
Diskrete Mathematik und Optimierung

Stephan Dominique Andres and Winfried Hochstättler:

The game chromatic and the game colouring number of classes of oriented

cactuses

Technical Report feu-dmo013.08

Contact: dominique.andres@fernuni-hagen.de, winfried.hochstaettler@fernuni-hagen.de

FernUniversität in Hagen
Fakultät für Mathematik und Informatik
Lehrgebiet für Diskrete Mathematik und Optimierung
D – 58084 Hagen



2000 Mathematics Subject Classification: 05C20, 05C10, 91A43, 05C15
Keywords: combinatorial problems, graph algorithms, game chromatic number,
game colouring number, digraph colouring game



The game chromatic number and the game

colouring number of classes of oriented cactuses

Stephan Dominique Andres1,∗

Winfried Hochstättler2

1,2Mathematisches Institut, FernUni Hagen,
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Abstract

We prove that the game chromatic and the game colouring number of
the class of orientations of cactuses with girth of 2 or 3 is 4. We improve
this bound for the class of orientations of certain forest-like cactuses to
the value of 3. These results generalise theorems on the game colouring
number of undirected forests [3] resp. orientations of forests [1]. For certain
undirected cactuses with girth 4 we also obtain the tight bound 4, thus
improving a result of Sidorowicz [7].
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1 Introduction

In 2007, Sidorowicz [7] determined the game chromatic and game colouring
number of the class of undirected cactuses. Here, we will extend her examina-
tions to several classes of oriented and undirected cactuses. We start by fixing
some definitions.

An orientation of a graph G = (V,E) is a digraph D = (V,E′) in which each
edge vw ∈ E is replaced by exactly one of the arcs (v, w) or (w, v) in E′. A
semiorientation of a graph G = (V,E) is a digraph D = (V,E′) in which each
edge vw ∈ E is replaced by at least one of the arcs (v, w) or (w, v) in E′, possibly
both. An oriented cycle is any orientation of a cycle with n ≥ 3 vertices. A
directed cycle is a connected digraph in which every vertex has in-degree and
out-degree 1. An edge consists of two vertices v and w and the two arcs (v, w)
and (w, v). A semicycle is the semiorientation of a cycle with n ≥ 3 vertices.
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An (undirected) cactus is a graph in which every pair of cycles has at most
one common vertex. An oriented cactus is a semiorientation of a cactus with
the property that every semicycle is an oriented cycle. An oriented cactus is
called directed cactus if every oriented cycle is a directed cycle.

An undirected or oriented cactus is n-fat for n ≥ 1 if it has girth at least
n. So n-fat oriented cactuses do neither contain edges nor loops for n ≥ 3, but
in 2-fat oriented cactuses edges are allowed. A 3-fat oriented cactus is simply
an orientation of a cactus. We denote the class of n-fat oriented cactuses by ~Cn

and the class of n-fat directed cactuses by ~Cdir
n .

The maker-breaker games which give us the parameters we will consider are
generalisations for digraphs of two games known as Bodlaender’s graph colouring
game [2] and Zhu’s graph marking game [8]. In the last years these games have
arisen some attention to graph theorists. Their generalisations for digraphs were
introduced in [1].

The digraph colouring game is played by two players, Alice and Bob, on a
given, initially uncoloured, digraph D. There is a fixed set C of k colours. The
players alternately colour uncoloured vertices of D with colours from C. Alice
has the first move. The players have to respect the rule that an uncoloured
vertex may receive only a colour different from the colours of its in-neighbours.
If this is not possible any more or all vertices are coloured, the game is over.
If all vertices are coloured at the end, Alice wins, otherwise Bob. In order to
simplify thinking about the game we can say that, whenever a vertex is coloured,
all its in-arcs are deleted, since they do not play any role for further moves. The
smallest number k such that Alice has a winning strategy for the game played
on D is called game chromatic number ~χg(D). We further define for a class C
of digraphs

~χg(C) = sup
D∈C

~χg(D).

The digraph marking game is played by Alice and Bob on a given, initially
unmarked, digraph D. There is a fixed score of k. The players move alternately.
Alice begins. A move consists in marking an unmarked vertex in such a way
that the number of its marked in-neighbours is at most k − 1. Again we can
think of deleting all in-arcs whenever a vertex is marked. The game ends when
no such move is possible any more. Alice wins if all vertices are marked at the
end, otherwise Bob wins. The smallest number k such that Alice has a winning
strategy for the game played on D is called game colouring number ~colg(D).
We further define for a class C of digraphs

~colg(C) = sup
D∈C

~colg(D).

