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Abstract

We consider the following maker-breaker game on a graph G that has
a partition of the edge set E into two spanning trees E1 and E2. Initially
the edges of E1 are purple and the edges of E2 blue. Maker and breaker
move alternately. In a move of the maker a blue edge is coloured purple.
The breaker then has to recolour a different edge blue in such a way that
the purple and the blue edges are spanning trees again. The goal of the
maker is to exchange all colours, i.e. to make E1 blue and E2 purple. We
prove that a sufficient but not necessary condition for the breaker to win
is that the graph contains an induced K4. Furthermore we characterize
the structure of a partition of a wheel into two spanning trees and show
that the maker wins on wheels Wn with n ≥ 4 and provide an example of
a graph where, for some partitions, the maker wins, for some others, the
breaker wins.

Key words: maker-breaker game, tree pair, unique single element
exchange, wheel, basis exchange
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1 Introduction

A graph G = (V,E) is a tree pair if its edge set admits a partition E = E1∪̇E2

into two spanning trees, i.e. such that (V,E1) and (V,E2) are trees.
Consider the following game which is played by two players, a maker Alice

and a breaker Bob, on a tree pair G = (V,E) given with a partition E = E1∪̇E2

of the edge set into two spanning trees. During the game, some edges are in
the dynamic set P of purple edges, the other edges in the dynamic set B of
blue edges. Initially, P = E1 and B = E2. The players move alternately, the
maker begins. A move of the maker consists in colouring a blue edge e purple,
i.e. P −→ P ∪ {e} and B −→ B \ {e}. After that the breaker must colour a
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purple edge f 6= e blue in such a way that the purple and blue edges each form
a spanning tree again. If the maker can enforce that the purple and blue edges
are completely exchanged in a finite number of steps, i.e. P = E2 and B = E1,
the maker wins. Otherwise, i.e. if the breaker can achieve an infinite sequence
of moves without happening the winning configuration for Alice, the breaker
wins.

This paper deals with the question: Given a tree pair G = (V,E) and a
partition of the edge set E = E1∪̇E2 into a purple and a blue spanning tree,
which player has a winning strategy for the game described above?

We call this game base exchange game for graphs. This is motivated by the
following generalizations of the game for matroids proposed by White [5], see
also [4].

A base pair geometry is a matroid M on a ground set E such that E =
X1∪̇X2 for two bases X1, X2 of M . White defines the following maker-breaker
game on a base pair geometry with bases X1 and X2: the maker chooses a ∈ X1

and the breaker must choose b ∈ X2 such that X1 − a + b and X2 − b + a are
new bases for the next move. If after a finite series of moves X1 and X2 are
exchanged, the maker wins. We call this game W (1). In another game, which
we call W (2), the maker is allowed to choose a ∈ X1 or b ∈ X2. The breaker
then must recreate two new bases different from the bases of the previous move.

Our game is the special case of W (1) for graphic matroids. Note that W (2)
is the same for graphic and cographic matroids. Our game has more strict rules
than W (2). The difference can be seen by the example of the K4 (see Section 3).
Here the breaker has a winning strategy for our game, but not for W (2). White
conjectures that for every regular matroid the maker has a winning strategy
for W (2).

Neil White’s motivation to study the games comes from the research on the
following exchange properties of matroids. In [4] he considers matroids M with
ground set S and compatible pairs X = (X1, X2) and Y = (Y1, Y2) of bases
of M . Compatibility means that each element of S is contained in the same
number of Xis as of Yjs. We say that the pair X ′ = (X1 − a + b, X2 − b + a) is
obtained by a unique exchange from the pair X = (X1, X2) if a ∈ X1 and there
is only exactly one b ∈ X2 such that X1−a+b and X2−b+a are bases of M . If a
base pair Y can be obtained from a base pair X by a series of unique exchanges,
we write, following White, X '1 Y . If a Y = (Y1, Y2) can be obtained from
X = (X1, X2) by a series of unique exchanges and permutation of the Xis, we
write X '2 Y . White defines UE(1)′ resp. UE(2)′ as the class of matroids such
that for all compatible basis pairs X and Y , X '1 Y resp. X '2 Y . White
conjectures that the class of regular matroids is contained in UE(2)′.

