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Abstract

We consider an extension of Bodlaender’s graph coloring game [5] which
is played on digraphs instead of undirected graphs and in which the first
player is allowed to miss a turn. This game defines the A-game chromatic
number of a digraph. A digraph D is called A-perfect if for every induced
subdigraph H of D, the A-game chromatic number of H is equal to the size
of the largest clique in H . We characterize all A-perfect semiorientations
of complete graphs with clique number 2, and all A-perfect paths and
cycles.
Keywords: game chromatic number, perfect graph, digraph, path, cycle,
game-perfectness

1 Introduction

A game-theoretic variant of the chromatic number of a graph is well-studied
in the literature of discrete mathematics, based on a work of Bodlaender [5].
Questions of perfectness in this settings are examined in a previous paper [3].
Here, we will focus on a game-theoretic variant of the dichromatic number of a
digraph and questions of perfectness in this more general situation.

Bodlaender’s game. In 1991, Bodlaender introduced the following graph
coloring 2-player game g. It is played on a graph G, which is uncolored at
the beginning, and with a finite set C of colors. Alternately, with the first
player, Alice, starting, the players color a vertex of G with a color from C, so
that adjacent vertices receive distinct colors. The game ends when no move is
posssible any move.

This game could be considered as a combinatorial game if the winning rule
was that the player that cannot move any more looses. However, Bodlaender,
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and after him many other contributors, considered a different winning rule, a so
called Maker-Breaker winning rule: Alice wins if every vertex is colored at the
end of the game, otherwise the second player, Bob, wins. In this context, Alice
is the Maker who tries to color the graph properly, and Bob, the Breaker, tries
to create a situation in which an uncolored vertex cannot be colored any more
(since it is surrounded by vertices of all colors).

The Maker-Breaker winning rule motivates the definition of a game-theoretic
analogon of the chromatic number of a graph: The smallest cardinality of a color
set C for which Alice has a winning strategy for the game g played on G is called
game chromatic number χg(G) of G. It is well-defined since if the cardinality
of C is at least the number of vertices of G, then Alice will always win.

Previous results. In recent years, the study of the game chromatic number
has become popular in the field of discrete mathematics. A lot of work has been
done in order to give upper bounds for the game chromatic number of certain
types of graphs. Faigle et al. [11] proved that the game chromatic number of a
forest is at most 4, a bound which is tight by a result of Bodlaender [5]. Guan
and Zhu [12] showed that χg(O) ≤ 7 for any outerplanar graph O. The upper
bound for the game chromatic number of planar graphs of 33 by Kierstead and
Trotter [15] was reduced to 30 by Dinski and Zhu [9], to 19 by Zhu [20], to 18
by Kierstead [14] and recently to 17 by Zhu [22]. Zhu [21] and Kierstead [14]
also determined upper bounds for the game chromatic number of graphs embed-
dable in an orientable surface. The game chromatic number of special graphs
embeddable in a surface with given girth was bounded by He et al. [13] for
planar graphs, by Wang [19] for graphs embeddable in a surface of nonnega-
tive Euler characteristic, and by the author [2] for graphs embeddable in some
other surface. The upper bound ∆ + 1 for the game chromatic number of line
graphs of forests of maximum degree ∆ 6= 4 was determined by a series of pa-
pers of Cai and Zhu [7], Erdös et al. [10] and the author [1]. Cai and Zhu [7]
also considered upper bounds for the game chromatic number of line graphs of
k-degenerate graphs.

Game-perfectness. Since the game chromatic number of a graph is a game-
theoretic coloring parameter that is obviously bounded below by the clique
number ω(G), i.e. the largest size of a complete subgraph of G, we may ask
the question for graphs for which χg(G) = ω(G). Such graphs will be called
g-nice. A graph G is called g-perfect if every induced subgraph of G is g-nice.
In the paper [3] it was proved that the g-perfect graphs with clique number 2
are exactly the forests of stars. This does not seem to be a very interesting class
of graphs, therefore a modified game was also considered.

