
Diskrete Mathematik und Optimierung

Winfried Hochstättler, Robert Nickel and David Schiess:

Mixed Matching Markets

Technical Report feu-dmo010.08

Contact: winfried.hochsta ettler@fernuni-hagen.de, robert.nickel@fernuni-hagen.de,

david.schiess@unisg.ch

FernUniversität in Hagen
Lehrgebiet Mathematik
Lehrstuhl für Diskrete Mathematik und Optimierung
D – 58084 Hagen

2000 Mathematics Subject Classification: 05D1591A12,91B26
Keywords: stable marriage, assignment game, core

Mixed Matching Markets

Winfried Hochstättler
Department of Mathematics
FernUniversität in Hagen

D-58084 Hagen

Robert Nickel
Department of Mathematics
FernUniversität in Hagen

D-58084 Hagen

David Schiess
Department of Mathematics and Statistics

University of St. Gallen
CH-9000 St. Gallen

January 24, 2008

Abstract

We introduce a new model for two-sided markets that generalizes sta-
ble marriages as well as assignment games. Our model is a further gen-
eralization of the model introduced by Eriksson and Karlander [2]. We
prove that the core of our model is always non-empty by providing an
algorithm that determines a stable solution in O(n4).

1 Introduction

The stable marriage problem introduced by Gale and Shapley [3] is quite well
known to scientists from different fields such as game theory, economics, com-
puter science, and combinatorial optimization. There are at least three mono-
graphs, by Knuth [6], Gusfield and Irving [4] and Roth and Sotomayor [8] de-
voted to it. The problem reads as follows: given two disjoint groups of players
(men-women or workers-firms etc.), where each player is endowed with a pref-
erence list on the other group, the objective is to match the players from one
group to players from the other group such that there is no pair which is not
matched but prefers each other over their partners. The existence of such a
stable matching is proved algorithmically using the so called “men propose –
women dispose”-algorithm given in [3].

In their monograph [8] Roth and Sotomayor observed that the set of sta-
ble solutions from another game on bipartite matching, namely the assignment
game [11], has several structural similarities with the set of stable matchings.
They challenged the readers to find a unifying theory for the two games. In
the assignment game we are given a weighted bipartite graph. A solution con-
sists of a matching and an allocation of its weight to the players. A solution

1

is stable if no pair gets allocated less than the weight of its connecting edge.
Shapley and Shubik [11] observed that this condition is identical to the dual con-
straints of the linear programming model for weighted bipartite matching, thus
the dual variables in an optimal solution coincide with the stable allocations.
Roth and Sotomayor [9] themselves presented a first model unifying stable mar-
riage and the assignment game and showed that its set of stable solutions, if it
is non-empty, has the desired structural properties. Eriksson and Karlander [2]
modified this model and gave an algorithmic proof of the existence of a stable
solution. For the classical special cases, their algorithm coincides with “men
propose – women dispose”, respectively with the “exact” auction procedure of
[1]. As implemented, this algorithm is not polynomial time but pseudopolyno-
mial. A careful analysis of the algorithm (see [5]), though, reveals that a proper
implementation solves the problem in O(n4).

The purpose of the present paper is to present a further natural generaliza-
tion of these games. While in the model of Eriksson and Karlander the players
are partitioned into rigid and flexible players and the distribution of the value
of an edge is flexible only if both players are flexible, in our model each possible
pair of players may choose whether it closes a flexible or a rigid contract. This
mirrors the situation on labor markets nowadays. In addition the input data
becomes simpler and the assignment game is no longer interpreted as “a stable
marriage game with side payments” (see [2]).

We generalize the algorithm from [5] to the new model and show that it
computes a stable solution in O(n4).

In the next section we introduce the model and discuss its special cases.
In Section 3 we present our algorithm. Sections 4 and 5 are devoted to the
correctness proof of the algorithm and its running time analysis. We assume
some familiarity with bipartite matching and combinatorial optimization. Our
notation should be fairly standard.

