theorem

4.8 and Chvátal [14] showed that the Strong Perfect Graph Theorem 4.17 implies

Theorem 4.16. This means it is situated between the two main theorems on perfect

graphs and is therefore called the Semi-Strong Perfect Graph Theorem.
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5 Perfect Digraphs

As an analogon to Definition 4.2 Andres and Hochstättler introduced perfect di-

graphs in [4] using Neumann-Lara’s definition of the dichromatic number. They

also formulated and proved a Strong Perfect Digraph Theorem (see [4]) for char-

acterization of perfect digraphs and a Semi-strong Perfect Digraph Theorem (see

[3]), which we will present in this section. However we will see that the Weak

Perfect Graph Theorem 4.8 does not have an obvious analogon for digraphs (see

[4]).

Definition 5.1 ([4]). A digraph D is called perfect if for any induced subdigraph

H of D the dichromatic number χ(H) of H equals the clique number ω(H) of H.

Note that the definition of perfection for digraphs is compatible with the one of

graphs in the following way: A graph G is perfect if and only if its complete

biorientation
←→
G is perfect, since χ(G) = χ(

←→
G ) as we saw in Section 3.2 and

obviously ω(G) = ω(
←→
G ).

5.1 A Strong Perfect Digraph Theorem

The information in this subsection is taken from [4].

Theorem 5.2 (Strong Perfect Digraph Theorem, [4], Theorem 3). A digraph D =

(V,A) is perfect if and only if the symmetric part S(D) is perfect and D does not
contain any directed cycle

−→
Cn of length n ≥ 3 as an induced subdigraph.

Proof. Assume S(D) is not perfect. Since S(D) can be interpreted as an undirected

graph there must exist an induced subgraph H = (V ′, E ′) of S(D) with ω(H) <

χ(H) taking into consideration the definition of perfect graphs 4.2 and the fact

that ω(H) ≤ χ(H) for all H. Since S(D[V ′]) = H we conclude by Observation

2.29,

ω(D[V ′]) = ω(S(D[V ′])) = ω(H) < χ(H) = χ(S(D[V ′])) ≤ χ(D[V ′]) ,

which implies that D is not perfect.

Assume that D contains a directed cycle
−→
Cn of length n ≥ 3 as an induced sub-

digraph. On the one hand we have ω(
−→
Cn) = 1, since there is no pair of vertices

in
−→
Cn with a pair of antiparallel arcs between them. On the other hand we have

χ(
−→
Cn) = 2, since we need at least two different colors to achieve a proper coloring

of a cycle. Therefore we have ω(
−→
Cn) < χ(

−→
Cn) and since

−→
Cn is an induced subdi-

graph of D, D is not perfect.
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Hence if S(D) is not perfect or if D contains an directed cycle
−→
Cn of length n ≥ 3

as an induced subdigraph then D is not perfect.

Now assume that S(D) is perfect but D is not perfect. It suffices to show that D

contains a directed cycle
−→
Cn of length n ≥ 3 as an induced subdigraph.

Since D is not perfect there exists an induced subdigraph H = (V ′, A′) of D with

ω(H) < χ(H). As S(H) ⊆ S(D) is perfect, there is a proper coloring of S(H) =

S(D[V ′]) with ω(S(H)) colors, i.e. by Observation 2.29 with ω(H) colors. This can

however not be a proper coloring of H. Hence there is a (not necessarily induced)

monochromatic directed cycle
−→
Cn of length n ≥ 3 in H. Obviously

−→
Cn cannot be

entirely in S(H). Moreover there cannot be a single arc of
−→
Cn that is in S(H)

because in this case we would have a monochromatic cycle of length 2 in S(H)

which is not possible since the coloring is a proper coloring of S(H). Therefore
−→
Cn

has to be in O(H).

Let C be a monochromatic directed cycle (of length at least three) in H of minimal

length. C cannot have a pair of antiparallel arcs as a chord, since both vertices

are colored in the same color contradicting the fact that the coloring is a proper

coloring of S(H). Moreover C cannot have a single arc as a chord because in this

case there would be a smaller monochromatic cycle in H than C, contradicting

the minimality of C. Therefore C is an induced monochromatic directed cycle of

length at least three in H and hereby in D.

This suffices to complete the proof because if we assume that D does not contain

a cycle of length greater than three and D is not perfect, S(D) cannot be perfect.

Because if it was, D would have to have an induced cycle with length greater than

three as we have just proven. But this clearly contradicts the assumption we just

made.

Note that this Theorem yields the following assertion.

Remark 5.3 ([4], Remark 4). If D is a perfect digraph, then every proper coloring

of S(D) is a proper acyclic coloring of D as well.

The only structure that must be avoided when possibly recoloring the vertices to

achieve a proper acyclic coloring of D is a monochromatic directed cycle. Induced

monochromatic directed cycles cannot exist in perfect digraphs as just proven in

Theorem 5.2. Cycles that have a pair of antiparallel arcs as a chord or as part of

the cycle are already colored with at least two colors since the pair of antiparallel

edges requires its vertices to be colored differently. If a non-induced cycle has only

single arcs as parts of the cycle and as chords, then its vertex set must contain a

proper subset that induces a directed cycle of length at least three. This case is

therefore also excluded by the Strong Perfect Digraph Theorem.



5 PERFECT DIGRAPHS 40

Corollary 5.4 ([4], Corollary 5). A digraph D is perfect if and only if it does not
contain either of the following structures as an induced subdigraph: a filled odd
length hole, a filled odd length antihole and a directed cycle

−→
Cn of length n ≥ 3.

Proof. Obviously D is not perfect if it contains any of the structures above as an

induced subdigraph since they are not perfect.

If D contains none of the structures above as an induced subdigraph then S(D)

does not contain an odd length hole nor an odd length antihole as an induced

subgraph and therefore S(D) is perfect by Theorem 4.17. Moreover, since directed

cycles
−→
Cn of length n ≥ 3 are excluded as induced subdigraphs, Theorem 5.2

implies that D is perfect.

5.2 A Semi-strong Perfect Digraph Theorem

As seen in Section 4.2 Reed showed that perfection is invariant under P4-isomorphism.

To formulate an analogous result for digraphs Andres et al. [3] introduced what

can be considered an analogon to P4-isomorphism for digraphs; P 4C-isomorphism.

We know from Theorem 2.35 that graphs without an induced P4 form the class of

cographs and Theorem 2.41 states that the class of directed cographs can be char-

acterized by a set F of eight forbidden induced minors. In a way those eight

minors correspond to the P4 when transferring the idea of cographs to digraphs.

Forbidding all eight minors cannot yield the right isomorphism to formulate an

analogon to the Semi-strong perfect graph Theorem 4.16, since the class of di-

rected cographs is closed under complementation (Lemma 2.39) and perfect di-

graphs are not (this will be discussed in detail in Section 5.3). Andres et al. there-

fore restricted the set F to five induced minors to define P 4C-isomporphism and

prove a Semi-strong Perfect Digraph Theorem.