This conjecture is very much related to the conjecture that for regular ma-
troids the maker has a winning strategy in game W (2). Note that the class of
matroids on which the maker has a winning strategy in game W (2) contains
UE(2)′, since if the maker chooses b ∈ X2 this can be seen as permuting X1 and
X2, choosing b from the now first entry of the base pair and repermuting.

Obviously, the class of matroids on which the maker has a winning strategy
in game W (1) contains UE(1)′. By a result of White UE(1)′ is the class of
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series-parallel matroids. We will show that the class of matroids where the
maker wins is richer, namely it contains all wheels except K4.

The paper is organized as follows. In Section 2 we introduce basic termi-
nology and results for the base exchange game on graphs. We prove that the
breaker wins on tree pairs that contain an induced K4 in Section 3. However,
in Section 4 we show that a breaker-win graph does not necessarily contain an
induced K4. Section 5 deals with the structure of partitions of the edge set of
wheels into spanning trees. These results are needed for Section 6 in which we
show that the maker has a winning strategy on wheels that are not the K4.
In Section 7 we give an example of a tree pair in which the maker wins for
some partitions, and the breaker for other. We assume familiarity with graph
theory, basic knowledge of matroid theory and use standard notation. Standard
references are [1, 3].

2 General results on the base exchange game

For the discussion of the game we introduce an auxiliary digraph, the so-called
graph of forced transformations GF . Its vertices are all pairs (E1, E2) of disjoint
spanning trees with E = E1∪̇E2 of the base graph G = (V,E). We have an arc
((E1, E2), (E′1, E

′
2)) if and only if in the game there is an edge e ∈ E2 such that,

if it is coloured by the maker, there is only a single edge f ∈ E1 the breaker
may colour as feasible answer in such a way that E′1 = (E1 ∪ {e}) \ {f} and
E′2 = (E2 \ {e}) ∪ {f}.

The following obvious Proposition is the basis for our further analysis:

Proposition 1. If GF is strongly connected, then the maker has a winning
strategy for the base exchange game on the graph G for any starting partition
into two spanning trees.

The following proposition that the game is well-defined is the special case of
the well-known symmetric base exchange property of matroid theory.

Proposition 2. Let G = (V,E) be a tree pair with a partition E = P ∪̇B of the
edge set into two spanning trees. Then

∀b ∈ B∃p ∈ P : (P \ {p} ∪ {b}, B \ {b} ∪ {p}) is a partition into trees.

Proof. Let C(P, b) denote the fundamental circuit of P and b and C∗(B, b) the
cut induced by the two components of B\{b}. Then |C(P, b)∩C∗(B, b)| is even,
the intersection contains b and

∀p ∈ C(P, b) ∩ C∗(B, b) : (P \ {p} ∪ {b}, B \ {b} ∪ {p})

is a partition into trees.
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3 Graphs where the breaker wins

The main purpose of this section is to show that the breaker has a winning
strategy if a tree pair contains the complete graph K4 as an induced subgraph.

Lemma 3. (a) KF
4 has three components.

(b) If (P,B) is an ordered partition of the edge set of K4 into two trees, then
(P,B) and (B, P ) lie in different components of KF

4 .

(c) If the maker plays the unique non-forced move the breaker has a feasible
move that does not leave the component.

Proof. (a) Any partition of K4 into two trees consists of two P4s, i.e. paths on
four vertices. Let abcd denote such a P4. Then the move of the breaker is
forced if and only if the maker does not close a C4, i.e. plays edge ad. The
resulting configurations of forced moves are listed in Fig. 1. Hence the
component of the purple abcd consists of purple {abcd, abdc, bacd, badc}
and hence of four ordered partitions. As the number of P4s in K4 is
1
24! = 12 the claim follows by symmetry.

abcd

bacd

abdc

abcd

badc

abcd

bacd

abdc

Figure 1: A component of KF
4

(b) The above analysis yields that the purple bdac lies in a different component
than abcd.

(c) By symmetry, again, it suffices to consider the case that the starting con-
figuration is a purple P4 abcd and the maker plays ad. Now the breaker
recolours bc to purple which yields a purple badc in the same component.

Summarizing the last Lemma implies:

Theorem 4. The breaker has a winning strategy on the K4 for any starting
configuration.

Theorem 5. If a tree pair G contains a tree pair H as an induced subgraph,
and the breaker has a winning strategy for H, then the breaker has a winning
strategy for G.