2 The Model

Given three non-negative real square matrices A = (aij), B = (bij), C = (cij) ∈
Rn×n+ an outcome is a matching permutation σ ∈ Sn, a flexibility map
f : {1, . . . , n} → {0, 1} and two payoff functions u : {1, . . . , n} → R+, v :
{1, . . . , n} → R+ such that

∀1 ≤ i ≤ n : (if f(i) = 1 then ui + vσ(i) = ciσ(i))
and (if f(i) = 0 then ui = aiσ(i) and vσ(i) = biσ(i)).

The outcome is stable if in addition

∀1 ≤ i ≤ n ∀1 ≤ j ≤ n : ui + vj ≥ cij (1)
∀1 ≤ i ≤ n ∀1 ≤ j ≤ n : ui ≥ aij or vj ≥ bij . (2)

We write an outcome as the quadruple (σ, f, u, v). Since in our algorithm
presented later we use an alternating path technique from matching theory we

2

will frequently use P for the index set of the rows and Q for the set of indices of
the columns of the matrices. We will identify the data with a complete bipartite
graph KPQ which has two copies of each edge. For one of the copies we have
the weight function cij and for the other the pair of weight functions (aij , bij).
The permutation together with the flexibility function f then corresponds to
a perfect matching, where we choose the edge weight ciσ(i) if f(i) = 1 and
(aiσ(i), biσ(i)) if f(i) = 0.

Remark 1. In our matching games we assume that the graphs are complete and
that both color classes have the same cardinality. This can always be achieved
by adding an appropriate number of dummy vertices and corresponding edges of
weight zero.

2.1 Stable Marriages

The input for a stable marriage game consists of a complete bipartite graph
Knn = KPQ and for each vertex i ∈ P resp. j ∈ Q of a total order ≤i on the
vertices of Q respectively of a total order ≤j on the vertices of P . We call these
total orders preference lists. A perfect matching, also called a marriage, which
we may identify with a permutation σ ∈ Sn, is stable, if ∀i ∈ P∀j ∈ Q : σ(i) ≥i
j or σ−1(j) ≥j i, i.e. if there is no unmatched pair that prefers each other to
their matching partners.

Consider our model in the case that C = 0 is the zero-matrix and (σ, f, u, v)
are a stable outcome. If for some i ∈ P we have f(i) = 1, then ui + vσ(i) =
ciσ(i) = 0 which implies ui = vσ(i) = 0 since the payoffs are non-negative. The
outcome is stable and hence 0 = ui ≥ aiσ(i) or 0 = vσ(i) ≥ biσ(i). If only one of
aiσ(i) and biσ(i) is zero, say aiσ(i) > 0 then we may change ui to aiσ(i) and set
f(i) = 0 without changing the stability of the outcome. In addition the total
payoff of the game possibly increases. Possibly applying this several times we
may assume that f is constantly zero. Now interpreting the numbers aij for
fixed i as priority on the matching partners j by defining j ≥i k ⇐⇒ aij ≥ aik
and similarly for the bij we derive an input example for the stable marriage
game and the permutation σ clearly gives a stable marriage.

On the other hand, given an input of a stable marriage game we may repre-
sent the preference lists by two strictly positive matrices A,B ∈ Rn×n+ and set
C = 0. Then the stable outcomes of our model are in one-one correspondence
with the stable marriages of the given game.

2.2 Assignment Games

In the assignment model we are given a complete bipartite graph Knn = KPQ

with non-negative weights C = (cij). A perfect matching σ ∈ Sn together with
two payoff functions u : P → R+, v : Q→ R+ such that

∀i ∈ P : ui + vσ(i) = ciσ(i)

3

is called an outcome. The outcome is stable if additionally

∀i ∈ P ∀j ∈ Q : ui + vj ≥ cij ,

i.e. if there is no unmatched pair that could individually improve by leaving
their present partners and forming a new matching edge instead.

If in our model A = B = 0 and for a stable outcome σ, f, u, v we have
f(i) = 0 for some 1 ≤ i ≤ n then necessarily ui = vσ(i) = 0. By the stability
assumption, 0 = ui + vσ(i) ≥ ciσ(i) ≥ 0 holds. Hence we also have ciσ(i) = 0 and
modifying f by setting f(i) to 1 maintains stability of the payoff.

Similarly, an input of the assignment game immediately translates into an
input of our model and - apart from the degeneracy with edges of weight zero
described above - we have a one-one correspondence between stable outcomes
in both models.

