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Abstract

We introduce a new maxflow-mincut (MFMC) property for oriented
matroids and give necessary and sufficient conditions for a flow lattice of
an oriented matroid or more general for an integer lattice to have this
property.

1 Introduction

There have been few attempts in the past to introduce a flow theory for ori-
ented matroids as a generalization of flows in digraphs. Hamacher [6] developed
an algebraic flow theory for maximal flows and minimal cost flows for regular
oriented matroids. The general algebraic framework of Hamacher [6] has two
special cases: The first notion of a flow is a so-called max-balanced flow, i. e. an
integer or real-valued vector x ∈ Rn which satisfy maxi∈D+ xe = maxx∈D− xe
for every signed cocircuit D. Hartmann and Schneider [7] generalized some
admissibility and decomposition results of Hamacher [6] for the case of max-
balanced flows. They presented a polynomial time algorithm that finds a ca-
pacity restricted max-balanced flow or certifies that no such flow exists. The
second notion of a flow is obtained from the condition for max-balancedness
by replacing the max-operator by the sum-operator. Here, an integer or real
valued vector x is called a flow if it is orthogonal to every signed cocircuit,
i. e.

∑
e∈D+ xe =

∑
e∈D− xe for all cocircuits D. In regular oriented matroids,

the cocircuit orthogonal flows form a vector space of dimension |E| − rank(O).
Hochstättler and Nešetřil [8] and Hochstättler and Nickel [9, 10] revealed that
a considerable mass of non-regular oriented matroids has no non-trivial flow in
the above sense at all.

Hochstättler and Nešetřil [8] introduced the flow lattice of an oriented ma-
troid as the integer lattice of signed characteristic vectors of signed circuits.
Hence, there is a non-trivial flow whenever the oriented matroid is not free.
Based on investigations of [8, 9, 10] regarding the flow lattice structure, we con-
sider “max-flow min-cut”-like properties of the lattice. Our main result is that,
essentially, an oriented matroid has the oriented max-flow min-cut property if
the flow lattice is regular. However, in contrast to the max-flow min-cut prop-
erty for matroids of Seymour [14] which essentially holds for matroids that are
regular, there are large classes of non-regular oriented matroids which have a
regular flow lattice and thus satisfy our oriented max-flow min-cut property.
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We assume familiarity with matroid and oriented matroid theory and use
standard notation from Oxley [13] and Björner et al. [1]. In particular, C, D de-
note the families of signed circuits and signed cocircuits resp. of an oriented ma-
troid O with elements E = {1, . . . , n}. For some signed subset X = (X+, X−)
of E we denote by ~X ∈ {0, 1,−1}n its signed characteristic vector and if X is
some family of signed subsets, we set ~X := { ~X : X ∈ X}.

In the following we will provide basics of the theories of integer lattices and
maximal flows in digraphs. In the second section we introduce our max-flow
min-cut property together with a relaxed variant and present some necessary
and sufficient conditions for an integer lattice to have these properties.

1.1 Integer Lattices.

For a set of non-zero integer vectors V := {v1, . . . , vr} ⊂ Zn let

latV =

{
r∑
i=1

λivi | λi ∈ Z

}
denote the integer lattice spanned by V . Given some e ∈ {1, . . . , n}, a capacity
function c : {1, . . . , n}\e→ N, and an integer lattice L ⊆ Zn we define

Lc := {x ∈ L : 0 ≤ xi ≤ c(i) for all i ∈ {1, . . . , n}\e}

as the set of feasible lattice vectors or feasible flows. For a subset I ⊆ E\e let
c(I) :=

∑
i∈I c(i) and for a vector y ∈ Zn we write

c+(y) :=
∑

1≤i≤n
i6=e
yi≥0

c(i)yi

and call this the directed capacity of y.
Integer lattices define an oriented matroid in the following way (see Tutte