Proof. If a blue edge outside H is recoloured to purple by the maker, then
recolouring a purple edge in H would mean that the blue graph in H has two
edges more than the purple graph in H, therefore there is a blue cycle. So the
answer on recolouring outside H must also be an edge outside H. Therefore the
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breaker can use his strategy on H, and if the maker plays in the complement,
the breaker plays in the complement. In this way the spanning trees of H cannot
be exchanged and thus the same holds for the global spanning trees.

Corollary 6. For a tree pair that contains a K4 as induced subgraph the breaker
has a winning strategy.

4 A breaker-win graph without induced K4

By D6 we denote the 2-sum of two K4s “without glueing edge” (see Fig. 2).
Clearly, K4 is a minor but not an induced subgraph of D6.

Theorem 7. For any partition E = E1 ∪ E2 of the edge set of D6 into two
trees, the breaker has a winning strategy.

a

b′

a′

c

d

c′

d′f

e

b

Figure 2: The graph D6

Proof. We consider two cases.

Case 1: E1 contains an edge of each of the pairs {a, a′}, {b, b′}, {c, c′}, {d, d′}
such that these four edges do not form a path. By symmetry, we may
assume, that A := {a, b, c′, d′} ⊆ E1. Note, that any further edge x ∈ E\A
will complement A to a tree such that E \ (A ∪ {x}) is a tree as well.
Therefore, if x = E1 \ A and the maker recolours y ∈ E \ (A ∪ {x}) to
purple, the breaker recolours x to blue. Hence, A will never change its
colour and the breaker wins.

Case 2: First we will show that otherwise E1 must be disjoint from one of the
pairs {a, a′}, {b, b′}, {c, c′}, {d, d′}. Assume not, then E1 must contain one
edge of each pair, which alltogether form a path. We may assume, by
symmetry, that {b, a, c, d′} ⊆ E1 implying {f, d, b′} ∈ E2. As E2 forms a
tree at least one of a′, c′ must be in E1, hence E1 contains an edge from
each pair (namely either {a, b, c′, d′} or {a′, b, c, d′}) which alltogether do
not form a path.

Hence we may assume that {a, a′} ⊆ E2. Therefore, E1 must contain an
induced P4 in the lower half, w.l.o.g. {b′, d, f} ⊆ E1, {b′, d, d′} ⊆ E1 or
{b, b′, d} ⊆ E1 and, again by symmetry, we may assume that E1 is one
from {e, c, b′, d, f}, {e, c, b′, d, d′} or {e, c, b, b′, d} (see Fig. 3).
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a e
c

c′

d

f d′

a e
c

c′
a′
b

b′
d

f d′

Figure 3: The three possible trees E1 (fat edges) in Case 2

We will show that the breaker can assure, that {e, d, b′} never change their
colour. The maker’s moves and the answers of the breaker are listed in
Table 1.

E1 := {e, c, b′, d, f}
a a′ b c′ d′

c c f c f

E1 := {e, c, b′, d, d′}
a a′ b c′ f
c c d′ c d′

E1 := {e, c, b, b′, d}
a a′ c′ d′ f
c c c b b

Table 1: Fixing b′, d, e.

In any case the breaker reinstalls a partition where E1 is disjoint from
either {a, a′} or {c, c′} and which contains the vertical edge adjacent to
this pair, i.e. e, and two independent edges from the other side, namely
b′, d. Hence, by symmetry, the breaker can ensure that {e, d, b′} never
change their colour and wins.

Remark 8. It can be shown [2] that the graph of forced transformations DF
6

has exactly 8 components, four of size 6 corresponding to Case 1 of the above
proof and four of size 12 corresponding to Case 2.

5 On the structure and the number of partitions
of a wheel into two trees

We start with a crucial of observation.