The game A has the same rules as the game g, except for one extra rule:
Alice is allowed to miss one or several turns, in particular she may miss her
first turn. This game defines the A-game chromatic number χA(G) of G as the
smallest cardinality of a color set C for which Alice has a winning strategy for
the game A played on the graph G. A graph G is A-nice if χA(G) = ω(G). G is
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A-perfect if every induced subgraph of G is A-nice.
For a graph G, we have

ω(G) ≤ χ(G) ≤ χA(G) ≤ χg(G), (1)

see [1]. Here, χ(G) denotes the chromatic number of G. χg(G) and χA(G) may
really differ, e.g. χg(C4) = 3 but χA(C4) = 2 for the cycle C4 with 4 vertices
since in the game A Alice can use her right to miss the first turn. The cycle
C6 with 6 vertices (which has χA(C6) = 2) is an example of an A-nice graph
which is not A-perfect since its induced subgraph P5 (a path with 5 vertices)
has χA(P5) = 3.

By (1), g-perfect graphs are A-perfect, and A-perfect graphs are perfect.
Perfect graphs have been introduced by Berge [4] and recently been character-
ized by the Strong Perfect Graph Theorem [8]. It states that a graph is perfect
if, and only if, it does not contain cycles with an odd number of vertices or their
complements as induced subgraphs. This was formerly known as Berge’s Strong
Perfect Graph Conjecture.

The class of A-perfect graphs is much richer than the class of g-perfect
graphs. In [3], the following theorem was proved:

Theorem 1. A graph G with ω(G) ≤ 2 is A-perfect if, and only if, every
component of G is either a singleton K1 or a complete bipartite graph Km,n or
a complete bipartite graph Km,n − e in which one edge e is missing (for some
m, n).

Another result in [3] is that there is no Weak Perfect Graph Theorem for A-
resp. g-perfectness of graphs as an analogon to the famous result of Lovász [16]
that a graph is perfect if, and only if, its complement is perfect.

Our contribution. In this paper we will consider a generalization of the game
A to directed graphs (digraphs). A digraph D = (V, E) consists of a finite vertex
set V and an arc set E ⊆ V × V . For simplicity, we will assume that E does
not contain loops, i.e. arcs of the form (v, v). A graph G will be considered as
a digraph DG with the same vertex set, where each edge vw is replaced by the
pair of arcs (v, w) and (w, v). We do not distinguish between G and DG in the
following. In this way, the game A we define for digraphs will be, in the special
case of graphs, the same as the game A defined above.

We consider the following maker-breaker game A which is played by two
players, Alice and Bob, on a digraph D and with a finite color set C. At the
beginning, the vertices of D are uncolored. The players move alternately, with
Alice having the first move. A move of Bob consists in coloring a vertex of D

with a color from C. Alice, in her move, can choose whether she misses her turn
or also colors a vertex of D with a color from C. When a player colors a vertex v

with a color c, the player must obey the rule that none of the in-neighbors of v

has been already colored with c. (The coloring of the out-neighbors imposes no
restriction.) The game ends when no vertex can be colored any more by this
rule. If every vertex is colored at the end of the game, Alice wins. Otherwise Bob
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wins. So Bob wins if he can achieve a situation in which there is an uncolored
vertex v0 for which there are arcs starting at vertices of every color pointing
towards v0. Note that Bob does not need to create such a situation by himself,
he might also force Alice to create it.

We define the A-game chromatic number χA(D) of a digraph D as the
smallest cardinality of C, so that Alice has a winning strategy for the game
A played on D. Note that this definition coincides with the definition of the
A-game chromatic number of an undirected graph. χA(D) is not related to the
oriented game chromatic number of Nešetřil and Sopena [17].

Note that the color classes the players produce in the game A are acyclic
digraphs. Therefore χA(D) is a competitive version of the dichromatic number
χ(D) of a digraph introduced by Neumann-Lara [18]. The dichromatic number
of a digraph D is the smallest number of colors needed, so that a coloring of D

exists in which every color class induces an acyclic digraph. In the special case of
graphs the dichromatic number becomes the chromatic number. (In the case of
graphs, the color classes in an acyclic coloring of Neumann-Lara are independent
sets since every pair of adjacent vertices induces a directed 2-cycle.) However,
in general for digraphs the determination of the dichromatic number is very
difficult. It is even NP-complete to decide whether a digraph has dichromatic
number 2, see [6].