These five forbidden induced minors are the symmetric path P4, the directed cycle
−→
C3, the directed path

−→
P3 and the two variations of a directed path

−→
P3 with one pair

of antiparallel arcs
−→
P+
3 and

−→
P−3 (see Figure 14).

The information in this subsection is taken from [3].

Definition 5.5. Two digraphs D = (V,A) and D′ = (V,A′) on the same vertex set

are said to be P 4C-isomorphic if and only if all of the following holds:

1. any set {a, b, c, d} ⊆ V induces a P4 in S(D) if and only if it induces a P4 in

S(D′),

2. any set {a, b, c} ⊆ V induces a
−→
C3 in D if and only if it induces a

−→
C3 in D′,
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Figure 14: The five forbidden induced minors. (Figure taken from [3])

3. any set {a, b, c} ⊆ V induces a
−→
P3 with midpoint b in D if and only if it

induces a
−→
P3 with midpoint b in D′ and

4. any set {a, b, c} ⊆ V induces a
−→
P+
3 or a

−→
P−3 in either case with midpoint b in

D if and only if it induces one of them with midpoint b in D′.

Lemma 5.6 ([3], Lemma 4). Let D and D′ be P 4C-isomorphic. D contains an
induced directed cycle of length n ≥ 3 if and only if the same is true for D′.

Proof. By symmetry it suffices to show one inclusion. Let {v0, . . . , vn−1} be a vertex

set that induces a directed cycle
−→
Cn in D.

By definition of P 4C-isomorphism the assertion is true for n = 3, thus assume n ≥
4 for the following considerations. Without loss of generality we may also assume

that the vertices are labeled in consecutive order (in the direction of traversal) in
−→
Cn.

Each set of vertices {vi, vi+1, vi+2} induces a
−→
P3 with midpoint vi+1 (indices are

taken modulo n) in D′ since it induces a
−→
P3 in D as part of the cycle

−→
Cn. As a

result we obtain a directed cycle C on {v0, . . . , vn−1} in D′, possibly with opposite

direction of the one in D. In this case we relabel the vertices such that the labeling

has a consecutive order (in the direction of traversal) again.

It remains to prove that the cycle is induced in D′. Assume it is not, i.e. C has

a chord that is either a pair of antiparallel arcs (vi, vj) and (vj, vi) or a single arc

(vi, vj) in D′, |i− j| > 1. We choose j such that the directed path from vj to vi on

C is the shortest possible.

First consider the case of the chord being a single arc (vi, vj). Since {vi, vj, vj+1}
does not induce a

−→
C3 in D′ it must induce a

−→
P3 with midpoint vj in D′ and due to

P 4C-isomorphism the same must hold in D, contradicting the assumption that
−→
Cn

is induced in D.

Now consider the chord being a pair of antiparallel arcs (vi, vj) and (vj, vi). In this

case {vi, vj, vj+1} must induce a
−→
P+
3 or a

−→
P−3 with midpoint vj in D′ and therefore
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in D, also contradicting the assumption that
−→
Cn is induced in D.

Figure 15: The three vertices induce a directed path of length three with or with-
out one antiparallel arc in the proof of Lemma 5.6 (in this case the directed path
from vi to vj on the cycle is shorter than the other way around).

With the lemma above we can easily prove an analogon to the Semi-strong Perfect

Graph Theorem.

Theorem 5.7 (Semi-strong Perfect Digraph Theorem, [3], Theorem 5). If D and
D′ are P 4C-isomorphic then D is perfect if and only if D′ is perfect.

Proof. By the first criterion of Definition 5.5 S(D) and S(D′) are P4-isomorphic

and therefore by Theorem 4.16 S(D) is perfect if and only if S(D′) is perfect. By

Lemma 5.6, D contains an induced cycle of length n ≥ 3 if and only if the same

holds for D′. The assertion now follows from the Strong Perfect Digraph Theorem

5.2.

Andres et al. [3] conclude their paper on the Semi-strong Perfect Digraph Theorem

with an observation on digraphs that do not contain any of the five subdigraphs

from Figure 14. These digraphs are trivially P 4C-isomorphic (if they have the

same vertex set). Since one of the five forbidden subdigraphs is the P4 we know

from Theorem 2.35 that the symmetric part S(D) of such a digraph D is a co-

graph. By Definition 2.32 we know that every cograph can be represented by its

cotree and we may consider the cotree in normalized form, where vertices labeled

1 represent the complete join of subgraphs and vertices labeled 0 represent the dis-

joint union of subgraphs. If two cographs in the construction process of S(D) are

the children of a 1-labeled vertex in the corresponding cotree they are completely

joined in S(D), hence they form one connected component in S(D). Hence it is

interesting to see how two cographs in the construction process of the cograph

S(D) are connected, that are children of a 0-labeled vertex in the corresponding

cotree, or, more generally, how components of S(D) are connected in D. Andres

et al. [3] made the following observation.
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Lemma 5.8 ([3], Lemma 6). Let G1, . . . , Gk be the connected components of the
symmetric part S(D) of a digraph D not containing any of the five subdigraphs from
Figure 14 as induced subdigraphs.
If there exists a single arc in D between a vertex vi in Gi and a vertex vj in Gj, i 6= j

and 1 ≤ i, j ≤ k, thenGi andGj are connected inD by an orientation of the complete
bipartite graph KV (Gi),V (Gj).

Proof. Let w be a neighbor of vj in S(D), so vj and w are connected by a pair of

antiparallel arcs. We consider the subdigraph induced by vi, vj and w in D.

If there is no arc between vi and w the three vertices induce a
−→
P+
3 or a

−→
P−3 in D

contradicting the assumption that the five subdigraphs from Figure 14 are not in

D. The vertices vi and w cannot be connected by a pair of antiparallel arcs either

since they are in different components of S(D). Hence there has to be a single arc

between those vertices.

Inductively we obtain that vi has to be connected to all vertices of Gj by a single

arc.

Conversely it follows from the existence of these single arcs that every vertex of

Gj has to be connected to every vertex of Gi by a single arc. Hence we obtain an

orientation of the complete bipartite graph KV (Gi),V (Gj) connecting Gi and Gj.

Obviously the two components Gi and Gj themselves do not have to be an orien-

tation of the complete bipartite graph KV (Gi),V (Gj) since there are arcs connecting

vertices within a component.

Note that there may be single arcs between vertices of a component Gi in D. This

may exclude certain single arcs between components from existing since we also

forbid
−→
C3 and

−→
P3 from being induced subdigraphs of D.

These observations yield the conclusion that digraphs without any of the five sub-

digraphs from Figure 14 are pretty similar to one another and contain a rather

strict structure. It may be worth to investigate them further as there are probably

certain problems that are tractable for these digraphs butNP-complete in general.

(cf. [3])

5.3 Non-existence of a Weak Perfect Digraph Theorem and Strictly

Perfect Digraphs

As mentioned above unfortunately there is no analogon to the Weak Perfect Graph

Theorem 4.8 for digraphs.