Proposition 9. Let Wn = (V,E) denote the n-wheel and E = E1∪̇E2 be a
partition of the edges into two trees. Let S ⊆ E denote the spokes and S1 :=
S ∩ E1, R ⊆ E the rim edges and R1 := R ∩ E1. Let c denote the hub and
v0, . . . , vn−1 the outer vertices of Wn and S1 = {cvi1 , cvi2 , . . . , cvik

} in cyclic
clockwise order. Then

R1 = R \ {vi1vi1+1, vi2vi2+1, . . . , vik
vik+1} or

R1 = R \ {vi1vi1−1, vi2vi2−1, . . . , vik
vik−1}

where indices are taken modulo n.
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Proof. Since |V | = n + 1, and E1 is a set of edges of a spanning tree we must
have |E1| = n and hence |R1| = n− k. If e is a rim edge adjacent to two spokes
from E2 it must be in E1, since E2 has no triangle. Hence, each element from
R \R1 is of the form vij

vij+1 or vij
vij−1. Assume that there exists vij

vij+1 as
well as vi`

vi`−1 in E2 and cvij+1, cvi`−1 ∈ E2. If j = `, E2 would contain the
cycle vij+1vij , vij vij−1, vij−1c, cvij+1, thus necessarily j 6= `. We may choose j, `
such that cvij precedes cvi`

in S1. But this contradicts the fact that E1 induces
a connected graph.

Proposition 10. Let Wn = (V,E) denote the n wheel and E = E1∪̇E2 a
partition of the edges. Let S, R, S1, R1 be as in Proposition 9 and

R1 = R \ {vi1vi1+1, vi2vi2+1, . . . , vik
vik+1} or

R1 = R \ {vi1vi1−1, vi2vi2−1, . . . , vik
vik−1}

where indices are taken modulo n.
If ∅ 6= S1 6= S, then E1 and E2 both induce trees.

Proof. First note that if in R1 the left rim edge is missing at each spoke, the
same holds for R2, vice versa. The same holds if the right rim edge is missing.
Hence it suffices to show that E1 induces a tree. Since |E1| = n this follows if
E1 is acyclic. The latter is clear, since in each path between two consecutive
spokes exactly one edge is missing. The claim follows.

Theorem 11. The number of partitions of the edge set of the wheel Wn into
two trees is 2n − 2.

Proof. By Propositions 9 and 10 there is a bijection between the oriented proper
subsets of S and the trees whose complements are trees as well. We have
2 · (2n − 2) oriented proper subsets of S, and we have counted each partition
twice. The claim follows.

Corollary 12. The number of partitions of the element set of the n-whirl into
two bases is 2n − 1.

Proof. Compared to the wheel we have the additional partition into the spokes
and the rim.

6 The strategy of the maker for wheels

In this section we discover an important class of maker-win graphs, namely the
class of wheels. Wheels are the simplest, most natural example for tree pairs
with a high degree of symmetry.

Theorem 13. Let Wn = (V,E) be a wheel with n ≥ 4 and let E = E1∪̇E2 be a
partition of the edges into two spanning trees. Let the edges of E1 be purple and
those of E2 be blue. Then the maker has a strategy in the base exchange game
to force an exchange of the colours of E1 and E2.
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Proof. We will prove, using the following three lemmata, that WF
n is strongly

connected for n ≥ 4. Then the theorem follows by Proposition 1.

First we need some definitions. We use the notation from Proposition 9. By
this proposition, either the purple rim edges follow the purple spokes counter-
clockwise or clockwise. In the first case we speak of a left orientation, see Fig. 4
left, in the second of a right orientation, see Fig. 4 center. Every purple spoke
sij that is adjacent to a purple rim edge is called ending spoke. There are some
special configurations. If a left orientation has only one purple spoke si, the
configuration is called si-left path, see Fig. 4 right. Its complement (i.e. the
configuration with only one blue spoke si) is called si-left star. In both cases,
si is also called special spoke. We use analog notions for right orientations.

s7c

v1

v0
v7 v1

c

v0
v7

Figure 4: Left and right orientation and a left path

Lemma 14. Any left orientation of the wheel Wn, n ≥ 4 can be transformed
into an si-left path, where si is one of the ending spokes of the left orientation
and stays in the same colour.

Proof. We proceed by induction on the number k ≥ 1 of purple spokes. If
k = 1 there is nothing to prove. Otherwise, we may assume i = n − 1. Let
sj 6= sn−1, j < n− 1 be the purple spoke such that s` is blue for j < ` < n− 1.
The maker recolours the formerly blue rim edge vjvj+1 purple, creating a purple
cycle cvjvj+1 . . . vn−1c. By Proposition 9 and as n ≥ 4, the only possibility for
the breaker to reinstall a tree-pair is to recolour sj to blue and the claim follows
by induction.

Lemma 15. The si-left path of the wheel Wn, n ≥ 4, can be transformed into
the si-left star.