We want to extend the notion of A-perfectness to digraphs. Here we have
to be careful to explain what the clique number ω(D) of a digraph D means.
We define ω(D) as the largest size of an induced undirected complete graph in
D, in which between every pair of vertices v and w there are the arcs (v, w)
and (w, v). Then we call D A-nice if ω(D) = χA(D). D is A-perfect if every
induced subdigraph of D is A-nice.

In this paper we give a classification of some special classes of A-perfect
digraphs with clique number of at most 2. In particular we will characterize
the A-perfect digraphs with clique number 1 (Proposition 2) and the A-perfect
semiorientations of paths (Theorem 8) and cycles (Theorem 10). A semiorien-
tation of a graph G is a digraph with the same vertex set as G in which for
every edge vw of G there is either an arc (v, w), which is called single arc, or
both arcs (v, w) and (w, v). Such a pair of antiparallel arcs will be called an
edge. We will call a semiorientation of an undirected path simply a path and
a semiorientation of an undirected cycle simply a cycle. The undirected path
resp. cycle on n vertices is denoted by Pn resp. Cn.

Our main results imply that the lists of A-perfect paths resp. cycles are
finite.

2 Some special A-perfect digraphs

In this section we discuss A-perfect digraphs with clique number 1 and A-perfect
semiorientations of complete graphs with clique number 2. An in-star is a
digraph with a center vertex of in-degree n and n other vertices with in-degree
0 and no further vertices. We observe
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Proposition 2. The A-perfect digraphs with clique number 1 are exactly the
digraphs in which one component is an in-star and the other components are
isolated vertices.

Proof. Obviously, an in-star plus isolated vertices is A-perfect: Alice colors the
center of the in-star. If a simple digraph D (i.e., a digraph with clique number 1)
contains two nontrivial components, it has a subdigraph on 4 vertices with two
nonadjacent arcs, which is not A-nice, implying that D is not A-perfect. Now
let D be a connected simple digraph (i.e., a digraph with clique number 1)
which is not an in-star. We will prove that D is not A-nice (and therefore, not
A-perfect).

Since D is not an in-star but connected, D has at least two vertices with
in-degree of at least 1. Let v and w be such vertices. A winning strategy for Bob
with 1 color is the following. If Alice, in her first move, colors a vertex z with
non-zero out-degree, Bob wins, since an out-neighbor of z cannot be colored
any more. Otherwise, we may assume w.l.o.g. that w has not been colored by
Alice. Then Bob colors an in-neighbor of w, so that w cannot be colored any
more. Thus he wins in any case. �

Fig. 1 depicts all semiorientations of the complete graph K3 with clique
number of at most 2. In all figures, a straight line between two vertices v and
w represents the two arcs (v, w) and (w, v). A single arc (v, w) is depicted by
an arrow directed from v to w.

Theorem 3. The only A-perfect semiorientations of K3 with clique number of
at most 2 are K

1,++

3 and K
1,+−

3 .

Proof. This is a case analysis on the configurations of Fig. 1. �

Theorem 4. The only A-perfect semiorientation of K4 with clique number of

at most 2 is ~C4, the complement of the directed 4-cycle.

Proof. Let D be a semiorientation of K4 with vertices v1, v2, v3, v4. In case D

has at most one edge, D contains an orientation of a K3 which is not A-perfect.
If D has two adjacent edges, either D contains a K2

3 which is not A-perfect or D

has clique number at least 3. So we may assume that D contains the edges v1v2

and v3v4 and no further edges. W.l.o.g. the arc between v1 and v3 is directed
as (v1, v3). Since the subdigraph on the vertices v1, v3, v4 may not be K

1,−−

3

which is not A-perfect, the arc between v1 and v4 is directed as (v4, v1). With

K
0,c
3 K

0,t
3 K

1,++

3 K
1,+−

3 K
1,−−

3 K2
3

Figure 1: Semiorientations of K3
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v v

v v

1 2

4 3

Figure 2: ~C4

the same arguments concerning the sets of vertices {v1, v2, v4} resp. {v2, v3, v4}
one finds the orientation of the other arcs that are (v2, v4) resp. (v3, v2).

