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1 Introduction

Hadwiger [7] called a Streckenkomplex a K(k) if it has a simplex of order k, but
none of order k + 1 as a minor and conjectured that a K(k) is always k-colorable:

Verschiedene Feststellungen stützen nämlich die Vermutung, dass
die chromatische Zahl eines K(k) nicht grösser als k ausfällt.

In today’s notation this is known as the following parametrized conjecture:

Conjecture 1 (H(k)[7]). If a graph is not k-colorable, then it must have a
Kk+1-minor.

While H(1) and H(2) are trivial, Hadwiger proved his conjecture for k = 3
and pointed out that Klaus Wagner proved that H(4) is equivalent to the Four
Color Theorem [22, 1, 15]. Robertson, Seymour and Thomas [16] reduced H(5)
to the Four Color Theorem. The conjecture remains open for k ≥ 6.

The purpose of this note is to point out a generalization of this conjecture
to (projective) hyperplane arrangements or more general oriented matroids.

The paper is organized as follows. In the next section we review the famous
flow conjectures of Tutte, generalizations to regular matroids and discuss their
relation to Hadwiger’s conjecture. Then we will sketch a possible generalization
to oriented matroids. In the last section we will give a detailed interpretation of
H(3) in affine hyperplane arrangements which we pose as an open problem. We
assume familiarity with the basics of graph theory, matroid theory and oriented
matroids. Standard references are [5, 14, 2].

2 Tutte’s flow Conjectures

Let A ∈ {0,+1,−1}r×E be a totally unimodular matrix representing a regular
matroid M of rank r on a finite set E and G an Abelian group. A G-NZ-flow in
M is a vector f ∈ (G \ {0G})E such that Af = 0. If G = Z and 0 < |f(e)| < k
we call f a NZ-k-flow.

First we consider the case that A is the incidence matrix of a directed graph
D = (V,E). Tutte [18] pointed out that the Four Color Theorem is equivalent
to the statement that every planar graph admits an NZ-4-flow. Generalizing
this to arbitrary graphs he conjectured that

Conjecture 2 (Tutte’s Flow Conjecture [18]). There is a finite number k ∈ N
such that every graph admits a NZ-k-flow.
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And moreover that

Conjecture 3 (Tutte’s Five Flow Conjecture [18]). Every graph admits a NZ-
5-flow.

Note that the latter is best possible as the Petersen graph does not admit a
NZ-4-flow. Conjecture 2 has been proven independently by Kilpatrick [12] and
Jaeger [11] with k = 8 and improved to k = 6 by Seymour [17].

Conjecture 3 has a sibling which is a more direct generalization of the Four
Color Theorem.

Conjecture 4 (Tutte’s Four Flow Conjecture [20, 21]). Every graph without a
Petersen-minor admits a NZ-4-flow.

In [20, 21] Tutte cited Hadwiger’s conjecture as a motivating theme and
pointed out that while

“Hadwiger’s conjecture asserts that the only irreducible chain-group
which is graphic is the coboundary group of the complete 5-graph”

Conjecture 4 means that

“the only irreducible chain-group which is cographic is the cycle
group of the Petersen graph.”

The first statement refers to the case where the rows of A consist of a basis of
signed characteristic vectors of cycles of a digraph.

Combining these we derive the following formulation in terms of regular
matroids which can be seen to be equivalent to Conjecture 4. First let us call
any integer combination of the rows of A a coflow. Clearly, by duality resp.
orthogonality, flows and coflows yield the same concept in regular matroids.
Note that the existence of a NZ-k-coflow in a graph is equivalent to k-colorability
[20].

Conjecture 5 (Tutte’s Four Flow Conjecture, matroid version). A regular ma-
troid that does not admit a NZ-4-flow has a the cographic matroid of the K5 or
the graphic matroid of the Petersen graph as a minor or, equivalently, a regular
matroid that is not 4-colorable, i.e. that does not admit a NZ-4-coflow has a K5

or a Petersen-dual as a minor.

Using the Four Color Theorem Lai, Li and Poon have proven that

Theorem 1 ([13]). A regular matroid that is not 4-colorable has a K5 or a
K5-dual as a minor.

Tutte’s Five Flow Conjecture now suggests the following matroid version of
Hadwiger’s conjecture:

Conjecture 6. If a regular matroid is not k-colorable for k ≥ 5, then it must
have a Kk+1-minor.

It is well known that

Theorem 2 ([4, 19]). a) . The number of G-NZ-coflows in a regular matroid
depends only on the order of the group, not on its structure.
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b) . The existence of a G-NZ-coflow is equivalent to the existence of a NZ-|G|-
coflow.

While in the case of the Four Flow Conjecture the simple structure of the
additive group of GF (4) allows to combine 4-flows or 4-coflows along 2-sums
and 3-sums and prove that Conjectures 4 and 5 are equivalent the author has
no general argument why the same should be possible for k-flows and k ≥ 5.
While Conjecture 6 implies Tutte’s Five Flow Conjecture as well as H(k) for
k ≥ 5 it is not clear whether the converse holds.

Problem 1. Is Conjecture 6 equivalent to H(k) and Conjecture 3 for k ≥ 5?

We conclude this section considering the remaining cases of k. Again the
cases k = 1 and k = 2 are trivial.

Theorem 3 (H(3) for regular matroids). If a regular matroid M is not 3-
colorable, then it has a K4-minor.

Proof. If M has no K4-minor it is the matroid of some series-parallel network
(see [14] Corollary 11.2.15). Hence, the assertion follows from H(3) for graphs.