2.3 The Eriksson-Karlander Model

The model of Eriksson and Karlander was the first generalization of stable
matching and the assignment game shown to always admit a stable solution. The
input consists of two non-negative square matrices A,B ∈ Rn×n+ and a partition
P ∪̇Q = R∪̇F of the set of vertices into flexible players F and rigid players
R. We may consider A,B,R as the input data of such a game. An outcome
is a matching permutation σ ∈ Sn and two payoff functions u : P → R+,
v : Q→ R+ such that

∀i ∈ P : if {i, σ(i)} ∩R = ∅ then ui + vσ(i) = ciσ(i)

otherwise ui = aiσ(i) and vσ(i) = biσ(i).

The outcome is stable if in addition

∀i ∈ P ∀j ∈ Q : if {i, σ(i)} ∩R = ∅ then ui + vj ≥ cij
otherwise ui ≥ aij or vj ≥ bij .

Given an instance A,B,R of the Eriksson-Karlander game we define the
matrix C = (cij) as

cij :=
{
aij + bij if {i, j} ∩R = ∅

0 otherwise.

and A = (aij) respectively B = (bij) as

aij :=
{
aij if {i, j} ∩R 6= ∅
0 otherwise bij :=

{
bij if {i, j} ∩R 6= ∅
0 otherwise.

Now let (σ, f, u, v) be a stable outcome for the instance A,B,C. Assume
that for {i, σ(i)} ∩R = ∅ we have f(i) = 0. By the definition of an outcome we
have ui = aiσ(i) = 0 = vσ(i) = biσ(i). By the stability of the solution this implies

4

ui + vσ(i) = 0 ≥ ciσ(i) ≥ 0. Hence, ciσ(i) = 0 and modifying f to f(i) = 1
maintains stability. If on the other hand for {i, σ(i)} ∩R 6= ∅ we have f(i) = 1
then ui + vσ(i) = ciσ(i) = 0 and thus ui = vσ(i) = 0. By the stability of the
solution, this implies aiσ(i) = 0 or biσ(i) = 0. If only one of aiσ(i) and biσ(i)

is zero, say aiσ(i) > 0, we may change ui to aiσ(i) and set f(i) = 0 without
changing the stability of the outcome. In addition the total payoff of the game
increases.

Having dealt with these degenerate situations, we may assume that f(i) = 1
if and only if {i, σ(i)} ∩ R = ∅ and hence, our outcome is also an outcome for
the Eriksson-Karlander model. Clearly, stability in our model implies stability
in the Eriksson-Karlander model.

3 An Algorithm to Find a Stable Outcome

The basic idea of our algorithm is derived from the (pseudopolynomial) auction
procedure of Eriksson and Karlander. Hochstättler, Nickel and Jin [5] turned
this into an O(n4) algorithm. Schiess [10] generalized that algorithm to his
“Decisive Edges Model” which is another special case of our model.

It will make the description of the algorithm easier, if we, at least partially,
describe it in terms of an economic interpretation. We will call the elements
from P firms and the players from Q workers. A rigid edge between a firm and
a worker may be interpreted as an employment that is payed according to tariffs
negotiated by some unions and flexible edges are payed according to individual
contracts.

During the algorithm we maintain a (partial) map τ : P → Q which we
will turn into a permutation. If τ(i) = j we say that firm i proposes to worker
j and that j has a proposal. For each firm i ∈ P we have a set of possible
proposals during the different stages of the algorithm. This defines a bipartite
graph of feasible proposals which depends on the current map v : Q → R+

of (expected) income of the workers. Additionally, we maintain a flexibility
function f : P → {0, 1} that records whether a proposal refers to the flexible or
the rigid edge.