Observation 5.9 ([4]). For a perfect digraphD its complementD may not be perfect.
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Take the directed cycle of length four
−→
C4 as an example. As mentioned in the proof

of the Strong Perfect Digraph Theorem 5.2 we have ω(
−→
C4) = 1 < 2 = χ(

−→
C4), so

obviously
−→
C4 is not perfect. However we have ω(

−→
C4) = 2 = χ(

−→
C4) (see Figure 16),

so the complement of
−→
C4 is perfect.

a b

c d

Figure 16: A proper coloring of the complement of the directed cycle of length
four with two colors (red and blue), obviously the subdigraphs induced by the
vertex sets {a, d} and {b, c} form cliques of size two.

We can however make some general statements on the structure of the comple-

ment of a perfect digraph.

Theorem 5.10 ([4], Theorem 9). A digraphD is perfect if and only if its complement
D is a clique-acyclic superorientation of a perfect graph G, i.e. there is no clique in G
that is induced by the vertex set of a directed cycle in O(D).

Proof. We know from Theorem 5.2 that D is perfect if and only if S(D) is perfect

and D does not contain an induced directed cycle of length at least three.

D not containing an induced directed cycle of length at least three is obviously

equivalent to D not containing an induced antihole of length at least three, since

both subdigraphs are complementary and induced by the same vertex set in two

complementary digraphs.

We want to prove that D not containing an induced antihole of length at least

three is equivalent to D being clique-acyclic. We prove both directions via contra-

position.

Let D contain an induced antihole
−→
Cn, n ≥ 3. The underlying graph UG(

−→
Cn) is the

complete graph Kn which obviously defines a clique in UG(D) and the vertex set

of
−→
Cn forms a directed cycle in O(D). Therefore D is not clique-acyclic.

Let on the other hand D be not clique-acyclic. So there is a directed cycle
−→
Cn,

n ≥ 3, in O(D) whose vertex set induces a clique in UG(D). Let C be such a cycle

of minimum length. Assume C has at least length four. Since the vertex set of C

induces a clique in UG(D) there have to be chords between all non-consecutive
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vertices of C. If there was a single arc as a chord in C we would obtain a smaller

directed cycle fulfilling the same properties contradicting the minimality of C. So

each chord has to be a pair of anti-parallel arcs in D. Therefore D contains an

induced antihole. If C has length three the assertion follows immediately.

By the Weak Perfect Graph Theorem 4.8 we know that S(D) is perfect if and only if

its complement S(D) is perfect and therefore if and only if UG(D) is perfect, since

S(D) = UG(D). Therefore S(D) is perfect if and only if D is the superorientation

of a perfect graph.

Combining the above assertions we obtain the proposed equivalence.

As we have just seen perfection of digraphs is not closed under complementation.

We can however require this by definition.

Definition 5.11. A digraph D is strictly perfect if it is perfect and its complement

D is perfect as well.

An alternative motivation and definition for strictly perfect digraphs is given by

Andres in [2].

If we want to formulate a Semi-strong Perfect Digraph Theorem for strictly perfect

digraphs we need to forbid six of the subdigraphs from Figure 9 as induced sub-

digraphs; the five minors we already know from perfect digraphs (see Figure 14)

and the directed cycle of length three with one additional arc (subdigraph in the

bottom left corner of Figure 9).

We extend our definition of P 4C-isomorphism. We must also extend our criterion

for the induced P4 to all of D and D′, because S(D) and S(D′) do not have to

be P4-isomorphic just because S(D) and S(D′) are P4-isomorphic. See Figure 17

for an example of digraphs for which P4-isomorphism of S(D) and S(D′) does

not require P4-isomorphism of S(D) and S(D′), because a P4 that is induced in

S(D) may not be induced in D. Note that it is however difficult to find examples

for such digraphs since many single arcs create a
−→
P+
3 , a

−→
P−3 or the new minor

(directed cycle of length three with one additional arc) as induced subdigraphs

in connection with a P4, which requires them to be induced in both D and D′ by

definition.

Of course a vertex set that induces a P4 in D always induces a P4 in S(D) as well.

Definition 5.12. Two digraphsD andD′ on the same vertex set are P 4S-isomorphic
if and only if all of the following hold:

1. any set {a, b, c, d} ⊆ V induces a P4 in D if and only if it induces a P4 in D′,
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D

(a)

D'

(b)

(c) (d)

Figure 17: The four vertices induce a P4 in both S(D) and S(D′), but this is not
true for the complements.

2. any set {a, b, c} ⊆ V induces a
−→
C3 in D if and only if it induces a

−→
C3 in D′,

3. any set {a, b, c} ⊆ V induces a
−→
P3 with midpoint b in D if and only if it

induces a
−→
P3 with midpoint b in D′,

4. any set {a, b, c} ⊆ V induces a
−→
P+
3 or a

−→
P−3 in either case with midpoint b in

D if and only if it induces one of them with midpoint b in D′ and

5. any set {a, b, c} ⊆ V induces a directed cycle of length three with one addi-

tional arc with midpoint b in D if and only if it induces a directed cycle of

length three with one additional arc with midpoint b in D′.

Clearly if two digraphs are P 4S-isomorphic they are also P 4C-isomorphic.

Alternatively we could also include the complement of the N -structure (bottom

middle digraph of Figure 9) into our list of forbidden subdigraphs instead of ex-

tending the criterion for the P4 to D and D′. Because in this case P4-isomorphism

of the symmetric part of digraphs extends to digraphs in general. We will use this

property later on (cf. Lemma 6.16). But in this section we will just extend our

criterion for the P4 because the main argumentation of the following Semi-strong

Perfect Digraph Theorem 5.14 for strictly perfect digraphs does not require the

complement of the N -structure as a forbidden minor.

Lemma 5.13. If D and D′ are two P 4S-isomorphic digraphs, then D contains an
antihole

−→
Cn of length n ≥ 3 as an induced subdigraph if and only if the same is true
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Figure 18: Visualization of the argumentation in the proof of Lemma 5.13 taking
the antihole of length eight as an example. The green marking shows the first
three vertices we consider and where we assume that there is a single arc (vi, vi+3).
This yields to the consideration of the blue and red markings. Finally we get a
contradiction for the three vertices with the yellow marking.

for D′.

Proof. By symmetry it suffices to show one direction. We therefore assume that

the vertices {v0, . . . , vn−1} induce an antihole in D. We further assume that the

vertices are labeled in consecutive order (in the direction of traversal) of the outer

cycle
−→
Cn.

If n = 3 the assertion follows directly from Definition 5.12 since
−→
C3 =

−→
C3.