A winning strategy for Alice on ~C4 is the following: She misses her first turn.
Then she colors the vertex which is connected by an edge to the vertex Bob has
colored. After her move the coloring is fixed and she will win. Alice also wins

on every proper induced subdigraph of ~C4 as follows from Theorem 3. �

~C4 is depicted in Fig. 2.

Theorem 5. There is no semiorientation of Kn, n ≥ 5, with clique number 2
that is A-perfect.

Proof. Obviously, it is sufficient to prove the theorem for n = 5. Let D

be a semiorientation of K5 with vertices v1, v2, v3, v4, v5. Assume that D is
A-perfect and has clique number 2. By Theorem 4, the subdigraph on the
vertices v1, v2, v3, v4 must be the digraph of Fig. 2. Again, by Theorem 4 the
subdigraph on the vertices v1, v5, v3, v4 must be isomorphic to the digraph of
Fig. 2, in particular there must be an edge v1v5. But then the digraph induced
by v1, v2, v5 is either an undirected triangle (which contradicts the precondition
that D has clique number 2) or K2

3 (which is not A-perfect). �

3 Paths

Paths are a simple class of digraphs since every subdigraph of a path is a forest
of paths. Therefore we consider the hereditary class ~PF of forests of paths, i.e.
of those digraphs each component of which is a path.

Lemma 6. If a digraph D contains any of the forbidden configurations F3,1,
F3,2, F4, F5,1, F5,2, F7,1, F7,2, or F8 depicted in Fig. 3 as induced subdigraph,
then D is not A-perfect.

Proof. It is easy to see that the forbidden configurations have A-game chro-
matic number 2 if they are simple digraphs, and 3 otherwise, thus they are not
A-perfect. Then, by the definition of A-perfectness, D is not A-perfect. �
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(a) The forbidden configuration F3,1

(b) The forbidden configuration F3,2

(c) The forbidden configuration F4

(d) The forbidden configuration F5,1

(e) The forbidden configuration F5,2

(f) The forbidden configuration F7,1

(g) The forbidden configuration F7,2

(h) The forbidden configuration F8

Figure 3: Some forbidden configurations for A-perfectness

Lemma 7. Let P be a path with n ≥ 10 vertices. Then P is not A-perfect.
Moreover, P contains a forbidden configuration as an induced subdigraph.

Proof. Assume P is A-perfect. If P contains 3 single arcs, P has an induced
F3,1, F3,2 or F4. So P has at most 2 single arcs. If there are 2 single arcs then
these are adjacent or at distance 1, otherwise P has an induced F4. Since the
length of the path is n − 1 ≥ 9, P contains either an induced P5 = F5,2, which
is a forbidden configuration, or P is of the form v1v2v3v4v5v6v7v8v9v10, where
v1v2v3v4 and v7v8v9v10 are (undirected) P4’s, v5v6 is an edge, and between v4

and v5 resp. between v6 and v7 there are single arcs. If there was an arc (v5, v4)
or an arc (v6, v7), P would contain F5,1. So there are arcs (v4, v5) and (v7, v6).
But then P contains F7,2, which is a contradiction. �
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Figure 4: The 47 A-perfect paths

Theorem 8. Let F be a forest of paths with components D1, D2, . . . , Dk. Then
the following statements are equivalent:

(a) F is A-perfect.

(b) F does not contain any of the forbidden configurations F3,1, F3,2, F4, F5,1,
F5,2, F7,1, F7,2, or F8 depicted in Fig. 3 as an induced subdigraph.

(c) Every component of F , except at most one, is either an undirected path P1,
P2, P3, or P4, and the remaining component is one of the 47 configurations
depicted in Fig. 4.

In particular, the only A-perfect paths are those depicted in Fig. 4.

Proof. By Lemma 6 we have (a) =⇒ (b).
Consider (b) =⇒ (c). Assume that F does not contain any forbidden config-

uration. As F4 is forbidden, every component Di (with at most one exception,
say D1) is a graph, i.e. an undirected path Pni

. Since P5 = F5,2 is forbidden,
ni ≤ 4 for all i ≥ 2. By Lemma 7 the remaining component has at most 9
vertices. The configurations of Fig. 4 are exactly those paths with at most 9
vertices which do not contain any of the forbidden configurations as induced
subdigraphs (list all paths with at most 9 vertices and delete all enlargements
of forbidden configurations. Note that, as in the proof of Lemma 7, we can
restrict ourselves to paths with at most 2 single arcs, and if a path has two
single arcs, they are adjacent or at distance 1, otherwise the path would contain
a forbidden configuration F3,1, F3,2 or F4). Thus F is of the desired form.