The algorithm is a generalization of the classic “men propose – women dis-
pose” algorithm for the stable marriage problem [3]. In the first stage – Pla-
ceProposals in Algorithm 1, see also Algorithm 2 – each firm proposes to a
worker who maximizes its expected profit, if it is non-zero, i.e. the firm is solvent.
Otherwise, the firm is insolvent, i.e. in all stable solutions its payoff will be zero.
We neglect it until the very end of the algorithm where we map it to an arbitrary
worker without proposal. Workers with a rigid proposal, that additionally is the
best offer they have got, dispose all other rigid proposals. Firms whose (rigid)
proposal has been disposed propose to the next best worker. This is iterated
until each worker has at most one rigid proposal. Then, using augmenting path
techniques, we try to increase the set of workers that have a proposal (line 5 -
10 of Algorithm 1). If the map of the proposals still is not injective, we increase
the (expected) income of workers with a flexible proposal. This is done in line

5

11 of Algorithm 1, see also Algorithm 3, similarly to the dual update step in
the Hungarian Method for the assignment game [7]. Further proposals become
feasible and we proceed with the first stage omitting the proposal placements
for firms with a proposal.

To be more precise: initially, we set v = 0. In line 4 of Algorithm 2 for each
firm i ∈ P we determine a worker j ∈ Q who maximizes the firm’s expected
income, i.e. such that

n
max
k=1
{cik, aik} ∈ {cij , aij},

and set f(i) = 0 if maxnk=1{cik, aik} = aij and f(i) = 1 otherwise. If there
are ties we prefer aiks to cik′s, further ties are broken arbitrarily. We make a
proposal only if the profit is strictly positive. Firms which cannot yield any
positive profit remain without proposal until the very end of the algorithm. If
a worker j ∈ P has a rigid proposal we set

vj = max{biτ(i) | τ(i) = j, f(i) = 0}

and possibly dispose all further rigid proposals to j by undefining τ(k) and f(k).
Given v, τ and f we consider the map uτ,v : {0, 1}×P ×Q→ R+ defined by

uτ,v(g, i, j) =

 cij − vj if g = 1
aij if g = 0 and (vj < bij or τ(i) = j)
0 otherwise .

Note that for fixed v this is the profit that firm i can expect when worker j is
hired. If vj ≥ bij and τ(i) 6= j then j will not accept a rigid proposal that does
not yield a strictly larger income.

For each firm i ∈ P we select j and g ∈ {0, 1} such that

uτ,v(g, i, j) =
n

max
k=1

1
max
s=0

uτ,v(s, i, k). (3)

Again, if possible we choose j such that uτ,v(0, i, j) = maxnk=1 max1
s=0 uτ,v(s, i, k)

and set τ(i) = j. This makes τ a map again (up to insolvent firms). We iterate
this process, taking additionally into account that a worker j with vj = bi∗j
where i∗ is the favorite rigidly proposing firm of j and with at least one flexible
proposal will dispose all rigid proposals, until each worker either has one or no
rigid proposal.

Then we proceed to the next stage and consider the following (bipartite)
digraph on P ∪̇Q. We have the backward edges (τ(i), i) for all i ∈ P and forward
edges

Di
τ,v :=

{
(i, j) | aij = uτ,v(0, i, j) =

n
max
k=1

1
max
s=0

uτ,v(s, i, k) > 0, τ(i) 6= j

}
∪

{
(i, j) | cij − vj = uτ,v(1, i, j) =

n
max
k=1

1
max
s=0

uτ,v(s, i, k) > 0, τ(i) 6= j

}
.

Thus, the edges of the digraph correspond to rigid and flexible proposals (back-
ward arcs) and to forward arcs that promise maximal profit, from the point of

6

view of the firms. If this digraph contains a directed path from a worker with
several proposals that ends in a rigid edge, an insolvent firm, a worker without
proposal or to a worker with a rigid proposal, we invert this path and modify τ
and f such that the corresponding combination of the maps is represented by
the backward edges again. In the last case we additionally dispose the old rigid
proposal (line 6 in Algorithm 1). We iterate this process until such a dipath does
no longer exist. If there is still a worker with more than one proposal, we enter
the third stage (lines 11 and 12 in Algorithm 1). Otherwise, we arbitrarily map
unmapped firms to unmapped workers, set ui = maxnk=1 max1

s=0 uτ,v(s, i, k) and
terminate.