Thus assume n ≥ 4. In D any set of three consecutive vertices {vi, vi+1, vi+2},
where we consider the indices modulo n (as for the rest of this proof), induces

a directed cycle
−→
C3 with one additional arc (vi, vi+2). This is the digraph in the

bottom left corner of Figure 9. Since D and D′ are P 4S-isomorphic any of these

vertex sets induce the same subdigraph in D′ possibly with opposite direction of

the cycle. We therefore obtain a cycle of length n with additional pairs of an-

tiparallel arcs between two vertices vi, vi+2, i = 0, . . . n − 1 in D′. This proves the

assertion for n = 4 and n = 5. If the outer cycle has the opposite orientation in

D′, we relabel it so the vertices are labeled in consecutive order (in the direction

of traversal) again.

We now assume n ≥ 6. Consider the set of three vertices {vi, vi+1, vi+3} in D′. We

want to prove that there has to be a pair of antiparallel arcs between vi and vi+3.

We have already proven that there has to be a single arc (vi, vi+1) between vi and

vi+1 and a pair of antiparallel arcs between vi+1 and vi+3. If there was no arc be-
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tween vi and vi+3 or if there was a single arc (vi+3, vi) between these vertices, the

three vertices would induce subdigraphs from Figure 9. This would require that

the same subdigraphs were induced by the same vertex set in D, contradicting the

assumption that D contains an antihole induced by {v0, . . . , vn−1}. Hence there

has to be either a single arc (vi, vi+3) or a pair of antiparallel arcs between vi and

vi+3.

Assume there is a single arc (vi, vi+3) between the vertices. We then consider the

set of three vertices {vi, vi+3, vi+4}. As we assume there is a single arc (vi, vi+3)

and we know that there is a single arc (vi+3, vi+4) there are three cases in which

the three vertices would induce a subdigraph from Figure 9; if there was no arc

between vi and vi+4, if there was a single arc (vi+4, vi) or a pair of antiparallel arcs

between those two vertices. All these cases would require that the three vertices

induce the same subdigraph inD, which is again contradicting the assumption that

D contains an antihole induced by {v0, . . . , vn−1}. Therefore there would have to

be a single arc (vi, vi+4) in D′.

Exactly the same argumentation leads to the conclusion that there would have

to be a single arc (vi, vi+5) in D′ if we now consider the set of the three vertices

{vi, vi+4, vi+5} and so on until we obtain that there would have to be a single arc

(vi, vi−3) in D′.

We then consider the set of the three vertices {vi, vi−3, vi−1}. We know that there

is a single arc (vi−1, vi) and a pair of antiparallel arcs between vi−1 and vi−3 and

following the assumption we obtain that there has to be a single arc (vi, vi−3) in

D′. Hence those three vertices induce a directed cycle of length three with one

additional arc in D′ which is one of the digraphs in Figure 9. Since D and D′ are

P 4S-isomorphic the same subdigraph must be induced by these vertices in D, con-

tradicting the assumption that D contains an antihole induced by {v0, . . . , vn−1}.
Hence the assumption that there is a single arc (vi, vi+3) is wrong and there has to

be a pair of antiparallel arcs between vi and vi+3.

Similarly we can conclude that there has to be a pair of antiparallel arcs between

vi and vi+4 if we consider the vertex set {vi, vi+3, vi+4}. If there was no arc between

vi and vi+4 or if there was a single arc (vi+4, vi) the three vertices would induce a

subdigraph from Figure 9, again contradicting the assumption that D contains an

antihole induced by {v0, . . . , vn−1}. If there was a single arc (vi, vi+4) the same

argumentation as above leads to a contradiction, hence there has to be a pair of

antiparallel arcs between vi and vi+4.

Inductively we obtain that there has to be a pair of antiparallel arcs between vi

and vi+j, j ∈ {4, . . . , i− 3}.
Hence the vertices {v0, . . . , vn−1} induce an antihole in D′.
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With Lemma 5.13 we can easily formulate a Semi-strong Perfect Digraph Theorem

for strictly perfect digraphs.

Theorem 5.14. If D and D′ are two P 4S-isomorphic digraphs, then D is a strictly
perfect digraph if and only if D′ is a strictly perfect digraph.

Proof. From the Semi-Strong Perfect Digraph Theorem 5.7 we know that if D and

D′ are two P 4S-isomorphic digraphs, then D is a perfect digraph if and only if D′

is a perfect digraph, since P 4S-isomorphism induces P 4C-isomorphism.

It remains to show that if D and D′ are two P 4S-isomorphic digraphs, then D is a

perfect digraph if and only if D′ is a perfect digraph.

S(D) and S(D′) are P4-isomorphic as D and D′ are P4-isomorphic and a P4 is

self-complementary. So by the Semi-Strong Perfect Graph Theorem 4.16 S(D) is

perfect if and only if S(D′) is perfect.

By Lemma 5.13 D contains an antihole of length at least three as an induced

subdigraph if and only if the same is true for D′. Hence D contains an induced

cycle of length at least three if and only if the same holds for D′.

Hence the assertion follows from the Strong Perfect Digraph Theorem 5.2.
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6 N -free Coloring and N -perfection of Digraphs

As we have seen in Section 5 perfection of digraphs does not behave quite as

perfectly as perfection for graphs does, most notably it is not closed under com-

plementation. This suggests that maybe acyclic coloring is not the best way of

defining coloring for (perfect) digraphs. As we saw in Section 5.2 we need to

forbid five subdigraphs to obtain an analogon to the Semi-strong Perfect Graph

Theorem for digraphs. An intuitive way of modifying the definition of coloring

digraphs could be in a way so that we obtain a Semi-strong Perfect Digraph Theo-

rem that requires more than these five subdigraphs.

We have already discussed that we obtain strictly perfect digraphs if we include

the directed cycle of length three with one additional arc (bottom left subdigraph

of Figure 9) in our list of forbidden digraphs but this does not modify the way

we color digraphs. We therefore consider the remaining two subdigraphs; the N -

structure and its complement.

To obtain a Semi-strong perfect Digraph Theorem that requires the five subdi-

graphs from Figure 14 and the N -structure as forbidden induced subdigraph we

can modify the definition of acylic coloring in the following way.

Definition 6.1. An acyclic N -free coloring of a digraph D is a mapping f : V (D)→
C, C ⊆ Z, such that the following properties hold:

1. for every c ∈ C the vertices colored by c induce an acyclic subdigraph and

2. there is no monochromatic induced N -structure in D.

For m = |C| we call f an acyclic N -free m-coloring of D.

Analogously to Definition 3.7 we call χN(D) = m0 the N-dichromatic number of D

where m0 is the smallest number for which there is an acyclic N -free m0-coloring

of D.

For convenience and as there is no danger of confusion we will refer to acyclic

N -free coloring just as N -free coloring.

Note that for the symmetric part S(D) of a digraph D N -free coloring is the same

as acyclic coloring since there cannot be an induced N -structure in the symmet-

ric part of a digraph. Therefore the dichromatic number χ(S(D)) and the N -

dichromatic number χN(S(D)) of the symmetric part of a digraph are the same.

Some digraphs might just require a recoloring when we consider N -free coloring

instead of acyclic coloring (see Figure 19 for an example). But there are obviously

digraphs for which χ(D) < χN(D), an example can be found in Figure 20.