[15]): let L := latV ⊆ Zn. For x ∈ L we denote by x+ resp. x− the vectors with
positive resp. negative components of x and by x := {i : xi 6= 0} its support.
A vector x ∈ L is called elementary if there is no y ∈ L such that y ( x

and 1
kx 6∈ L for all k > 1. An elementary vector x is primitive if additionally

xi ∈ {0,+1,−1} for all i ∈ E. It can be derived directly from Tutte [15], who
proved that the supports of elementary vectors of L yield the family of circuits
of a matroid, that

{(x+, x−) : x is elementary in L}
is the set of signed circuits of an oriented matroid which we denote by O(L). We
furthermore call L to be regular if all elementary vectors are primitive implying
that O(L) is a regular oriented matroid.

1.2 MaxFlow-MinCut

Let G̃ = (V, Ẽ) be a digraph, s, t ∈ V and c : Ẽ → N a non-negative capacity
function on Ẽ. For some x ∈ Z|Ẽ| and v ∈ V let

δx(v) :=
∑

f∈δ+(v)

xf −
∑

f∈δ−(v)

xf
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be the net flow of the vertex v with respect to x. An st-flow is a vector x ∈ R|Ẽ|
such that all v ∈ V \{s, t} satisfy Kirchhoff’s law [11], i. e. δx(v) = 0. x is called
feasible if 0 ≤ xf ≤ c(f) holds for all f ∈ Ẽ. The value val(x) of a feasible
st-flow x is δx(s) = −δx(t). An st-cut is a partition S∪̇T = V with s ∈ S and
t ∈ T . The capacity cap(S, T ) of an st-cut (S, T ) is the capacity sum of the arcs
from S to T , i. e.

cap(S, T ) :=
∑

(v,w)∈(S,T )

c(v, w).

The famous max-flow min-cut theorem of Ford and Fulkerson [4] states that
for any digraph G̃ = (V, Ẽ) and any capacity function c : Ẽ → N we have

Theorem 1 ([4]). max
x is a

feasible st-flow

val(x) = min
(S,T ) is

an st-cut

cap(S, T ).

Due to the lack of vertices in oriented matroids we need an equivalent state-
ment that only uses the arcs of G̃. This is traditionally achieved by introducing
an additional arc e = (t, s) directed from t to s with infinite capacity. If we
extend an st-flow x by xe := val(x), we get δx(v) = 0 for all v ∈ V , i. e. a cir-
cular flow in G := (V, Ẽ∪̇e). Now let E := Ẽ∪̇e and C(G) the family of signed
circuits of G. We generalize the following characterization of a circular flow in
a digraph (Gallai [5]):

x ∈ Zn is a circular flow ⇐⇒ x =
∑

C∈C(G)

λC ~C for some λC ∈ Z.

Definition 2. Let O be an oriented matroid on the ground set E with signed
circuits C. A vector x ∈ FO := lat ~C is called a flow. Given an element e ∈ E
and a capacity function c : E\e → N, x is called feasible if additionally 0 ≤
xf ≤ c(f) for all f ∈ E\e, i. e. x ∈ FcO . A feasible flow is called maximal if
x(e) is maximal.

A more general variant of Theorem 1 then is

Theorem 3 (Minty [12]). Let O be a regular oriented matroid with signed
circuits C and signed cocircuits D on the ground set E with |E| = n. Let
furthermore e ∈ E be an arbitrary element and c : E\e → N a non-negative
integer capacity function. Then

sup
x∈Fc

O

xe = inf
D∈D
e∈D−

c(D+). (∗)

Note that (∗) especially holds when e is a loop or a coloop of O causing both
sides to be zero resp. infinity. But it does not hold when O is not regular.

Example 1. We discuss (∗) for the oriented 4-point line O(U2,4). The signed
cocircuits of the equal orientation in terms of sign vectors are D1 = +++0,
D2 = ++0−, D3 = +0−−, and D4 = 0−−−. Since e1 = D1−D2 +D3 and by
symmetry and selfduality FO∗ and FO are trivial. Hence, the left side of (∗) is
infinity but the right side is finite.
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2 MaxFlow-MinCut and Oriented Matroids

The lattice from Example 1 is trivial and coincides with the flow lattice of a
digraph consisting of directed loops, only. In particular the lattice is regular.
This suggests to reformulate (∗) in terms of the lattice, only.