Algorithm 1 The Main Loop
1: v ← 0
2: PlaceProposals
3: Construct digraph of feasible proposals
4: while there exists j0 ∈ Q with more than one proposal do
5: while there exists a directed path P with at least two edges from j0 to
j1 ∈ Q where P ends in its only rigid edge or ends in an insolvent firm or
j1 has no proposal or j1 has a rigid proposal do

6: DisposeRigid(j1)
7: Alternate(P)
8: PlaceProposals
9: Update digraph, τ and f

10: end while
11: HungarianUpdate
12: Update digraph, τ and f
13: end while
14: while there exists a firm i ∈ P without proposal do
15: Choose j ∈ Q without proposal
16: τ(i)← j
17: vj ← bij
18: f(i)← 0
19: end while
20: for all i ∈ P do
21: ui ← uτ,v(f(i), i, τ(i))
22: end for

Now, given a worker with more than one proposal, assuming that a dipath as
required in line 5 in Algorithm 1 does no longer exist, consider its component in
the graph underlying the digraph of feasible proposals. Denote by P̄ the firms

7

and by Q̄ the workers in this component. Now compute

ui :=
n

max
k=1

1
max
s=0

uτ,v(s, i, k) ∀i ∈ P̄

∆1 := min
{
ui −

1
max
s=0

uτ,v(s, i, j) | i ∈ P̄ , j 6∈ Q̄
}

∆2 := min
{
ui − uτ,v(0, i, j) | i ∈ P̄ , j ∈ Q̄

}
∆3 := min

{
ui | i ∈ P̄

}
and

∆ := min{∆1,∆2,∆3} > 0 and set vj = vj + ∆ for all j ∈ Q̄.
This way at least one new forward arc enters the digraph of proposals (backward
arcs) and feasible proposals (forward arcs) or a firm is marked insolvent. We
update the digraph and proceed with stage one.

Algorithm 2 PlaceProposals
1: procedure PlaceProposals
2: while there exists a solvent firm i ∈ P without proposal do
3: while there exists a solvent firm i ∈ P without proposal do
4: Propose(i)
5: end while
6: for all j ∈ Q with a rigid proposal do
7: Let i∗ ∈ P be a favorite rigid proposer in τ−1(j)
8: vj ← bi∗j
9: Update flexible proposals

10: if j has no flexible proposal then
11: Dispose all other rigid proposals
12: else
13: Dispose all rigid proposals
14: end if
15: end for
16: end while
17: end procedure

4 Correctness of the Algorithm

First, note that all statements are feasible. In particular in the routine Pro-
pose(i) we can always select j ∈ Q as described in (3) if j ∈ Q has any feasible
proposal given current v at all.

For a proof of correctness we make the following observations.

Proposition 1. 1. The routine PlaceProposals never decreases |τ(P)|.

2. If |τ(P)| is decremented by the statement DisposeRigid(j1) then it is
immediately incremented again by Alternate(P).

8

Algorithm 3 HungarianUpdate
1: procedure HungarianUpdate
2: Choose j ∈ Q with several proposals
3: Determine the vertices P̄ ⊆ P and Q̄ ⊆ Q in the component of j
4: for all i ∈ P̄ do
5: ui ← maxnk=1 max1

s=0 uτ,v(s, i, k)
6: end for
7: ∆1 ← min

{
ui −max1

s=0 uτ,v(s, i, z) | i ∈ P̄ , z ∈ Q \ Q̄
}

8: ∆2 ← min
{
ui − uτ,v(0, i, j) | i ∈ P̄ , j ∈ Q̄

}
9: ∆3 ← min

{
ui | i ∈ P̄

}
10: ∆← min{∆1,∆2,∆3}
11: for all j ∈ Q̄ do
12: vj ← vj + ∆
13: end for
14: end procedure

3. The function v : Q→ R+ never decreases during the algorithm. If vj > 0
then j has a proposal.

4. A disposed rigid proposal will never be proposed again.

Proof. 1. In PlaceProposals τ is changed only in lines 4, 11 and 13 of
Algorithm 2. Clearly, |τ(P)| does decrease in neither of these.

2. We dispose a rigid edge to a worker j1 if we have found a directed path
from a worker with at least two proposals to j1. Denote by (i1, j1) the
last edge in this path. In Alternate(P) we invert this edge and thus
reinstall the old set τ(P).