There are some interesting observations concerning the existence of induced N -
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(a) (b) (c)

Figure 19: The shown digraph only requires two colors (red and blue) if acyclic
coloring is applied (a), three colors (red, blue and green) seem to be needed if
N -free coloring is applied (b) but we can recolor the digraph such that again two
colors (red and blue) suffice.

(a) (b)

Figure 20: The shown digraph only requires one color (blue) if acyclic coloring is
applied (a) and at least two colors (red and blue) if N -free coloring is applied (b),
since there are several N -structures induced in the digraph.

structures in specific digraphs. To begin with we take a look at a class of digraphs

we already discussed earlier. In Lemma 5.8 at the end of Section 5.2 we saw

that one asymmetric arc between two components of the symmetric part S(D)

of a digraph D that does not contain any of the five forbidden subdigraphs from

Figure 14 implies the existence of an orientation of the complete bipartite graph

between these components. In the following we examine how the remaining three

subdigraphs from Figure 9 can be induced subdigraphs of such a digraph D.

Lemma 6.2. Let D be a digraph not containing any of the five subdigraphs from
Figure 14 as an induced subdigraph. An N -structure cannot be induced by four
vertices of exactly two different components of S(D).

Proof. Assume there is a single arc between two components Gi and Gj of S(D).

By Lemma 5.8 we know that there has to be an orientation of a complete bipartite

graph between those two components.



6 N -FREE COLORING AND N -PERFECTION OF DIGRAPHS 52

Assume there is an N -structure (not necessarily induced) containing two vertices

of Gi and two vertices of Gj. This N -structure cannot be induced in D since

there are only three arcs in an N -structure but the orientation of a complete bipar-

tite graph between those four vertices requires the existence of four arcs between

them.

Assume there is an N -structure (not necessarily induced) containing one vertex

of Gi and three vertices of Gj (the opposite case follows by symmetry). This N -

structure cannot be induced in D since there are at most two arcs connecting the

single vertex of Gi to vertices of Gj in an N -structure but the orientation of a com-

plete bipartite graph between those four vertices requires the existence of three

arcs between them.

Hence an induced N -structure in D cannot contain vertices from exactly two dif-

ferent components of S(D).

Note that all other cases (the four vertices being in three, four or just one compo-

nent of S(D)) are possible but there are always further restrictions since there can-

not be a
−→
P+
3 or a

−→
P−3 induced in D. For example if there is an induced N -structure

within one component of S(D) that restricts the structure of such a component

due to the non-existence of an induced
−→
P+
3 or

−→
P−3 in D as illustrated in Figure 21.

a1 a2 a3

(a) (b)

Figure 21: (a) shows a forbidden induced N -structure within a component in the
symmetric part of a digraph without the five forbidden induced subdigraphs, since
a1 forms a forbidden subdigraph with either the green or the blue marked pair of
antiparallel arcs as well as a2 with the green or red one and a3 with the yellow
or red one. (b) shows an allowed induced N -structure within one component of
the symmetric part of a digraph that does not contain any of the five forbidden
induced subdigraphs.

If D is a digraph not containing any of the five subdigraphs from Figure 14 as

an induced subdigraph, the complement of an N -structure (bottom middle subdi-

graph of Figure 9) can obviously only appear in a single component of S(D) as an
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induced subdigraph, since there already exists a bidirected path between all four

vertices in this structure.

On the other hand there are many possible cases in which a digraph D that does

not contain any of the five forbidden subdigraphs from Figure 14 contains a di-

rected cycle of length three with one additional arc (bottom left subdigraph of

Figure 9) since this structure is one possibility how one vertex from one compo-

nent is connected to two vertices from another component (that are neighboring

by a pair of antiparallel arcs). Obviously the structure can also appear within a

component of S(D).

We now turn to some other digraphs for which we can immediately formulate

some observations.

Lemma 6.3. Let D be a digraph and let every vertex v ∈ V (D) have either in-degree
0 or out-degree 0. There exists an N-free 2-coloring of D.

Proof. Let V1 ⊆ V (D) be the vertex set containing the vertices with in-degree 0

and let V2 ⊆ V (D) be the vertex set containing all vertices with out-degree 0.

There are obviously no cycles in D since we would need at least two vertices with

in- and out-degree at least one to form a cycle. Hence D can be colored with one

color if we consider acyclic coloring. The vertices of every induced N -structure

in D alternate between V1 and V2. By coloring all vertices of V1 with a color c1
and all vertices of V2 with a different color c2 we therefore obtain a proper N -free

2-coloring of D.

Observation 6.4. A digraph D with five vertices can contain at most three induced
N -structures.

This observation can easily be verified by adding additional arcs between an ex-

isting N -structure induced by a vertex set {v1, v2, v3, v4} in a digraph D and an

additional vertex v5. Obviously it is not possible to add arcs between the vertices

of the existing N -structure if we want to maintain the N -structure being induced.

Moreover adding arcs between v5 and the N -structure to create new induced N -

structures becomes very limited if we want to maintain the already created N -

structures being induced. Trying all possible cases leads to the conclusion that we

never obtain more than three induced N -structures between five vertices.

An example can be seen in Figure 22.

Remark 6.5. Any digraph D with five vertices can be N -freely colored with two

colors. It always suffices to color two vertices differently from the other three

vertices since any induced N -structure in D contains four vertices which then
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Figure 22: A digraph with five vertices that has the maximum of three induced N -
structures. One N -structure is given by the bold arrows, one by the green marked
arrows and a third one either by the blue or the red marked arrows depending on
which of the dotted arrows is included in the digraph.

cannot all have the same color.

Clearly many more general questions would be interesting to consider for N -

structures and N -free coloring, but due to the focus of this thesis we want to

turn to the aspect of perfection once again and consider this topic in the sense

of N -free coloring. We can obviously give an alternative definition of perfection

using N -free coloring instead of acyclic coloring.

Definition 6.6. A digraph D is called N -perfect if for any induced subdigraph H

of D the N -dichromatic number χN(H) of H equals the clique number ω(H) of H.

Observation 6.7. For a digraph D we have χ(D) ≤ χN(D). With Lemma 3.9 we
therefore obtain ω(D) ≤ χN(D).

In the following subsections we will show that the main theorems on perfect di-

graphs can be transferred to N -perfect digraphs as well.

6.1 A Strong N -perfect Digraph Theorem

We can quite intuitively formulate a Strong Perfect Digraph Theorem for N -perfect

digraphs.

Theorem 6.8 (Strong N -perfect Digraph Theorem). A digraph D is N-perfect if and
only if all of the following holds:

1. S(D) is N-perfect,

2. D does not contain any directed cycle
−→
Cn of length n ≥ 3 as an induced subdi-

graph and
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3. D does not contain an N-structure as an induced subdigraph.