Finally we prove (c) =⇒ (a). Assume that F is of the form as in (c). By case
analysis or the use of a computer program that calculates the A-game chromatic
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number by complete game-tree search it is easy to see that the 47 configurations
of Fig. 4 are A-nice. Every digraph consisting of an arbitrary component C′

which is one of the digraphs of Fig. 4 and some components which are undirected
paths P1, P2, P3, or P4 is A-nice as well, as we shall see. Indeed, a winning
strategy for Alice is the following: in her first move she plays on C′, after that
she always plays in the component on which Bob has played in his last move,
in both cases according to her winning strategy for the respective components.
Playing on a component possibly includes the use of Alice’s right to miss a turn
if this is necessary according to her winning strategy for C′ or if a component is
completely colored. Note that her winning strategies for Pj , 1 ≤ j ≤ 4, always
allow her to make Bob color the first vertex, therefore the strategy described
above is feasible. Since every induced subdigraph of F is also of the type of
digraphs described in (c), F is not only A-nice, but A-perfect. �

4 Cycles

Lemma 9. Let C be a cycle with n ≥ 7 vertices. Then C is not A-perfect.

Proof. Assume C is A-perfect. If C has three single arcs, then it contains a
forbidden configuration F3,1, F3,2, or F4 as induced subdigraph. So C has at
most 2 single arcs, and if there are two, then these are adjacent or at distance 1.
There are remaining m ≥ n− 3 ≥ 4 edges, which form a (forbidden) P5 = F5,2,
a contradiction. �

Theorem 10. Let C be a cycle. C is A-perfect if, and only if, C is one of the
14 configurations of Fig. 6.

Proof. Proper subdigraphs of cycles are forests of paths. By case analysis or
the use of a computer program it is easy to see that among all 22 cycles with
at most 6 vertices which do not contain any of the forbidden configurations
F3,1, F3,2, F4, F5,1, or F5,2 as induced subdigraphs (see Figs. 5 and 6) there are
exactly the 14 configurations of Fig. 6 which are A-nice. Thus, as they do not
contain the forbidden configurations, they are A-perfect. By Lemma 9, cycles
with more than 6 vertices are not A-perfect. �

5 Open problems

In Fig. 5, 8 forbidden cycles are depicted. These are minimal forbidden con-
figurations, i.e. they do not contain other forbidden configurations as proper
induced subdigraphs. Together with the 7 forbidden paths F3,1, F3,2, F5,1, F5,2,
F7,1, F7,2, and F8, and the non-connected forbidden configuration F4, so far we
have found 16 minimal forbidden configurations for A-perfectness of digraphs.
There might be many more minimal forbidden configurations. E.g., from the
results in [3] we conclude that K2,3 is such a minimal forbidden configuration.

The next step in order to complete the list of minimal forbidden configura-
tions for A-perfectness would be to consider forests in general, instead of forests
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Figure 5: 8 forbidden cycles

Figure 6: The 14 A-perfect semiorientations of cycles
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of paths. By Lemma 7 we have that a tree of diameter d ≥ 9 is not A-perfect.
However, a lot of trees would have to be examined in order to determine the
forbidden configurations. Note that the number of A-perfect trees is infinite
since, for example, every in-star is A-perfect.

Conjecture 11. The number of minimal forbidden trees is finite.

The last step for the classification of A-perfect digraphs with clique number 2
would consist in considering semiorientations of arbitrary graphs. It is clear that
every component but one of an A-perfect digraph with clique number 2 must be
a bipartite graph of the form as described in Theorem 1. However, the remaining
exceptional component will cause a lot of work.

A classification of all A-perfect digraphs (without restriction to the clique
number) seems to be a demanding task for the future, as well as a description
of A-perfect digraphs by minimal forbidden induced subdigraphs.
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