Proof. First the maker recolours the rim edge vivi+1 to purple, so the breaker
is forced to make the rim edge vi−1vi blue, turning the si-left path into the si-
right path, see Fig. 5 left. Then the maker recolours the spoke si+2 to purple, so
that the breaker is forced to colour the rim edge vi+1vi+2 blue, see Fig. 5 center
left. Now the maker inductively recolours the spokes si+2+j , j = 1, 2, . . . , n −
3 (indices mod n), each move forcing the breaker to recolour the rim edge
vi+2+j−1vi+2+j to blue, see Fig. 5 center right. Now, we are left with the si+1-
right star. In order to turn this into the si-left star it suffices to recolour si+1

to purple, which forces the breaker to make si blue, see Fig. 5 right. Note that
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the first and last pair of moves again requires n ≥ 4. In case n = 3, si+1 and
si−1 would be neighboured, and the breakers move is not forced any more.

s7 s7s7 s7

Figure 5: Transforming the s7-left path into the s7-left star

Lemma 16. If C1, C2 are two sl-left orientations of the wheel Wn, n ≥ 4 with
S2

1 ⊆ S1
1 , where Sk

1 denotes the set of purple spokes of Ck, then C1 can be
transformed into C2.

Proof. We proceed by induction on the number k = |S1
1 | − |S2

1 |, the case k = 0
being trivial. Let si ∈ S1

1 \ S2
1 . The maker recolours si+1si, making it purple.

Since C1 has at least 2 purple spokes, we may choose sj ∈ S1
1 such that sm 6∈ S1

1

for i < m < j. In order to destroy the cycle csisi+1 . . . sjc and to reinstall a tree
pair, by Proposition 9 the breaker is forced to colour si blue. Now, the claim
follows by induction.

Theorem 17. WF
n is strongly connected for n ≥ 4.

Proof. The following chain of arguments is depicted in Figure 6. By Lemma 14
we can transform any left orientation C1 with spokes S1

1 where i ∈ S1 and j 6∈ S1

for given i 6= j into the i-left path. By Lemma 15 we can transform the i-left
path into the i-left star and by Lemma 16 from this we reach any left orientation
C2 with spokes S2

1 and i 6∈ S2
1 , m ∈ S2

1 for any m 6= i. Interchanging the roles
of the indices we conclude that we can transform this into C1 and hence the
subdigraph of WF

n induced by the left orientations is stronly connected.
In the proof of Lemma 15 we, furthermore, transformed the i-left path into

the (i + 1)-right star and this into the i-left star. Since by, symmetry, the right
orientations induce a strongly connected digraph as well, the claim follows.

i-left path i-left starleft or. left or.

m
∈6∋

j
6∋

ii ∈
(i + 1)-right star

Figure 6: WF
n is strongly connected
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7 A non-homogeneous graph

In this section we will consider the graph G = K3,3 + e where e is an additional
edge in one of the bipartitions. We will see that for some partitions of G into two
trees the breaker has a winning strategy, for others the breaker has a winning
strategy. Moreover, we will see that GF decomposes into two components, one
containing 48 tree pairs, the other 24 tree pairs. The maker wins exactly on
half of the tree pairs of the bigger component.

In order to be able to describe this phenomenon more in detail, we start by
identifying the types of tree pairs which can occur in G. In Fig. 7 three types
and their complements are depicted.

1 5

3

42

6

1 5

3

42

6

X Xc

1 5

3

42

6

1 5

3

42

6

Y Y c

1 5

3

42

6

1 5

3

42

6

Z Zc

Figure 7: Types X and Xc, Y and Y c, Z and Zc

We say two partitions are of the same type if there is an automorphism of G
transforming one into the other. It is easy to verify that in each case there are
exactly 12 pairs of the same type (and 12 pairs of the complement of these types)
since the autorphism group of G is S2 × S3, where Si denotes the permutation
group on i elements. In pairs of the type X, Y , and Z the special edge {1, 2}
is purple, in the complements it is blue. Note that in a pair of type X the
purple and the blue edges form a P6, in a pair of type Z the purple edges form
a generalized star S1,2,2 and the blue edges form a P6, and in a pair of type
Y the purple edges form another generalized star S1,1,3 whereas the blue edges
form an S1,2,2.