Definition 4. Let L ⊆ Zn be an integer lattice and e ∈ {1, . . . , n}. We say L
satisfies

• the oriented max-flow min-cut property with respect to e if

sup
x∈Lc

xe = inf
y∈L⊥∩Zn

ye<0

c+(y)
|ye|

(MFMC)

• the relaxed oriented max-flow min-cut property with respect to e if

sup
x∈Lc

xe = inf
y∈L⊥∩Zn

ye<0

⌊
c+(y)
|ye|

⌋
(MFMC’)

for all capacity functions c : E\e→ N.
If L = FO for an oriented matroid O and L satisfies (MFMC) resp.

(MFMC’) with respect to e ∈ E we say that O has the property with respect
to e. If L resp. O has the property with respect to all e we say that L resp. O
itself has the property.

Note that (MFMC) implies (MFMC’). Our definition is supported by the
fact that in general we have a weak duality.

Proposition 5. Let L ⊆ Zn be an integer lattice, e ∈ E, and c : E\e → N a
capacity function. Then

sup
x∈Lc

xe ≤ inf
y∈L⊥∩Zn

ye<0

⌊
c+(y)
|ye|

⌋
≤ inf
y∈L⊥∩Zn

ye<0

c+(y)
|ye|

Proof. The right inequality is immediate. Let x ∈ Lc and y ∈ L⊥ ∩ Zn such
that e ∈ y−. Then

0 = x>y = xeye +
∑
f∈E

xfyf ≤ xeye +
∑
f∈y+

xfyf ≤ xeye + c+(y).

Hence, −xeye ≤ c+(y) and the claim follows.

Note that even for very small integer lattices the inequalities in (MFMC)
and (MFMC’) might be strict:

Example 2. Let L := {
(

3
−2

)
}⊥ ∩ Z2 and c(1) := 3 the capacity of the first

coordinate. Then
(
2
3

)
is a maximal flow of value 3 but as L⊥ ∩Zn = (3,−2)>Z,

the right hand side of (MFMC’) becomes b 3·32 c = 4.

Example 3. Let L := {x ∈ Z2 : x1 = x2, x1 ≡ 0 (mod k)}, k > 1 and
c(1) := k− 1 the capacity of the first coordinate. Then the maximum value of a
vector in L is 0 but the right hand side of (MFMC’) yields k − 1 showing that
the gap can become arbitrarily large.
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But (MFMC) holds for the 4-point line in Example 1 and more general

Proposition 6. Any regular integer lattice L ⊆ Zn satisfies (MFMC) with
respect to all capacity functions.

Hochstättler and Nešetřil [8] and Hochstättler and Nickel [9] determined the
flow lattice of oriented matroids that are uniform, have rank 3, or are listed in
the catalogue of small oriented matroids of Finschi [3]. A large number of these
flow lattices turned out to be regular. We give an example from the catalogue
of Finschi [3] which is a prototype of a flow lattice with codimension 2 (c. f. [9]):

Example 4. The following figure shows the pseudohypersphere configuration of
the dual of a non-regular corank 3 oriented matroid together with the graphic
representation of O(FO). Note that rank(O) = 7 and rank(O(FO)) = 3. Both
matroids have isomorphic flow lattices.
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FO =
{

(1, 1,−1, 1,−1, 0, 0, 0, 0, 0),
(1, 0, 0, 0, 0,−1, 1,−1, 1, 0)

}⊥
∩Zn

Consider e. g. the cocircuit C = {1, 2, 4, 5, 6, 7, 9} in the dual representation of
O which is the complement of the emphasized vertex. In O, C is a signed circuit
with the sign pattern ~C = +−0++++0−0 which is the sum of circuits of the
graphic oriented matroid shown on the right, i. e. ~C = ~C45 + ~C67 + ~C129.