Obviously, for a digraph D, we always have

~χg(D) ≤ ~colg(D). (1)

We remark that our game chromatic resp. game colouring number, when
applied to graphs (which in our case are digraphs in which each arc has an
antiparallel arc) gives us Bodlaender’s game chromatic number χg resp. Zhu’s
game colouring number colg. Therefore in the following we will omit the vector
~ in ~χg and ~colg.

The study of game chromatic and game colouring numbers of certain classes
of undirected graphs concentrated on forests [3], planar graphs [9], outerplanar
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graphs [4] and graphs embeddable in a surface [6]. Some more specific classes
of graphs were considered, too (see e.g. [5]). In this paper we mainly generalise
the result from Sidorowicz [7] and consider cactuses. In [7] it is proven that the
game chromatic and game colouring number of the class of (3-fat) undirected
cactuses is 5. We prove a similar result for the class of 2- and 3-fat oriented
cactuses and refine this result in a special case. The upper bounds will be given
in Section 2, the lower bounds in Section 3. In Section 4 we refine the result of
Sidorowicz in a special case.

2 Upper bounds

It was observed by Sidorowicz [7] that any cactus has an edge partition into a
forest and a matching. So any 3-fat oriented cactus C has an arc partition into
the orientation C1 of a forest and the orientation C2 of a matching. By the
formula (see [1, 4, 8])

colg(C) ≤ colg(C1) + ∆−(C2), (2)

which holds for every arc partition C1|C2 of a digraph C, and by the result

Theorem 1 (Andres [1]). colg(C1) ≤ 3 for any orientation C1 of a forest.

we conclude that colg(~C3) ≤ 4. Here we will prove more, namely that this
bound already holds for ~C2.

We introduce a notion we need. An oriented cycle or an edge P is called
pendant if it contains a vertex v, called the neck of P , whose removal from P
leaves a component, called the head HP of P , which is an oriented tree and
contains P − v. In particular HP contains no cycles and no edges.

Sidorowicz [7] introduced a similar notion for undirected cactuses and proved
the following

Lemma 2 (Sidorowicz [7]). If K is a cactus with at least one cycle then K
contains a pendant cycle.

By carefully reading the proof of this lemma it can be observed that there is
no need to make the precondition that K is a simple graph (and thus has girth
at least 3), but the proof still works when 2-cycles (or even loops) are allowed.
Moreover, by orienting such cactuses, we conclude

Lemma 3. Every 2-fat oriented cactus has at least one pendant oriented cycle
or one pendent edge or no cycles and edges at all.

Lemma 4. Let C ∈ ~C2. Then C has an arc partition C1|C2, where C1 is an
oriented forest, and C2 is an oriented forest with maximum in-degree ∆−(C2) ≤
1.

Proof. Let k be the number of cycles and edges of C. We prove the lemma by
induction on k. If C does not contain cycles or edges, we are done by C1 = C and
C2 = ∅. Otherwise, let P be a pendant oriented cycle or a pendant edge, which
exists by Lemma 3. Let v be the neck of P and HP be the head. By induction,
since C−HP has k−1 oriented cycles and edges, there is an arc partition C ′

1|C ′
2

of C −HP , so that C ′
1 and C ′

2 are oriented forests and ∆−(C2) ≤ 1.
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If P is an oriented cycle, then P contains an arc (x, y) with x 6= v and
y 6= v. Let A := P ∪HP \ {(x, y)}. A is the arc set of an oriented tree. Define
C1 := C ′

1∪A and C2 := C ′
2∪{(x, y)}. Note that the intersection of the induced

vertex sets of C ′
1 and A is {v}. Hence C ′

1 ∪ A is a forest as well. C1|C2 is the
arc partition we wanted to obtain.

If P is an edge, then P contains a unique vertex w different from the neck
v. Let B be the arcs of P ′ together with (w, v). Then we define C1 := C ′

1 ∪ B
and C2 := C ′

2 ∪ {(v, w)}. Again, C1 and C2 are forests. Since (v, w) is directed
towards the exterior, the in-degree is increased at w only. But in C ′

2 w was an
isolated vertex, so in C2 the degree of w is 1. This concludes the proof.

