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Abstract

The clique number ω(D) of a digraph D is the size of the largest bidi-
rectionally complete subdigraph of D. D is perfect if, for any induced
subdigraph H of D, the dichromatic number χ(H) equals the clique num-
ber ω(H). Using the Strong Perfect Graph Theorem [7] we give a charac-
terization of perfect digraphs by a set of forbidden induced subdigraphs.
Modifying a recent proof of Bang-Jensen et al. [2] we show that the recog-
nition of perfect digraphs is co-NP-complete.
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1 Introduction

A conjecture that kept mathematicians busy with for a long time was Berge’s
Conjecture (cf. [3, 4]) which says that a graph is perfect if and only if it is a
Berge graph, i.e., it does neither contain odd holes nor odd antiholes as induced
subgraphs. After many partial results, the most famous being Lovasz’ proof of
the (Weak) Perfect Graph Theorem [10] stating that a graph is perfect if and
only if its complement is perfect, a proof of Berge’s Conjecture was published in
2006 by Chudnovsky et al. [7], so that Berge’s Conjecture is now known as the
Strong Perfect Graph Theorem (SPGT). In this note we show that the SPGT
can be generalized in an easy and natural way to digraphs if the underlying col-
oring parameter, the chromatic number, is replaced by the dichromatic number
introduced by Neumann-Lara [11].

The importance of perfect graphs lies in computer science. Many problems
that are NP-complete for graphs in general are polynomially solvable for perfect
graphs, e.g. the maximum clique problem, the maximum stable set problem,
the graph coloring problem and the minimum clique covering problem (see [9]
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resp. [8]). This is applicable, since the members of many important classes of
graphs are known to be perfect, e.g. bipartite graphs and their line graphs,
split graphs, chordal graphs, and comparability graphs. Bokal et al. [5] proved
that 2-coloring a digraph feasibly is an NP-complete problem. By our results,
k-coloring of perfect digraphs is in P for any k. It remains an open question
whether there are other classical problems which are hard on general digraphs
but efficiently solvable on perfect digraphs.

By a result of Chudnovsky et al. [6] the recognition of Berge graphs is in P,
and so, by the SPGT [7], the same holds for the recognition of perfect graphs.
In contrast to this, the recognition of induced directed cycles of length at least 3,
which are a main obstruction for perfect digraphs, is NP-complete by a result of
Bang-Jensen et al. [2]. We will show in a very similar way that the recognition
of perfect digraphs is co-NP-complete.

2 Main result

We start with some definitions. For basic terminology we refer to Bang-Jensen
and Gutin [1]. For the rest of the paper, we only consider digraphs without
loops. Let D = (V,A) be a digraph. The dichromatic number χ(D) of D is
the smallest cardinality |C| of a color set C, so that it is possible to assign a
color from C to each vertex of D such that for every color c ∈ C the subdigraph
induced by the vertices colored with c is acyclic, i.e. it does not contain a directed
cycle. The clique number ω(D) of D is the size of the largest induced subdigraph
in which for any two distinct vertices v and w both arcs (v, w) and (w, v) exist.
The clique number is an obvious lower bound for the dichromatic number. D is
called perfect if, for any induced subdigraph H of D, χ(H) = ω(H).

An (undirected) graph G = (V,E) can be considered as the symmetric di-
graph DG = (V,A) with A = {(v, w), (w, v) | vw ∈ E}. In the following, we will
not distinguish between G and DG. In this way, the dichromatic number of a
graph G is its chromatic number χ(G), the clique number of G is its usual clique
number ω(G), and G is perfect as a digraph if and only if G is perfect as a graph.
For us, an edge vw in a digraph D = (V,A) is the set {(v, w), (w, v)} ⊆ A of
two antiparallel arcs, and a single arc in D is an arc (v, w) ∈ A with (w, v) /∈ A.
The oriented part O(D) of a digraph D = (V,A) is the digraph (V,A1) where
A1 is the set of all single arcs of D, and the symmetric part S(D) of D is the
digraph (V,A2) where A2 is the union of all edges of D. Obviously, S(D) is a
graph, and by definition we have

Observation 1. For any digraph D, ω(D) = ω(S(D)).

In the formulation of the SPGT and in our generalization some special types
of graphs resp. digraphs are needed. An odd hole is an undirected cycle Cn

with an odd number n ≥ 5 of vertices. An odd antihole is the complement of
an odd hole (without loops). A filled odd hole/antihole is a digraph H, so that
S(H) is an odd hole/antihole. For n ≥ 3, the directed cycle on n vertices is
denoted by ~Cn. Furthermore, for a digraph D = (V,A) and V ′ ⊆ V , by D[V ′]
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we denote the subdigraph of D induced by the vertices of V ′. Now we are ready
to formulate our main result.

Theorem 2. A digraph D = (V,A) is perfect if and only if S(D) is perfect and
D does not contain any directed cycle ~Cn with n ≥ 3 as induced subdigraph.

Proof. Assume S(D) is not perfect. Then there is an induced subgraph H =
(V ′, E′) of S(D) with ω(H) < χ(H). Since S(D[V ′]) = H, we conclude by
Observation 1,

ω(D[V ′]) = ω(S(D[V ′])) = ω(H) < χ(H) = χ(S(D[V ′])) ≤ χ(D[V ′]),

therefore D is not perfect. If D contains a directed cycle ~Cn with n ≥ 3 as
induced subdigraph, then D is obviously not perfect, since ω(~Cn) = 1 < 2 =
χ(~Cn).