The computational results of Hochstättler and Nickel [9] suggest that fully
dimensional lattices dominate the set of flow lattices of non-regular oriented
matroids:

Proposition 7. If dim linL = n then both sides of (MFMC) and (MFMC’)
become infinity.

This includes the case when L is determined by a system of modular equa-
tions of the form

L = {x ∈ Zn : x>y(i) ≡ 0 (mod ki), i = 1, . . . ,m}.

Example 5. Hochstättler and Nickel [9] proved that all uniform oriented ma-
troids O = O(Ur,n) of odd rank r with dimFO = n satisfy

FO = {x ∈ Zn : 1>x ≡ 0 (mod 2)}.
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Apart from fully dimensional lattices, a non-regular flow lattice in general
might lead to a gap in (MFMC). For the next results we need the notion
of reorientation of a lattice L. In oriented matroids, reorienting some element
f ∈ E leads to a sign reversal of the f -th component of every flow lattice vector.
Hence, we say that L′ is a reorientation of L of it can be obtained from L by
reversing the signs of all lattice vectors in some components.

Theorem 8. Let L ⊂ Zn have an elementary vector x which is not primitive
and satisfies |x| > 1. Then there is a reorientation of L, an element e ∈
{1, . . . , n}, and a capacity function c : {1, . . . , n}\e→ N such that (MFMC) is
violated.

Proof. Let L be reoriented such that x is positive and f ∈ {1, . . . , n} with
xf > 1. We choose an arbitrary e ∈ x\f and set c(g) := 1 if g ∈ x\e and 0
otherwise. Since x was chosen to be elementary, we have Lc = {0}. Given an
arbitrary y ∈ L⊥ ∩Zn with ye < 0 we get

c+(y)
|ye|

=
|y+ ∩ x\e|
|ye|

> 0.

Example 6. The following is the dual representation of a corank 3 oriented
matroid with 10 elements whose flow lattice is characterized by an orthogonality
condition and a modular equation. The modular equation causes non-regularity
of the lattice and the violation of (MFMC’):
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FO =
{
x ∈ Zn :

(0, 1, 0, 1,−1, 0,−1, 1, 0, 1)x = 0 and
2|(0, 1, 1, 0, 1, 1, 0, 0, 1, 1)x

}
Choose e = 5, f = 4, and set c(f) = 1 and 0 otherwise. Then Lc = {0} and
c+(y) = 1. x := 2(e4 +e5) is an elementary vector as in the proof of Theorem 8.

Example 7. Non-regularity coupled with non-trivial codimension of a lattice
does not necessarily lead to a violation of (MFMC’). E. g. consider the lattice
L := {x ∈ Z3 : (0, 1, 1)x = 0 and 2|x1}. This lattice satisfies both properties
with respect to all elements, all capacity functions, and all reorientations. An
oriented matroid that has this structure is O(U3,5) ⊕ O(U3,6) where ⊕ denotes
the direct sum and O(U3,6) is a non-neighborly orientation of U3,6 (see [9]).
However, we are not aware of a connected oriented matroid with a non-regular
flow lattice that has non-trivial codimension and satisfies (MFMC’).
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We will now derive a sufficient condition for a lattice to satisfy (MFMC’).
Let

L1 := {x ∈ Zn : (z1, . . . , zn−1,−1)x = 0}

for fixed zi ∈ Z, i ∈ {1, . . . , n− 1}. We set z := (z1, . . . , zn−1,−1)>.

Proposition 9. L1 satisfies (MFMC) with respect to n for all reorientations
and all capacity functions.

Proof. It is clear that ei+zien ∈ L1 for i = 1, . . . , n−1. Note that L⊥1 ∩Zn = zZ.
We set y := z and

x :=
∑

1≤i<n
zi>0

c(i)(ei + zien) ∈ L1

and obtain xn = c+(y) as required.