Proof. Assume S(D) is not N -perfect. With Observation 6.7 the argumentation of

Theorem 5.2 can be transferred toN -free coloring. There is an induced subdigraph

H = (V ′, A′) of S(D) with ω(H) < χN(H). Taking into consideration Observation

2.29 we obtain:

ω(D[V ′]) = ω(S(D[V ′])) = ω(H) < χN(H) = χN(S(D[V ′])) ≤ χN(D[V ′])

Therefore D is not N -perfect.

Assume D contains a directed cycle
−→
Cn of length n ≥ 3 as an induced subdigraph,

then D is not N -perfect since ω(
−→
Cn) < χ(

−→
Cn) ≤ χN(

−→
Cn).

AssumeD contains anN -structureN as an induced subdigraph. D is notN -perfect

since ω(N) = 1 < 2 = χN(N).

Now assume that S(D) is N -perfect but D is not. It suffices to show that D has

either a directed cycle of length greater than three or an N -structure as an induced

subdigraph.

Since D is not N -perfect there is an induced subdigraph H ⊆ D with ω(H) <

χN(H). As S(H) is perfect there is a properN -free coloring of S(H) with ω(S(H)) =

ω(H) colors. This cannot be a proper coloring of H, so there must be a (not nec-

essarily induced) monochromatic cycle of length greater than three or an induced

N -structure in H. If there is an induced N -structure in H the assertion follows.

Let C be a monochromatic cycle of minimal length greater than three in H. It

follows that C has to be induced by the same minimality argument as in Theorem

5.2. Hence the assertion is true.

Just like in Theorem 5.2 this completes the proof because if we assume that D is

not N -perfect and has neither a directed cycle of length greater than three nor an

N -structure as induced subdigraphs, then S(D) must not be N -perfect. Because

if it was, D would have either a directed cycle of length greater than three or an

N -structure as induced subdigraphs by what we have just proven. This contradicts

the assumption we just made.

Similar to Remark 5.3 we have actually proven the following.

Remark 6.9. If D is an N -perfect digraph, then any proper N -free coloring of

S(D) is also a proper N -free coloring of D.
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6.2 A Semi-strong N -perfect Digraph Theorem

To formulate an analogon to the Semi-strong Perfect Graph Theorem 4.16 we

once again turn to the eight forbidden subdigraphs in Figure 9. Quite intuitively

we include the N -structure into our set of forbidden minors and can then define

P 4N -isomorphism. We will see that this suffices to prove a Semi-strong N -perfect

Digraph Theorem.

Definition 6.10. Two digraphs D = (V,A) and D′ = (V,A′) on the same vertex

set are said to be P 4N -isomorphic if and only if all of the following holds:

1. any set {a, b, c, d} ⊆ V induces a P4 in S(D) if and only if it induces a P4 in

S(D′),

2. any set {a, b, c} ⊆ V induces a
−→
C3 in D if and only if it induces a

−→
C3 in D′,

3. any set {a, b, c} ⊆ V induces a
−→
P3 with midpoint b in D if and only if it

induces a
−→
P3 with midpoint b in D′,

4. any set {a, b, c} ⊆ V induces a
−→
P+
3 or a

−→
P−3 in either case with midpoint b in

D if and only if it induces one of them with midpoint b in D′ and

5. any set {a, b, c, d} ⊆ V induces an N -structure in D if and only if it induces

an N -structure in D′.

Clearly if two digraphs are P 4N -isomorphic they are also P 4C-isomorphic.

Theorem 6.11 (Semi-strong N -perfect Digraph Theorem). If D and D′ are two
P 4N -isomorphic digraphs, then D is N -perfect if and only if D′ is N -perfect.

Proof. By criterion (1) of Definition 6.10 S(D) and S(D′) are P4-isomorphic and

therefore it follows from the Semi-strong Perfect Digraph Theorem 5.2 that S(D)

is N -perfect if and only if S(D′) is N -perfect, since N -perfection and perfection

are the same for the symmetric part of a digraph. Since P 4N -isomorphism implies

P 4C-isomorphism, Lemma 5.6 implies that D contains an induced cycle of length

n ≥ 3 if and only if the same is true for D′.

Let {v1, v2, v3, v4} ⊆ V be a set of vertices that induces an N -structure N in D, then

by criterion (5) of Definition 6.10 the same vertex set induces anN -structure inD′.

By symmetry it follows that D contains an N -structure as an induced subdigraph

if and only if D′ contains an induced N -structure.

The assertion follows by the Strong N -perfect Digraph Theorem 6.8.
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6.3 Non-existence of a Weak N -perfect Digraph Theorem

Unfortunately there is still no analogon to the Weak Perfect Graph Theorem for

N -free colored digraphs.

Observation 6.12. For an N -perfect digraph D its complement D may not be N -
perfect.

Take an N -structure N as an example. We have already seen that N is not N -

perfect since ω(N) = 1 < 2 = χN(N) in the proof of the Strong N -perfect Digraph

Theorem 6.8. The complement N however is N -perfect, since ω(N) = 2 = χN(N)

(see Figure 23).

a b

c d

Figure 23: A proper N -free coloring of the complement of an N -structure with two
colors (red and blue), clearly the subdigraphs induced by the vertex sets {a, b},
{b, c} and {c, d} form cliques of size two.

Similar to Theorem 5.10 we can however formulate some properties for the com-

plement of an N -perfect digraph.

Theorem 6.13. A digraph D is N -perfect if and only if its complement D is a super-
orientation of a perfect graph G that is clique-acyclic and there does not exist a clique
in G which is induced by a vertex set that induces an N -structure in O(D).

Proof. We know from the Strong N -perfect Digraph Theorem 6.8 that D is N -

perfect if and only if S(D) is N -perfect, D does not contain any directed cycle
−→
Cn

of length n ≥ 3 as an induced subdigraph and D does not contain an N -structure

as an induced subdigraph. In Theorem 5.10 we have already proven that the

first two conditions are equivalent to D being a clique-acyclic superorientation of

a perfect graph G, since perfection and N -perfection are the same for the sym-

metric part of a digraph. It therefore remains to show that D not containing an

N -structure as an induced subdigraph is equivalent to D being the superorien-

tation of a graph not containing a clique that is induced by the vertex set of an

induced N -structure in O(D).
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Obviously D not containing an N -structure as an induced subdigraph is equivalent

to D not containing the complement of an N -structure as an induced subdigraph.

We therefore want to show that D does not contain the complement of an N -

structure as an induced subdigraph if and only if D is the superorientation of a

graph not containing a clique that is induced by the vertex set of an induced N -

structure in O(D).

Assume that D contains the complement of an N -structure N as an induced sub-

digraph. The underlying graph UG(N) is the complete graph K4 whose vertices

obviously form a clique in UG(D) and since N induces an N -structure in O(D) we

have proved one direction via contraposition.