3 Oriented Matroids

In the sixties of the last century the term orientable matroid was used for what is
now known as a regular matroid. A matroid is regular, if there is an orientation
of its circuits and cocircuits such that for all circuits C and all cocircuits D

|C+ ∩D+|+ |C− ∩D−| = k ⇐⇒ |C+ ∩D−|+ |C− ∩D+| = k. (1)

This has changed with the appearance of oriented matroids [6, 3]. We call
a matroid orientable if there is an orientation of its circuits and cocircuits such
that for all circuits C and all cocircuits D

|C+ ∩D+|+ |C− ∩D−| > 0 ⇐⇒ |C+ ∩D−|+ |C− ∩D+| > 0. (2)

In general, this definition will destroy orthogonality between directed circuits
and cocircuits and the chain group ([19]) generated by the signed characteristic
vectors of cocircuits will no longer coincide with the integer kernel of the matrix
the rows of which are the signed characteristic vectors of circuits. Even worse,
the latter is frequently trivial. Thus, to define flows or coflows we go back to
Tutte’s original definition of chain groups which we prefer to call integer lattices.

Definition 1. Let D denote the set of signed cocircuits of an oriented matroid
O on a finite set E. For each D ∈ D we define its signed characteristic vector
~χD ∈ {±1, 0}E as

~χD(e) =

 1 if e ∈ D+

−1 if e ∈ D−
0 if e 6∈ D.

(3)

The lattice of coflows F∗(O) is defined as

F∗(O) :=

{ ∑
D∈D

λD~χD | λD ∈ Z

}
. (4)

3



We say that an oriented matroid O is k-colorable, if there exists a coflow f∗ ∈
F∗(O) such that

∀e ∈ E : 0 < |f(e)| < k.

The chromatic number χ(O) of an oriented matroid is the smallest k such that
O is k-colorable.

Note that this definition is compatible with the case of regular matroids and
graphs. The flow lattice of an oriented matroid has been introduced in [8]. The
following theorem and numerical results from [9] suggest that the graphic case
should be the worst case for the chromatic number:

Theorem 4 ([10]). If O is an oriented matroid of rank k then χ(O) ≤ k +
1. Furthermore, equality holds if, and only if O is the oriented matroid of an
orientation of Kk+1.

This tempts us to replace the term “regular” in Conjectures 5 and 6 by
“orientable”. Explicitely:

Problem 2. H(4) for oriented matroids: Does an oriented matroid that is
not 4-colorable, necessarily have an orientation of K5 or of the Petersen-
dual as a minor?

H(k) for oriented matroids and k ≥ 5: Does an oriented matroid that is not
k-colorable for k ≥ 5, necessarily have an orientation of Kk+1 as a minor?

The next section will be devoted to a generalization of H(3).
While two orientations of a regular matroid differ only by reorientation, in

general this is not true. E.g. there are orientations O1,O2 of U6
3 , the uniform

matroid of rank 3 on 6 elements, such that dimF(O1) = 6 while dimF(O2) = 5.
Nevertheless, we do not know a matroid where the chromatic numbers differ for
different orientations.

Very little is known about algebraic coflows in oriented matroids. The exam-
ple O1 just mentioned together with Z4 and the additive group of GF (4) form
a counterexample to a generalization of Theorem 2 a) , while we do not have an
immediate counterexample to an oriented matroid version of Theorem 2 b) .

4 H(3) for hyperplane arrangements

By the topological representation theorem for oriented matroids ([6], see also
[2] 5.2.1) every oriented matroid can be represented as an arrangement of pseu-
dohyperspheres on the sphere. To simplify the discussion we will consider only
the linear case, i.e. hyperplane arrangements, here.

Thus, let H = (He)e∈E be an arrangement of affine hyperplanes in Rd. A
plane of H is any non empty intersection of elements of H. Planes of dimension
zero or one are called vertices resp. lines. In order to avoid working in projective
spaces we call an arrangement proper if no two lines ofH are parallel. If S, T ⊆ E
are two disjoint subsets of E such that P =

⋂
e∈S He is a plane which is contained

in no hyperplane Ht with t ∈ T then the hyperplane arrangement defined on P
by (P ∩Ht)t∈T is called a minor of H.

The arrangement of the K4 is derived from the hyperplanes defined by xi = 0
and xi − xj = 0 for 1 ≤ i < j ≤ 3 and xi = 0 in R4 by dehomogenization and is
depicted in Figure 1.
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Figure 1: The arrangement of the K4

Let V denote the set of vertices of a proper arrangement H. A coflow in H
consists of a maximal cell X and a map z : V → Z. We say that a vertex V ∈ V
is positive with respect to a hyperplane He, if V 6∈ He and V lies on the same
side of He as X, and negative if V 6∈ He and V and X are on different sides
of He. The value fz(e) of a hyperplane He in a coflow is defined as

fz(e) =
∑

V is positive wrt.He

z(V )−
∑

V is negative wrt.He

z(V ). (5)

A NZ-k-coflow is a coflow such that 0 < |fz(e)| < k. The choice ofX corresponds
to the choice of an acyclic orientation in a graph.

If we choose the shaded region in Figure 1 as X, set z(V ) = 2, z(W ) = 1
and z(U) = 0 for all other vertices U , we yield the indicated NZ-4-coflow. This
is best possible, since χ(K4) = 4. Theorem 4 asserts that all (pseudo)-line
arrangements, which are not projectively equivalent to Figure 1 admit a NZ-3-
coflow.

Hadwiger’s Theorem H(3) then becomes

Conjecture 7. If an arrangement does not admit a NZ-3-coflow it must have
a configuration projectively equivalent to Figure 1 as a minor.
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