

DISKRETE MATHEMATIK UND OPTIMIERUNG

Winfried Hochstättler and Markus Merkel:

Short Note on the Number of Partitions of Wheels and Whirls into Two Trees respectively Two Bases

Technical Report feu-dmo017.09 Contact: winfried.hochstaettler@fernuni-hagen.de, markusmerkel@yahoo.de

FernUniversität in Hagen Lehrgebiet Mathematik Lehrstuhl für Diskrete Mathematik und Optimierung D – 58084 Hagen

2000 Mathematics Subject Classification: 05C05,91A43,05B35 **Keywords:** partition into two bases

Short Note on the Number of Partitions of Wheels and Whirls into Two Trees respectively Two Bases

Winfried Hochstättler FernUniversität in Hagen Markus Merkel

August 6, 2009

Abstract

We prove that the number of partitions of the *n*-wheel into two trees is $2^n - 2$. Furthermore, this yields that the number of partitions of the *n*-whirl into two bases is $2^n - 1$.

1 The proof

We start with a crucial of observation.

Proposition 1. Let $W_n = (V, E)$ denote the *n* wheel and $E = E_1 \dot{\cup} E_2$ a partition of the edges into two trees. Let $S \subseteq E$ denote the spikes and $S_1 := S \cap E_1$, $R \subseteq E$ the rim edges and $R_1 := R \cap E_1$. Let $S_1 = \{(cs_{i_1}), (cs_{i_2}), \dots, (cs_{i_k})\}$ in cyclic order. Then

$$R_1 = R \setminus \{(s_{i_1}, s_{i_1+1}), (s_{i_2}, s_{i_2+1}), \dots, (s_{i_k}, s_{i_k+1})\} \text{ or }$$

$$R_1 = R \setminus \{(s_{i_1}, s_{i_1-1}), (s_{i_2}, s_{i_2-1}), \dots, (s_{i_k}, s_{i_k-1})\}$$

where indices are taken modulo n.

Proof. Since |V| = n + 1, and E_1 is a set of edges of a spanning tree we must have $|E_1| = n$ and hence |R| = n - k. If e is a rim edge adjacent to two spokes from E_2 it must be in E_1 , since E_2 has no triangle. Hence, each element from $R \setminus R_1$ is of the form $(s_{i_j}, s_{i_j} + 1)$ or $(s_{i_j}, s_{i_j} - 1)$. Assume that there exists (s_{i_j}, s_{i_j+1}) as well as $(s_{i_\ell}, s_{i_\ell-1})$ in E_2 and $(cs_{i_j+1}), (cs_{i_\ell-1}) \in E_2$. If $j = \ell E_2$ would contain the cycle $(s_{i_j+1}, s_{i_j})(s_{i_j}, s_{i_{-1}}), (s_{i_j-1}c)(cs_{i_j+1})$, thus necessarily $j \neq \ell$. We may choose j, ℓ such that (cs_{i_j}) precedes (cs_{i_ℓ}) in S_1 . But this contradicts the fact that E_1 induces a connected graph.

Proposition 2. Let $W_n = (V, E)$ denote the *n* wheel and $E = E_1 \dot{\cup} E_2$ a partition of the edges. Let S, R, S_1, R_1 be as in Proposition 1 and

$$R_1 = R \setminus \{(s_{i_1}, s_{i_1+1}), (s_{i_2}, s_{i_2+1}), \dots, (s_{i_k}, s_{i_k+1})\} \text{ or } R_1 = R \setminus \{(s_{i_1}, s_{i_1-1}), (s_{i_2}, s_{i_2-1}), \dots, (s_{i_k}, s_{i_k-1})\}$$

where indices are taken modulo n.

If $\emptyset \neq S_1 \neq S$, then E_1 and E_2 both induce trees.

Proof. First note that if in R_1 the left rim edge is missing at each spoke, the same holds for R_2 , vice versa. The same holds if the right rim edge is missing. Hence it suffices to show that E_1 induces a tree. Since $|E_1| = n$ this follows if E_1 is acyclic. The latter is clear, since in each path between two consecutive spokes exactly one edge is missing. The claim follows.

Theorem 1. The number of partitions of the edge set of the wheel W_n into two trees is $2^n - 2$.

Proof. By Propositions 1 and 2 there is a bijection between the oriented proper subsets of S and the trees whose complements are trees as well. We have $2 \cdot (2^n - 2)$ oriented proper subsets of S, and we have counted each partition twice. The claim follows.

Corollary 1. The number of partitions of the element set of the n-whirl into two bases is $2^n - 1$.

Proof. Compared to the wheel we have the additional partition into the spokes and the rim. \Box