3. vj is changed in line 8 of Algorithm 2 and line 12 of Algorithm 3. In
both cases vj does not decrease and j has a proposal. A firm changes its
proposal only if either its old rigid proposal has been disposed or if a path
is alternated. Thus, a worker j with vj > 0 will always have a proposer.
When we modify vj in line 17 of Algorithm 1 j had no proposal and thus,
vj was zero before.

4. When a rigid proposal τ(i) = j is disposed in line 11 or 13 of Algorithm 2
we have bij ≤ vj and since v is non-decreasing in the following we always
have uτ,v(0, i, j) = 0, so this edge will never be proposed again. Now
assume we dispose a rigid edge in line 6 of Algorithm 1. Let again (i1, j1)
denote the last edge on P. When i1 was mapped to j1 we set vj1 = bi1j1
since vj1 is non-decreasing and by definition of uτ,v the rigid edge will
never be proposed again.

The following properties of the digraph of feasible proposals will be useful.

Proposition 2. Consider the situation when the Algorithm enters the Hun-
garianUpdate.

9

1. If a worker has more than one proposal then he has no rigid proposal.

2. Di
τ,v consists only of flexible edges for all i ∈ P̄ . Furthermore, τ(i) refers

to a flexible edge for all i ∈ P̄ .

Proof. The first assertion follows from line 10 – 14 of Algorithm 2. If Di
τ,v

contains a rigid edge or τ(i) refers to a rigid edge, then there can be no directed
path from j0 to i for otherwise we would not have left the inner while-loop and
hence i 6∈ P̄ .

Theorem 1. Algorithm 1 terminates after a finite number of steps.

Proof. In the inner while loop (line 5 – 10) we either make a new rigid proposal,
dispose a rigid proposal in line 6, mark a new firm as insolvent or, if P ends in
an unmapped worker, increase |τ(P)|.

If there is no more such path P, we call the routine HungarianUpdate.
Note that in the beginning of that procedure no vertex in P̄ ∪ Q̄ is incident with
a rigid edge by Proposition 2 and hence, ∆ > 0. Let (s, i0, z0) be such that
∆ = ∆1 = ui0 − uτ,v(s, i0, z0) with i0 ∈ P̄ , z0 ∈ Q and (i0, z0) 6∈ Di0

τ,v. We will
show that with the dual update in line 11 – 13 of Algorithm 3 we do not lose
an edge in the digraph of feasible proposals but add (i0, z0). Clearly, we do not
lose any backward edge. Thus, assume (i, j) ∈ Di

τ,v was a forward edge of the
digraph before the dual update. Hence,

uτ,v(s, i, j) =
n

max
k=1

1
max
s=0

uτ,v(s, i, k) > 0 and τ(i) 6= j. (4)

This value is changed in the dual update since uτ,v(1, i, j) = cij−vj (recall that
all “old” edges in the component where flexible by Proposition 2). But it is
changed by the same amount for all edges connecting i to some k ∈ Q̄ and by
definition of ∆1 we still have uτ,v(s, i, j) = maxnk=1 max1

s=0 uτ,v(s, i, k) after the
update. Hence, (i, j) is still an edge of the digraph after the update.

Finally, since

∆1 =
n

max
k=1

1
max
s=0

uτ,v(s, i0, k)− 1
max
s=0

uτ,v(s, i0, z0)

we must have (i0, z0) ∈ Di0
τ,v after the update. Since by Proposition 1 a disposed

rigid edge never will be proposed again, we can add each rigid edge at most once
and each firm is marked insolvent at most once. Also after adding sufficiently
many edges a path as required must occur. When ∆ = ∆2 a new rigid edge
enters the digraph. This can happen at most n2 times. When ∆ = ∆3 a firm
is marked insolvent. This can happen at most n times. Hence, the algorithm
terminates after a finite number of steps.

Theorem 2. Algorithm 1 computes a stable outcome.

Proof. When the algorithm terminates, no worker has two proposals and all
firms have a proposal, thus τ is a bijection, or a matching permutation. v is a

10

non-negative function and for all rigid proposals τ(i) = j we have set vj = bij .
Note that, when v is updated in line 12 of Algorithm 3 by Proposition 2, no
worker in Q̄ is incident with a rigid edge in the graph of feasible proposals.
Before finishing the algorithm we set ui to aiτ(i) if f(i) = 0 and to ciτ(i) − vτ(i)
otherwise. Hence, the algorithm computes an outcome.