Assume on the other hand that D is the superorientation of a graph that contains a

clique that is induced by the vertex set of an inducedN -structureN inO(D). Since

N is induced in O(D) there cannot be a single arc connecting any of the vertices

of N in D that are not connected within N anyway. To obtain a clique in the un-

derlying graph we therefore have to add three pairs of anti-parallel arcs between

the vertices not connected in N . The four vertices then induce the complement of

an N -structure in D which completes the prove.

We have actually proven that the only cliques in the underlying graph that have a

greater restriction when considering the complement of N -perfect digraphs rather

than perfect digraphs are those of size four.

6.4 Strictly N -perfect Digraphs

So far we have not won much from extending the definition of coloring digraphs

from acyclic coloring to N -free coloring. However we will see in this subsection

that we can obtain a class of digraphs from N -perfect digraphs that is closely

related to the class of cographs. This yields the expectation thatN -perfect digraphs

might be an easier class of digraphs than acyclicly perfect digraphs, i.e. certain

problems might be traceable for N -perfect digraphs that do not have an efficient

solution for acyclicly perfect digraphs. As we still have not achieved closure under

complementation for N -perfect digraphs, we define strictly N -perfect digraphs

similar to strictly perfect digraphs.

Definition 6.14. A strictly N -perfect digraph is a digraph D that is N -perfect and

whose complement D is N -perfect as well.

If we want to formulate a Semi-strong Perfect Digraph Theorem for strictly N -

perfect digraphs we have to forbid all eight digraphs from Figure 9 as induced

subdigraphs of D. Interestingly we do not have to extend the criterion for the

P4 to D and D′ in this case (cf. Definition 5.12) as Lemma 6.16 shows. We will
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however do so in the following definition for the sake of consistency within the

criteria of the definition.

Definition 6.15. Two digraphs D and D′ on the same vertex set are P 4SN -
isomorphic if and only if all of the following holds:

1. any set {a, b, c, d} ⊆ V induces a P4 in D if and only if it induces a P4 in D′,

2. any set {a, b, c} ⊆ V or {a, b, c, d} ⊆ V induces one of the subdigraphs of

Figure 9 (except for a P4) in D if and only if it induces the same subdigraph

in D′ (for an induced
−→
P+
3 or an induced

−→
P−3 in D it is also allowed to induce

the other subdigraph in D′),

3. for the asymmetric digraphs with three vertices in Figure 9 the midpoint is

the same in D and D′.

Lemma 6.16. Let D and D′ fulfill criteria (2) and (3) of Definition 6.15 and let any
set {a, b, c, d} ⊆ V induce a P4 in S(D) if and only if it induces a P4 in S(D′). A
vertex set induces a P4 in D if and only if it induces a P4 in D′ as well.

Proof. According to the premise we know that the corresponding assertion is true

for a P4 induced in S(D) and S(D′) respectively. Consider a P4 that is induced

in S(D) but not in D and only has one single arc connecting two vertices of the

path. Let V1 = {v1, v2, v3, v4} be the vertex set that induces the P4 in S(D) and

let (vi, vj), i, j ∈ {1, . . . , 4} and |i − j| > 1, be a single arc in D. At least two of

the vertex sets {vi±1, vi, vj}, {vj±1, vi, vj} are subsets of V1 and at least one of them

induces a
−→
P+
3 or a

−→
P−3 in D, hence they must induce the same subdigraph in D′,

maybe with opposite direction of the single arc, by definition. So V1 induces the

same subdigraph in D′ as it induces in D, maybe with opposite direction of the

single arc.

If we consider a P4 that is induced in S(D) but not in D and has two single

arcs connecting vertices of the path, a similar argumentation holds. Let V2 =

{v1, v2, v3, v4} be the vertex set that induces the P4 in S(D) and let (vi, vj) and

(vk, vl), i, j, k, l ∈ {1, . . . , 4}, |i − j| > 1 and |k − l| > 1, be two different single

arcs in D. If {i, j, k, l} = {1, 2, 3, 4} the single arcs must connect v1 to v3 and v2 to

v4. Without loss of generality let (vi, vj) connect v1 to v3 and let (vk, vl) connect v2
to v4. In this case the vertex sets {v1, v2, v4} and {v1, v3, v4} induce a

−→
P+
3 or a

−→
P−3

in D and must therefore induce the same subdigraph in D′, maybe with opposite

direction of the single arc. If vi, vj, vk and vl correspond to only three different

vertices, let vm, m ∈ {2, 3}, be the vertex that is not incident to any of the single

arcs. The vertex sets {vm, vi, vj} and {vm, vl, vk} are subsets of V2 and at least one

of them induces a
−→
P+
3 or a

−→
P−3 in D, hence they must induce the same subdigraph



6 N -FREE COLORING AND N -PERFECTION OF DIGRAPHS 60

in D′, maybe with opposite direction of the single arc, by definition. So V2 always

induces the same subdigraph in D′ as it induces in D, maybe with opposite direc-

tion of the single arcs.

If we consider a P4 that is induced in S(D) but not in D and has three single arcs

connecting vertices of the path, we have to consider four different subdigraphs

(see Figure 24), all other possible subdigraphs are isomorphic to one of these sub-

digraphs. Let V3 = {v1, v2, v3, v4} be the vertex set that induces the P4 in S(D). The

first three subdigraphs have vertex subsets that induce a directed cycle of length

three with one additional arc in D (cf. red arcs in Figure 24), hence these vertex

subsets have to induce the same subdigraph in D′, maybe with opposite direction

of the cycle. So V3 does not induce a P4 in D′. The fourth subdigraph in Figure 24

is the complement of an N -structure, so V3 has to induce the complement of an

N -structure in D′ as well by definition.

Obviously there cannot be more than three single arcs between the vertices of a

P4 in a digraph.

We have shown above that the vertex set of any P4 that is induced in S(D) but

not in D, induces a P4 in S(D′) but not in D′. Obviously a P4 that is induced in D

is induced in S(D) as well, it therefore has to be induced in S(D′) by definition.

The symmetry of the above argumentation requires that the P4 is also induced in

D′.

Figure 24: All subdigraphs (up to isomorphism) with a P4 that is induced in S(D)
but not in D with three single arcs connecting the vertices of the path. The red
arcs indicate the induced directed cycles of length three with one additional arc.

Due to the fact that the criterion for the P4 is automatically extended to D and

D′, P 4SN -isomorphism induces P 4N -isomorphism as well as P 4S-isomorphism
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and therefore P 4C-isomorphism. The following theorem is an analogon to the

Semi-strong N -perfect Digraph Theorem for strictly N -perfect digraphs.

Theorem 6.17. If D and D′ are two P 4SN -isomorphic digraphs, then D is a strictly
N -perfect digraph if and only if D′ is a strictly N -perfect digraph.

Proof. From Theorem 6.8 we know that if D and D′ are two P 4SN -isomorphic

digraphs, then D is an N -perfect digraph if and only if D′ is an N -perfect digraph,

since P 4SN -isomorphism induces P 4N -isomorphism.

It remains to show that if D and D′ are two P 4SN -isomorphic digraphs, then D is

an N -perfect digraph if and only if D′ is an N -perfect digraph.