Our main Theorem 5 follows immediately from Lemma 4, Theorem 1 and
(2):

Theorem 5. colg(~C2) ≤ 4.

Corollary 6 (Faigle et al. [3]). Let F be an undirected forest. Then

colg(F ) ≤ 4.

Now we restrict ourselves from arbitrary oriented to directed cactuses and
consider a special kind of tree-like directed cactuses. We call a vertex in a
directed cactus thin if it has in- and out-degree 1, otherwise thick. A directed
cactus tree is a directed cactus where each cycle has at most two thick vertices.
Note that a directed cactus tree is not necessarily connected. Note further that
the class of directed cactus trees may as well be defined as follows. Replace all
arcs in a forest either by an arc or by a directed n-cycle, n ≥ 3.

The following theorem is a generalization of Theorem 1.

Theorem 7. Let C be a directed cactus tree. Then colg(C) ≤ 3.

Proof. We have to show that Alice has a winning strategy for the directed
marking game ensuring that each marked vertex has at most 2 marked in-
neighbours at the time it is marked.

Recall that, by a rule of the game, each time a vertex is marked we remove
all its in-arcs. Thus when the players mark vertices, the directed cactus tree is
decomposed into more and more components. If we remove all marked vertices
the (actual) directed cactus tree decomposes into several even smaller (open)
components. Such a component together with its marked neighbours and their
arcs leading into it is called a closed component. Note that two closed compo-
nents are not necessarily disjoint (but have at most one vertex in common). Call
a marked vertex m in a closed component Γ easy if its — necessarily unique —
neighbour in Γ is a thin vertex, otherwise m is critical.

Alice’s winning strategy is to guarantee that after each of her moves every
closed component contains at most one critical vertex.

If Bob, during his move, creates an independent component with two marked
critical vertices v and w — and he can create only one such independent com-
ponent — Alice considers the shortest path from v to w. Since the first and the
last arc of the path are directed towards the interior of the closed component
by the rules of the game, there is a vertex z which has two incoming arcs in
the path and hence z is thick. Alice marks z. This is feasible because the thick
vertex z may have only critical marked neighbours.
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Now we claim that Alice has reinstalled her invariant. By marking z, Alice
has separated the closed component of v and w into several components, and
v and w lie in different components now. If z does not lie in any of the closed
components containing v and w, we are done. Otherwise, let Θ be a closed
component containing z and u 6= z a marked vertex in Θ which is critical. Note
that u ∈ {v, w} since z was in an open component before Alice’s move. We
claim that z is easy. If z were critical, then it had a thick out-neighbour x.
Since the first arc ~a on the shortest z-u-path P1 was an in-arc of z, it has been
deleted when z was marked. So P1 does not exist any more after Alice’s move,
but since u and z belong to the same closed component there must be another
z-u-path P2 containing the arc (z, x). So there is a thick vertex x′, so that x′

is the first inner vertex where P1 and P2 meet, and before Alice’s move there
has been a directed cycle X containing the thick vertices x′ and z. Since x is
a thick vertex on this cycle, and x 6= z, and every directed cycle has at most
two thick vertices, we have x = x′. Let P ′

i be the subpath of Pi from z to x,
i = 1, 2. So P ′

2 consists only of the arc (z, x). Since P1 was a shortest z-u-path,
P ′

1 is a shortest z-x-path and hence consists of the single arc ~a. So X is a
2-cycle contradicting that C has girth at least 3. Hence Alice has successfully
reinstalled her invariant.

Consider the case that after Bob’s move Alice’s invariant is still satisfied. If
no closed component contains a marked as well as an unmarked thick vertex,
Alice marks an arbitrary vertex, preferably a thick one. This way she does not
create any new critical vertex. Let Θ denote a closed component that contains
at least one marked thick vertex m and one unmarked thick vertex u. Recall
that C may be considered as an oriented tree T , where some arcs have been
replaced by directed cycles. Clearly, this tree contains u and m. Alice now
marks the first thick vertex v on the m-u-path in T . The only case where it is
not immediate that after such a move u and m do not belong to the same closed
component any more is when they form a pair of thick vertices of an oriented
cycle X. But since X is directed, both of its u-m-paths have been destroyed
by marking m and u. Therefore, in every case Alice’s invariant holds after her
move.