Now assume that S(D) is perfect but D is not perfect. It suffices to show
that D contains an induced directed cycle of length at least 3. Let H = (V ′, A′)
be an induced subdigraph of D such that ω(H) < χ(H). Then there is a proper
coloring of S(H) = S(D)[V ′] with ω(S(H)) colors, i.e., by Observation 1, with
ω(H) colors. This cannot be a feasible coloring for the digraph H. Hence there
is a (not necessarily induced) monochromatic directed cycle ~Cn with n ≥ 3 in
O(H). Let C be such a cycle of minimal length. C cannot have a chord that is
an edge vw, since both terminal vertices v and w of vw are colored in distinct
colors. By minimality, C does not have a chord that is a single arc. Therefore,
C is an induced directed cycle (of length at least 3) in H, and thus in D.

We actually have proven:

Remark 3. If D is a perfect digraph, then any feasible coloring of S(D) is also
a feasible coloring for D.

Corollary 4. A digraph D = (V,A) is perfect if and only if it does neither
contain a filled odd hole, nor a filled odd antihole, nor a directed cycle ~Cn with
n ≥ 3 as induced subdigraph.

Proof. If D contains any configuration of the three forbidden types, D is obvi-
ously not perfect, since each of these configurations is not perfect.

Assume, D does not contain any of these configurations. Then S(D) does
neither contain odd holes nor odd antiholes, therefore, by the Strong Perfect
Graph Theorem [7], S(D) is perfect. Using Theorem 2, we conclude that D is
perfect.

Corollary 5. k-coloring of perfect digraphs is in P for any k ≥ 1.

Proof. By Remark 3 it follows that a coloring of a perfect digraph D with ω(D)
colors can be obtained by coloring the perfect graph S(D), which is possible in
polynomial time (see [8]).
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The preceding result does not depend on an efficient recognition of perfect
digraphs. Moreover, the recognition problem for perfect digraphs is a hard
problem. In order to test, whether a digraph D is perfect, by Theorem 2 we
have to test

1. whether S(D) is perfect, and

2. whether D does not contain an induced directed cycle ~Cn, n ≥ 3.

The first can indeed be tested efficiently by the results of Chudnovsky et al. [6]
and the SPGT [7], but the second is a co-NP-complete problem by a recent
result of Bang-Jensen et al. ([2], Theorem 11). The proof of Bang-Jensen et al.
can be easily modified to prove the following.

Theorem 6. The recognition of perfect digraphs is co-NP-complete.

Proof. We reduce 3-SAT to non-perfect digraph recognition. We consider an
instance of 3-SAT

F =
m∧

i=1

Ci =
m∧

i=1

(li1 ∨ li2 ∨ li3) with lij ∈ {x1, . . . , xn, x1, . . . , xn}.

For each variable xk we construct a variable gadget V G(k) and for each clause
Ci a clause gadget CG(i), as shown in Fig. 1. These gadgets are very similar to
those used in Theorem 11 of the paper of Bang-Jensen et al. [2], only the edges
(which are redundant for correctness of the reduction) are missing here. The
rest of the construction is the same as in [2]: We form a chain of variable gadgets
by introducing vertices b0 and an+1 and the arcs (bk, ak+1) for k ∈ {0, 1, . . . , n},
and a chain of clause gadgets by introducing the vertices d0 and cm+1 and the
arcs (di, ci+1) for i ∈ {0, 1, . . . ,m}. We close the two chains to form a ring by
introducing the arcs (an+1, d0) and (cm+1, b0). Finally, for each literal lij (which
is xk or xk) we connect the vertex lij in the clause gadget CG(i) with the vertex
lij in the variable gadget V G(k) by an edge. This completes the construction
of the digraph D(F ).

bkak

xk

xk

ci di

li1

li2

li3

Figure 1: Variable gadget V G(k) (left) and clause gadget CG(i) (right)
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We remark that S(D(F )) is a forest of stars, thus bipartite and hence perfect,
so by Theorem 2 testing whether D(F ) is not perfect and testing whether D(F )
has an induced directed cycle of length at least 3 is the same. We have to show
that D(F ) has an induced directed cycle if and only if F is satisfiable. Let
(z1, . . . , zn) ∈ {0, 1}n be an assignment satisfying F . Then the directed path
through all yk with

yk =
{
xk if zk = 1
xk if zk = 0

can be extended to an induced directed cycle through the clause gadgets by
the construction, since in every clause there is a literal yk the adjacent edge of
which is only connected to the vertex yk in V G(k). On the other hand, if there
is an induced directed cycle through the ring using the literals (y1, . . . , yn) in
the variable gadgets, then (z1, . . . , zn) with zk = 1 if yk = xk and zk = 0 if
yk = xk is an assignment satisfying F , since for every clause some literal yk

that lies on the cycle is satisfied.

Note that the perfectness of digraphs does not behave as well as the perfect-
ness of graphs in a second aspect: there is no analogon to Lovasz’ Weak Perfect
Graph Theorem [10]. A digraph may be perfect but its complement may be not
perfect. An easy instance of this type is the directed 4-cycle ~C4, which is not
perfect, and its complement H, which is perfect.

Open question 7. Are there any interesting special classes of perfect digraphs
with efficient algorithms for problems different from coloring?
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