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Abstract

In the A-coloring game, two players, Alice and Bob, color uncolored ver-
tices of a given uncolored digraph D with colors from a given color set C,
so that, at any time a vertex is colored, its color has to be different from
the colors of its previously colored in-neighbors. Alice begins. The players
move alternately, where a move of Bob consists in coloring a vertex, and
a move of Alice in coloring a vertex or missing the turn . The game ends
when Bob is unable to move. Alice wins if every vertex is colored at the
end, otherwise Bob wins. This game is a variant of a graph coloring game
proposed by Bodlaender (1991). The A-game chromatic number of D is
the smallest cardinality of a color set C, so that Alice has a winning strat-
egy for the game played on D with C. A digraph is A-perfect if, for any
induced subdigraph H of D, the A-game chromatic number of H equals
the size of the largest symmetric clique of H . We characterize some basic
classes of A-perfect digraphs, in particular all A-perfect semiorientations
of paths and cycles. This gives us, as corollaries, similar results for other
games, in particular concerning the digraph version of the usual game
chromatic number.
Key words: dichromatic number, digraph, game chromatic number,
game-perfectness, perfect graph, quasi coloring, path, cycle

1 Introduction

Maker-breaker games on graphs are a rich subclass of the class of combinatorial
games where the games define interesting graph parameters. Unlike prototypi-
cal combinatorial games like nim, these games behave even on relatively small
graphs in a very complex way. In this paper, we will consider maker-breaker
coloring games on directed graphs (digraphs).

Maker-breaker graph coloring games on undirected graphs have been ex-
amined since the introductory paper of Bodlaender [11]. Given a finite graph
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G = (V, E) and a finite color set C, two players, Alice (A) and Bob (B), alter-
nately color a vertex of G with a color from C, so that adjacent vertices receive
distinct colors. If such a move is not possible, the game ends. Alice wins if every
vertex is colored at the end, otherwise Bob wins. So Alice is the maker who
tries to create a proper coloring, Bob, the breaker, tries to make proper coloring
impossible. Since for |C| ≥ |V | Alice always wins, there is a smallest number n,
so that Alice has a winning strategy for the game played on a given graph G
with color set C and n = |C|. This number n is called the game chromatic
number χS(G) of G.

Even in very easy examples, e.g. if we consider the path P4 with 4 vertices,
it turns out that the game chromatic number depends on which player has the
first move. Thus in order to make the game well-defined we have to fix the
player moving first. We will also fix, whether either Alice or Bob or none of
them has the right to miss one or several turns. This gives us six different games
S = [X, Y ] with X ∈ {A, B} moving first and Y ∈ {A, B,−} having the right to
miss one or several turns, where “−” denotes “none of the players”. We denote
S := {A, B} × {A, B,−}. Many papers on graph coloring games concentrate
on the game [A,−], which is denoted by g. With a slight abuse of notation, we
further define the following abbreviations:

A := [A, A], B := [B, B], gA := g := [A,−], gB := [B,−]. (1)

Then our notation matches with most of the literature on graph coloring games.
The game chromatic numbers of a graph G for the different games, as proved
in [1], are related in the following way.

χA(G) ≤

{

χg(G) ≤ χ[A,B](G)
χ[B,A](G) ≤ χgB

(G)

}

≤ χB(G). (2)

Determining upper and lower bounds for the game chromatic numbers of sev-
eral classes of graphs has received considerable attention by a large number of
authors during the last two decades. Some milestones are the papers of Faigle
et al. [18], Zhu [29], Kierstead [22], Cai and Zhu [14], He et al. [19], Erdös et
al. [16], Sidorowicz [26], Bartnicki et al. [9], Bohman et al. [12], Wu and Zhu [27],
Zhu [30], and Esperet and Zhu [17], not mentioning the many papers on relaxed
or asymmetric variants of the game.

The clique number ω(G) of a graph G is the size of the largest complete
subgraph of G. Obviously, ω(G) ≤ χS(G) for any game S, since the vertices of
a complete graph have to be colored in distinct colors. Motivated by a question
of Maria Chudnovsky, in [4] the notion of game-perfectness was introduced:
For a game S, a graph G is S-perfect if, for any induced subgraph H of G,
ω(H) = χS(G). In [6] the classes of B-, [A, B]- resp. g-perfect graphs are
completely characterized. The characterization of the classes of A-, [B, A]- resp.
gB-perfect graphs is still open, some partial results are given in [4, 6].

Game-perfectness is a special case of perfectness of a graph. Recall that a
graph G is perfect if, for any induced subgraph H of G, the clique number of
H equals the chromatic number χ(H). The chromatic number is the smallest
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number of colors in a proper coloring, i.e. the smallest n for which Alice would
have a winning strategy with n colors in a one-player setting (without malicious
adversary Bob). Note that ω(H) ≤ χ(H) ≤ χS(H) for any S ∈ S, therefore
S-perfect graphs are perfect in particular. Two of the most prominent among
the many results in the literature concerning perfect graphs are the Weak Per-
fect Graph Theorem by Lovasz [23] and the Strong Perfect Graph Theorem by
Chudnovsky et al. [15]; the latter gives a complete characterization of perfect
graph that was conjectured by Berge [10] many years before.

Recently, the concept of perfectness has been generalized from graphs to
digraphs with Hochstättler [7], using a natural generalization of coloring that
defines the parameter dichromatic number introduced by Neumann-Lara [25].
In this kind of coloring the color classes do not need to be independent sets,
however, they must induce acyclic digraphs, i.e. digraphs that do not contain
directed cycles. This kind of coloring was reinvented by different authors and
has several names, e.g. Jacob and Meyniel [20] call it quasi coloring. Bokal et
al. [13] prove that this kind of coloring is NP-complete even for two colors.
In [7] a complete characterization of perfect digraphs is given, using the Strong
Perfect Graph Theorem [15].