3 Lower bounds

In this section we prove that the bound from Theorem 5 is tight.

Theorem 8. χg(~Cdir
3 ) ≥ 4.

Proof. Consider the digraph D depicted in Fig. 1. We construct a digraph D′

by taking two identical copies of D glued together at the copies of vertex u4.
The digraph D′′ is formed by two disjoint copies of D′. We will prove that Bob
has a winning strategy for the directed colouring game played on D′′ with 3
colours.

By the construction, after both players have moved twice, Bob can create
a situation in which there is a copy of D where u1 and u4 are coloured with
colour 1 (by Bob) and all other vertices of D are uncoloured. (W.l.o.g. we may
assume that Alice plays in some other copies of D in her first two moves.) Now
Alice’s third move will bring the decision. We distinguish 5 cases:
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y2y1 z3z2z1

x5x4x3x2x1

v1 v2 v3

u1 u3u2 u4

1 1

Figure 1: The digraph D

1. Alice colours u3 (with colour 2). Then Bob colours y1 with colour 3,
and u2 cannot be coloured any more.

2. Alice colours v2 with colour 2. Then Bob colours z1 with colour 3 and
u3 cannot be coloured any more.

3. Alice colours v2 with colour 1. Then Bob colours z1 with colour 3. In
order to prevent Bob from colouring z2 or z3 with colour 2 and leaving u3

uncoloured, Alice has to colour u3 with colour 2. But then we are in the
same situation as in Case 1 and Bob has a winning strategy.

4. Alice colours u2 (with colour 2). Then Bob colours x1 with colour 1. In
order to prevent Bob from colouring x2 or x3 with colour 3 and leaving
vertex v2 uncoloured, Alice has to colour v2 with colour 3. Now Bob can
colour z1 with colour 2 in order to win since u3 cannot be coloured any
more.

5. Alice colours a vertex different from u2, v2 and u3. In this case Bob
colours one of the vertices xj with a first colour not used so far for the
vertices xj . Alice is stuck now. If she colours u2 (resp. v2, resp. u3) with
colour 2, then Bob colours a vertex xj (resp. zj , resp. yj) with colour 3 and
wins. Otherwise Bob colours another vertex xj with a second colour not
used so far for the vertices xj . Either this results in a win for Bob since
v2 has three distinctly coloured in-neighbours xj or again, Alice may not
colour u2, v2 or u3. No matter what she does, Bob colours another vertex
xj with the last colour not used so far for the vertices xj and wins. Note
that in the latter situation the fifth vertex xj is still uncoloured before
Bob’s move since Alice may have coloured at most two vertices xj .

So in any case, Bob wins.

Corollary 9. For n ∈ {2, 3} we have

χg(~Cn) = colg(~Cn) = 4

χg(~Cdir
n ) = colg(~Cdir

n ) = 4

Proof. This follows from Theorems 5 and 8 by (1) and by the definition of
n-fat.
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4 Undirected forests with thin 4-cycles

In this section we consider a special type of undirected cactuses. A forest with
thin 4-cycles is an undirected cactus in which each cycle is a 4-cycle of the form
abcd, where b and d are non-adjacent vertices of degree 2, the thin vertices of
the cycle. Again, the vertices of this cactus which are not thin are called thick.
Note that thick vertices may be the vertices a or c of a 4-cycle, or any terminal
vertex of an edge. The class of forests with thin 4-cycles is denoted by Cth

4 .
The following theorem generalises the result of Faigle et al. [3] concerning

the game colouring number of forests to forests with thin 4-cycles, improving
the result of Sidorowicz [7] concerning the game colouring number of cactuses
in this special case.

Theorem 10. colg(Cth
4 ) = 4.

Proof. By a result of Bodlaender [2] there is a tree T with χg(T ) = 4. Therefore

colg(Cth
4 ) ≥ colg(T ) ≥ χg(T ) ≥ 4.

For the inverse estimation let C ∈ Cth
4 . We have to prove that Alice has a

winning strategy for C, so that every unmarked vertex is adjacent to at most
3 marked vertices. We consider unmarked components, which are the dynamic
components of the graph induced by the unmarked vertices. Note that each
unmarked vertex is contained in a unique unmarked component. Alice’s winning
strategy will be that after each of her moves every unmarked component U is
of one of the following types:

(a) U is adjacent to at most one marked vertex.