Note that L1 does not necessarily satisfy (MFMC) with respect to all i ∈
{1, . . . , n−1}. However, Proposition 9 can be used to prove that the next lattice
considered at least satisfies (MFMC’) with respect to all i ∈ {1, . . . , n}.

Let k ∈ N, k > 0, and

L2 := {x ∈ Zn : x>z = 0}

for some z ∈ {0,±1,±k}n.

Proposition 10. L2 satisfies (MFMC’) for all e, all reorientations, and all
capacity functions.

Proof. We wlog. assume that e = n. By Proposition 9, the fact that for all x ∈ L
we have that 0 = x>z = x>(−z), and since the case ze = 0 is trivial, we may
assume that zn = −k. Let Eq := {i ∈ E\n : zi = q} for q ∈ {0, 1,−1, k,−k}.
We set y := z and choose a vector x ∈ Lc2 such that xn is maximal and xi = 0
for i ∈ E−1 ∪E−k. Note that we must have xn = −k

∑
i∈Ek

xi −
∑
i∈E1

xi. We

show that xn =
⌊
c+(y)
k

⌋
. For assume to the contrary that

c+(y)− xn = kc(Ek)− k
∑
i∈Ek

xi + c(E1)−
∑
i∈E1

xi ≥ k.

If xi < c(i) for some i ∈ Ek then x + ei + en ∈ Lc2 contradicting the choice
of x. But then c(E1) −

∑
i∈E1

xe ≥ k and we may choose ki ∈ N such that
ki ≤ c(i)− xi and

∑
i∈E1

ki = k, and therefore,

x+
∑
i∈E1

kiei + en ∈ Lc2

also contradicting the choice of x.

By Hochstättler and Nickel [9], there are oriented matroids that satisfy
(MFMC’) but not (MFMC). We give two examples with the same underly-
ing matroid the first of which does not satisfy (MFMC) and also demonstrates
that (MFMC) and (MFMC’) depend on the orientation of a matroid:
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Example 8. The following figure shows the dual representations of two reori-
entation classes of a rank 5 matroid. The second class is obtained from the first
via a so-called triangular switch with respect to the triangle formed by {1, 4, 5}.
By Proposition 7, the second satisfies (MFMC) but the first does not for e = 7.
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{x ∈ Z8 : (1,−1,−1, 1, 1, 1, 2, 0)x = 0} {x ∈ Z8 : 2 | (1, 1, 1, 1, 1, 1, 0, 0)x}.

Note that this demonstrates that (MFMC) is not a matroid property and
furthermore, since even the first candidate satisfies (MFMC) if we reorient I =
{2, 3}, it is not reorientation invariant. The same holds for (MFMC’) since
a reorientation of {1, 2, 3, 4} in Example 6 leads to an oriented matroid that
satisfies (MFMC’).

3 Final Remarks and Open Questions

We do not know whether our min-max result is a “good characterization” in
the sense of Edmonds [2], neither in the realizable case, nor when the oriented
matroid is given by a pair of oracles (circuit and cocircuit). The problem of
the complexity of minimizing the capacity of a vector in F⊥O gives rise to the
following problems:

• Characterize the oriented matroids with a regular flow lattice! Note that
regularity of the flow lattice is not a property of the underlying matroid.

• Is it possible to recognize oriented matroids with regular flow lattice in
polynomial time (in the realizable case or with respect to a suitable ora-
cle)?

These questions address the problem of recognizing oriented matroids where
(MFMC) holds. A positive answer to one of the following questions would
establish the membership of our MaxFlow-Problem in NP ∩ co-NP.

• Is it possible to check membership in F⊥O in polynomial time?

• Is it possible to find a basis of FO in polynomial time?

Acknowledgements. We thank Jürgen Bokowski for providing us with an
update of his matroid representation software omawin which we used to produce
all pseudohypersphere arrangements.
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