Theorem 18. (a) GF consists of two components A and B, where A contains
every partition of type Xc, Y c, Z, and Zc and B contains those of types
X and Y .

(b) The maker wins if the starting partition is of type Z or Zc.

(c) The breaker wins if the starting partition is of type X, Xc, Y , or Y c.

We will prove this theorem by a series of lemmata.

Lemma 19. The tree pairs of type X and type Y form a component of GF .
Moreover, the breaker has a strategy never to leave this component if the game
is started here.

Proof. In Fig. 8 we depict all possible results of a pair of moves, starting from
X (upper row) resp. from Y (lower row). Alice recolours some edge and in
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most cases Bob’s response is forced (grey edge). In the three non-forced moves
we show Bob’s possible moves in grey. In all three non-forced moves, if the
breaker plays the lower edge {1, 5}, either a partition of type X or of type Y
is created. In the forced moves it can be seen that also only types X or Y are
created, they are denoted as X resp. Y with the permutations corresponding to
the automorphisms..

X n.f. n.f. Y (12)(46) X(12)(45)Y (46)

1 5

3

42

6

1 5

3

42

6

1 5

3

42

6

1 5

3

42

6

1 5

3

42

6

1 5

3

42

6

Y X(46) Y (56) Y (45)X(12)(46) n.f.

1 5

3

42

6

1 5

3

42

6

1 5

3

42

6

1 5

3

42

6

1 5

3

42

6

1 5

3

42

6

Figure 8: Moves starting with Y

X Y (46) Y (456)

X (12)(45) X (12)

Y (56) X (465)

Figure 9: Paths of moves

In Fig. 9 we see paths of moves from X to Y (4, 6) and X(12)(45), X(12) resp.
X(465). Since {(12)(45), (12), (465)} is a generating set of the automorphism
group of G, the partitions of types X and Y form a single component of GF .

Lemma 20. Types Xc, Y c, Z and Zc are in the same component. In particular,
each type Z can reach each type Zc.

Proof. In Fig. 10 we depict all forced and non-forced (n.f.) moves starting from
the tree pair Xc, Y c, Z, Zc, respectively. The answer of the breaker in forced
moves is the grey edge. It can be seen that there are no forced moves which
obtain a partition of type X or Y .

Furthermore each permutation of each of the four partitions Xc, Y c, Z, and
Zc can be reached from any one of them, as is proven by the paths in Fig. 11.

This means that type Xc, Y c, Z, and Zc form a component of GF .
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Xc Zc Y c(46)Z(45)

1 5
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42

6
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1 5
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42
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1 5
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n.f. [Y c] n.f. [Xc]

Y c Xc(46) Z(12)(56) Zc Y c(56)
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n.f. [Y c]

Z Xc(45) Y c(12)(56)Z(12)(46)
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n.f. [Z] n.f. [Zc]
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Figure 10: Moves starting with Xc, Y c, Z, resp. Zc
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Figure 11: Paths of forced moves
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Lemma 21. If the initial partition is of type Xc or Y c, in the non-forced moves
the breaker has a strategy to obtain partitions of types Xc, Y c, Z or Zc again
(to stay in the same component).

Proof. In the non-forced moves of Fig. 10, if the breaker chooses the grey edge
for recolouring (not the grey-black dashed edges), he also obtains a partition
of a type which is displayed in brackets. This type is neither X nor Y in any
case.

This completes the proof of Theorem 18.

8 Concluding remarks

We have seen in the last section that there is a tree pair with partitions E =
E1∪̇E2 and E = F1∪̇F2 into spanning trees such that the maker wins when the
initial partition is (E1, E2) but the breaker wins when the initial partition is
(F1, F2). However, the following problem is still open.

Problem 22. Is there a tree pair G = (V,E) with partition E = E1∪̇E2 into
spanning trees such that the maker wins when the initial partition is (E1, E2)
but the breaker wins when the initial partition is (E2, E1)?

In all our examples, if the maker has a winning strategy for a tree pair G with
initial partition (E1, E2), the partition (E2, E1) was in the same component.
Note that a positive answer to Problem 22 implies a positive answer to the
following

Problem 23. Is there a tree pair G = (V,E) with partition E = E1∪̇E2 into
spanning trees such that the maker wins when the initial partition is (E1, E2),
but (E2, E1) and (E1, E2) lie in distinct components of GF ?
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