(b) U is adjacent to exactly two marked vertices at least one of which is a
thick vertex or U is adjacent to exactly two marked vertices which are
thin vertices of the same 4-cycle.

(c) U is adjacent to exactly three marked vertices, two thick vertices and one
thin vertex which is adjacent to one of the marked thick vertices.

Bob can destroy Alice’s invariant by his move in several ways. First, he
can mark a thin vertex in a component of type (a) with a marked thin vertex.
Since we assume that Bob has destroyed Alice’s invariant, the two marked thin
vertices belong to different cycles, otherwise we would have two components
of type (b). In this case Alice marks a thick neighbour of one of the marked
vertices in order to split the component in two components of type (b) and
maybe some components of type (a). See Fig. 2 (a).

Second, Bob can mark a vertex in a component of type (b). After his move
there is at most one component that does not satisfy Alice’s invariant. Let U0

be such a component. If all three marked vertices v1, v2, v3 adjacent to U0 lie
on a path, then the middle vertex v2 must be a thin vertex with two unmarked
neighbours. Note that in case the marked vertices lie on a path, v1 and v3

are not thin vertices of the same cycle, since if the only thick vertex on one of
the paths from v1 to v3 were marked, every component would satisfy Alice’s
invariant. So we may assume w.l.o.g. that v1 is a thick vertex. Then Alice
marks the thick vertex adjacent to v2 which is nearer to v3. By this move, U0 is
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Figure 2: Alice’s answer in the different cases

split into a component of type (c) adjacent to v1, v2, w and a component of type
(b) adjacent to w, v3 and maybe some components of type (a). See Fig. 2 (b).

If the three marked vertices v1, v2, v3 adjacent to U0 do not lie on a path,
then there is a unique (thick) vertex w in the intersection of all paths between
pairs of these three marked vertices. Alice marks w and splits U0 into at most
three components of type (b) and maybe some components of type (a). See
Fig. 2 (c).

The third possibility is that Bob marks a vertex in a component of type (c).
Assume that Bob destroys Alice’s invariant. Then there is a (unique) component
U1 adjacent to at least three of four marked vertices v1, v2, v3, v4, where v1 and
v4 are thick vertices, v2 is the thin vertex adjacent to v1, and v3 is the vertex
marked by Bob. If v3 is the other thin vertex of the cycle containing v1 and
v2, then Alice marks the other thick vertex of this cycle (which has at most
three marked neighbours, namely v2, v3, v4), obtaining at most one component
of type (b) and maybe some components of type (a). See Fig. 2 (d).

If the vertices v1, v3, v4 lie on a path, then v3 is a thin vertex, and Alice marks
the — necessarily unmarked — thick neighbour of v3 in direction towards v1.
This vertex has at most two neighbours, namely v2, v3. So Alice splits U1 into
two components of the types (b) or (c) and maybe some components of type
(a). See Fig. 2 (e).

If the vertices v1, v3, v4 do not lie on a path, there is a unique (thick) vertex
w on all paths between pairs of these vertices. Alice marks w and splits U1 into
one component of type (b) or (c) and at most two further components of type
(b) and maybe some components of type (a). Note that w is not adjacent to v1,
therefore adjacent to at most three marked vertices. See Fig. 2 (f).

We are left with the case that Bob does not destroy Alice’s invariant. If
there is a component with no marked thick vertex and at most one marked thin
vertex, Alice marks a thick vertex in this component, preferably a neighbour of
the marked thin vertex. Otherwise, Alice marks a thick neighbour of a marked
thick vertex or of two marked thin vertices belonging to the same cycle. If there
is no such vertex, she marks a thick vertex at distance two of a marked thick
vertex. If there is no unmarked thick vertex at all, she marks an arbitrary thin
vertex. Note that in all cases she does not destroy her invariant. In particular,
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she will mark thin vertices only at the end of the game. Since thin vertices have
at most two neighbours, this will be no problem. By induction, Alice wins.

5 Open questions

Our considerations and those of Sidorowicz [7] arise some interesting questions:

Problem 11. Determine the game chromatic and game colouring number of
the class of n-fat oriented (resp. directed resp. undirected) cactuses for n ≥ 4.

The answers to Problem 11 may be 3 or 4 in the case of oriented or directed
cactuses, the answers in the case of undirected cactuses may be 4 or 5.
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