By Theorem 5.14 S(D) is N -perfect if and only if S(D′) is N -perfect, since per-

fection and N -perfection are the same for the symmetric part of a digraph and

P 4SN -isomorphism induces P 4S-isomorphism.

By Lemma 5.13 D contains an antihole of length at least three as an induced sub-

digraph if and only if D′ contains an induced antihole of the same length, since

P 4SN -isomorphism induces P 4S-isomorphism. Hence D contains an induced cy-

cle of length at least three if and only if D′ contains an induced cycle of the same

length.

It remains to show that D contains an N -structure as an induced subdigraph if

and only if the same is true for D′. By symmetry it suffices to prove one inclusion.

Assume that {v1, v2, v3, v4} induces an N -structure N in D. Thus these four ver-

tices induce N in D. This is the subdigraph in the middle of the bottom line of

Figure 9. By Definition 6.15 the same vertex set induces the same subdigraph in

D′. Therefore {v1, v2, v3, v4} induces an N -structure in D′.

Hence the assertion follows from Theorem 6.8.

The information in this subsection actually states that strictly N -perfect digraphs

are a class of digraphs that is closely related to the class of directed cographs,

because both can be characterized by the set of eight forbidden minors (see Figure

9).
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7 Conclusion

This thesis provides an introduction into the idea of N -free coloring of digraphs.

N -free coloring was introduced because acyclic coloring of digraphs does not pro-

vide an equivalent of perfection of digraphs as perfect as perfection of undirected

graphs. Most importantly perfection of digraphs is not closed under complemen-

tation. We used the idea of characterizing perfect digraphs through five of the

eight forbidden induced subgraphs of cographs, which Andres et al. [3] used to

establish a Semi-Strong Perfect Digraph Theorem, to modify the way of coloring

digraphs to achieve a better perfection of digraphs.

Firstly we examined strictly perfect digraph for which we require closure under

complementation by definition. As a result we established that we need to include

one additional subdigraph into the list of forbidden minors to prove a Semi-strong

Perfect Digraph Theorem for strictly perfect digraphs. This led to the idea of ex-

amining the effect of including the two remaining subdigraphs into the list of

forbidden minors.

We introducedN -free coloring as a consequence of the inclusion of theN -structure

into the list of forbidden minors. We showed that N -perfect digraphs resulting

from N -free coloring also fulfill a Strong and a Semi-Strong N -perfect Digraph

Theorem. Unfortunately N -perfect digraphs still are not closed under comple-

mentation. But we can once again require this by definition. This led us to in-

troduce strictly N -perfect digraphs for which we once again proved a Semi-strong

N -perfect Digraph Theorem. It requires all eight subdigraphs. Obviously strictly

N -perfect digraphs therefore form a class of digraphs closely related to the class of

directed cographs. This class has been studied concerning various problems and

many problems can be solved efficiently for it (cf. [23]).

Hence we achieved to introduce a way of coloring digraphs that has the potential

to be a better equivalent to classic coloring of graphs if we consider perfection of

digraphs. We base this assumption on the fact that N -perfect digraphs are more
closely related to strictly N -perfect digraphs and therefore to directed cographs

than acyclicly perfect digraphs. As we have seen it does not solve the problem of

missing closure under complementation. Especially questions concerning the com-

plexity of algorithms on N -perfect digraphs would however be of great interest, as

it seems plausible that there are problems that can be solved more efficiently for

N -perfect digraphs than for acyclicly perfect digraphs.

They could therefore be suggestions for further research. Moreover general ques-

tions related to coloring can be considered for N -free coloring as well. Most of all

the minimal number of colors needed to properly N -freely color a planar digraph
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(as an equivalent to the Four-Color-Theorem) is interesting to consider. But also

other questions concerning N -free coloring can be further investigated, like the

question of how to find an N -free coloring with a minimal number of colors.
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[16] V. Chvátal. Claude Berge: 5.6.1926–30.6.2002. Graphs and Combinatorics,
19(1):1–6, 2003.

[17] D. G. Corneil, H. Lerchs, and L. Burlingham. Complement reducible graphs.

Discrete Applied Mathematics, 3(3):163–174, 1981.

[18] C. Crespelle and C. Paul. Fully dynamic recognition algorithm and certificate

for directed cographs. Discrete Applied Mathematics, 154(12):1722–1741,

2006.

[19] D. G. Corneil, Y. Perl, and and L. K. Stewart. A linear recognition algorithm

for cographs. SIAM Journal on Computing, 14(4):926–934, 1985.

[20] D-Maps. Deutschlandkarte. https://d-maps.com/m/europa/germany/

allemagne_de/allemagne_de22.gif, 2020. Accessed 04.05.2020.

[21] R. Diestel. Graph theory, volume 173 of Graduate Texts in Mathematics.
Springer, Berlin, Heidelberg, fifth edition, 2017.

[22] A. Ehrenfeucht and G. Rozenberg. Primitivity is hereditary for 2-structures.

Theoretical Computer Science, 70(3):343–358, 1990.

[23] F. Gurski. Dynamic programming algorithms on directed cographs. Statistics,
Optimization & Information Computing, 5(1):35–44, 2017.

[24] R. B. Hayward. Weakly triangulated graphs. Journal of Combinatorial Theory,
Series B, 39(3):200–208, 1985.

https://d-maps.com/m/europa/germany/allemagne_de/allemagne_de22.gif
https://d-maps.com/m/europa/germany/allemagne_de/allemagne_de22.gif


REFERENCES VIII

[25] M. Kubale. Graph colorings, volume 352 of Contemporary mathematics.
American Mathematical Society, Providence, R.I, 2004.

[26] L. Lovász. Normal hypergraphs and the perfect graph conjecture. Discrete
Mathematics, 2(3):253–267, 1972.

[27] V. Neumann-Lara. The dichromatic number of a digraph. Journal of Combi-
natorial Theory, Series B, 33(3):265–270, 1982.

[28] B. Reed. A semi-strong perfect graph theorem. Journal of Combinatorial
Theory, Series B, 43(2):223–240, 1987.

[29] D. Seinsche. On a property of the class of n-colorable graphs. Journal of
Combinatorial Theory, Series B, 16(2):191–193, 1974.

[30] C. Shannon. The zero error capacity of a noisy channel. IEEE Transactions
on Information Theory, 2(3):8–19, 1956.

[31] E. Sopena. Oriented graph coloring. Discrete Mathematics, 229(1-3):359–

369, 2001.

[32] M. Stiebitz, D. Scheide, B. Toft, and L. M. Favrholdt. Graph edge coloring: Viz-
ing’s theorem and Goldberg’s conjecture. Wiley series in discrete mathematics

and optimization. Wiley, Hoboken, N.J, 2012.
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anderen Prüfungsbehörde vorgelegt und auch noch nicht veröffentlicht. Mit der
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zur Kenntnis, dass diese mit Hilfe eines Plagiatserkennungsdienstes auf enthaltene
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