In order to show that the outcome is stable we consider the development of
the function

ū : P → R+ defined by ūi :=
n

max
k=1

1
max
s=0

uτ,v(s, i, k).

By definition the pair (ū, v) satisfies the stability conditions (1) and (2). Also if
τ(i) is defined we have ūi = uτ,v(f(i), i, τ(i)). Hence, when we terminate ū = u
holds. It follows that the algorithm produces a stable outcome.

5 Running Time Analysis

Theorem 3. The algorithm terminates in O(n4).

Proof. Lines 14 –19 in Algorithm 1 are easily implemented in O(n2) and lines 20
– 22 in Algorithm 1 in linear time. PlaceProposals can be implemented with
the same complexity as the classic “Men-Propose-Women-Dispose” algorithm
and thus in O(n2). Hence we may focus on the nested while-loops. In the
inner while-loop we either increment |τ(P)| which is possible at most n times
or dispose a rigid edge of which there are only n2, introduce a new egde into
the graph of feasible proposals also at most n2 times or mark one of n firms
insolvent. The complexity of a single inner while loop is dominated by the
procedure PlaceProposals. Thus, the inner while loop in total accounts for
O(n4).

Finally, if HungarianUpdate introduces new flexible edges we may con-
tinue our search on the augmented data. A standard search procedure requires
O(|E|) = O(n2) if E denotes the set of edges in our graph. This is multiplied
at worst with the number of rigid edges which are newly introduced into the
digraph of feasible proposals or are disposed, the number of augmentations of
τ(P) and the number of firms that are marked insolvent. Hence, it accounts for
O(n4) in total as well.

Altogether this sums up to O(n4).

Remark 2. Note that our algorithm in fact runs in quadratic time as the size
of the input data is O(n2).

Acknowledgments. We thank Elisabeth Gassner for asking the right ques-
tion.

11

References

[1] G. Demange, D. Gale, and M. Sotomayor, Multi-item auctions, Jour-
nal of Political Economy, 94 (1986), pp. 863–872.

[2] K. Eriksson and J. Karlander, Stable matching in a common general-
ization of the marriage and assignment models, Discrete Mathematics, 217
(2000), pp. 135–156.

[3] D. Gale and L. S. Shapley, College admissions and the stability of
marriage, American Mathematical Monthly, 69 (1962), pp. 9–15.

[4] D. Gusfield and R. W. Irving, The stable marriage problem: Structure
and algorithms, MIT Press, Cambridge, MA, USA, 1989.

[5] W. Hochstättler, H. Jin, and R. Nickel, Note on an auction proce-
dure for a matching game in polynomial time, in AAIM, 2006, pp. 387–394.

[6] D. E. Knuth, Stable marriage and its relation to other combinatorial prob-
lems, in CRM Proceedings and Lecture Notes, vol. 10, American Mathe-
matical Society, 1997.

[7] H. W. Kuhn, The Hungarian method for the assignment problem, Naval
Research Logistics Quaterly, 2 (1955), pp. 83–97.

[8] A. E. Roth and M. Sotomayor, Two-sided matching: A study in game-
theoretic modeling and analysis, Cambridge University Press, Cambridge,
1991.

[9] A. E. Roth and M. Sotomayor, Stable outcomes in discrete and con-
tinuous models of two-sided matching: A unified treatment, Revista de
Econometria, The Brazilian Review of Econometrics, 16 (1996).

[10] D. Schiess, Mixed Matching Markets. Bachelor’s Thesis, FernUniversität
in Hagen, Germany, August 2007.

[11] L. S. Shapley and M. Shubik, The assignment game I: The core, Inter-
national Journal of Game Theory, 1 (1972), pp. 111–130.

12

	Introduction
	The Model
	Stable Marriages
	Assignment Games
	The Eriksson-Karlander Model

	An Algorithm to Find a Stable Outcome
	Correctness of the Algorithm
	Running Time Analysis