Theorem 1 ([7, 15]). A digraph is perfect if and only if it does neither contain

filled odd holes nor filled odd antiholes nor directed cycles ~Cn, n ≥ 3, as induced
subdigraphs.

In this paper we combine the ideas of digraph coloring and the game-theoretic
approach of game-perfectness. This will lead to the concept of S-perfect di-
graphs. Although the notions are not yet explained, we state the main question
addressed in this paper.

Problem 2. Characterize the class of A-perfect digraphs.

A partial answer to this question will be given. In particular we determine
all A-perfect digraphs where the underlying graph is a path or a cycle.

The paper is structured as follows. In Section 2 we will define the notion of
digraphs we use and explain in which way it generalizes the notion of graphs,
we explain the maker-breaker digraph coloring game and introduce the con-
cept of game-perfect digraphs. The next sections are devoted to characterize
game-perfect paths and cycles. The proofs are based on some extensive case
distinctions which reduce the problem to finding pure winning strategies for one
of the players.

2 Preliminaries

A digraph D is a pair (V, A) with a finite set V of vertices and a set A ⊆ {(v, w) ∈
V × V | v 6= w} of arcs. An edge of D is a set {(v, w), (w, v)} ⊆ A, i.e. a set of
two opposite arcs. A single arc is an arc (v, w) ∈ A, so that (w, v) /∈ A. The
symmetric part S(D) of D = (V, A) is the digraph (V, AS), where AS is the union
of all edges; and the oriented part O(D) of D is the digraph (V, AO), where AO
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D A’s move B’s move A’s move B’s move

Figure 1: The g-coloring game on the digraph D to the left with two colors.
After four moves, Alice wins.

is the set of all single arcs. For us, a graph is a symmetric digraph, i.e. a digraph
D with D = S(D). An orientation of a graph is a digraph D with D = O(D).
A semiorientation of a graph G = (V, AG) is a digraph D = (V, AD) in which
for any (v, w) ∈ AG at least one of the arcs (v, w) and (w, v) are in AD. A clique
of size n or a complete graph Kn is a digraph (V, {(v, w) ∈ V × V | v 6= w})
with |V | = n. The clique number ω(D) of a digraph D is the size of the largest
clique of D. For other standard notation concerning digraphs (e.g. in-degree,
out-degree, in-neighbor, out-neighbor, directed cycle) we refer to Bang-Jensen
and Gutin [8].

By considering graphs as symmetric digraphs the usual clique number resp.
chromatic number of an undirected graph coincides with the clique number resp.
dichromatic number of the respective symmetric digraph, which motivates us
to denote the dichromatic number of a digraph D also by χ(D). The respective
parameters in the game-theoretic setting can be unified in the same way. The
game we consider is the following.

We are given a digraph D = (V, E) and a color set C. Two players, Alice
and Bob, move alternately. A move consists in either coloring a vertex v ∈ V
with a color c ∈ C, so that no in-neighbor of v has been colored with c before
(the out-neighbors are neglected), or missing the turn if this is allowed for the
respective player. To make the game well-defined, we name it S-coloring game
with S ∈ S, where S has the same meaning concerning the extra rules as in the
game on undirected graphs in Section 1, and we use the same abbreviations as
in (1). The game ends if no further move is possible. Alice wins if every vertex
is colored at the end, otherwise Bob wins.

The S-game chromatic number χS(D) of D is the smallest cardinality of a
color set C, so that Alice has a winning strategy for the S-coloring game on the
digraph D. The game chromatic numbers of several classes of digraphs were
examined by a few authors [2, 3, 5, 28]. Note that the game chromatic number
of a digraph is a completely different concept from the oriented game chromatic
number introduced by Nešetřil and Sopena [24]. The digraph D is called S-nice
if ω(D) = χS(D); D is called S-perfect if every induced subdigraph of D is
S-nice.

In order to simplify the discussion of the game we can imagine that each time
a vertex v is colored every in-arc of v is deleted, since this arc does not mean
any restriction for the remaining coloring moves. See Fig. 1 for a typical play
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of the game. Note further that by the rules of the game the color classes induce
acyclic subdigraphs, therefore χ(D) ≤ χS(D) for any digraph D. Moreover, the
different versions of the game chromatic number are related in a similar way as
in (2) when G is replaced by D. In particular, B-perfect digraphs are [A, B]-
perfect, [A, B]-perfect digraphs are g-perfect, g-perfect digraphs are A-perfect,
and A-perfect digraphs are perfect digraphs.

An undirected path Pn, n ≥ 2, is a connected graph where every vertex has
in-degree 2, except for exactly two vertices of in-degree 1. We also call the graph
P1, consisting of only one vertex, an undirected path. An undirected cycle Cn,
n ≥ 3, is a connected graph where every vertex has in-degree 2. In the following,
by path resp. cycle we mean a semiorientation of an undirected path resp. cycle.
Our main results imply that, for any S ∈ S, the lists of S-perfect paths resp.
cycles are finite.

3 Basic (trivial) observations

As a warm-up we note

Proposition 3. Let S ∈ {B, gB, [B, A]}. A digraph D is S-perfect if and only
if it is an S-perfect graph.

Proof. In any S-coloring game where Bob has the right of the first move,
Bob wins the game with one color on the digraph ~P2 consisting of two vertices
linked by a single arc (which has clique number 1) if he colors the vertex with
out-degree 1 in his first move. Therefore an S-perfect digraph does not have
single arcs, thus it is a graph. �

In view of Proposition 3, in the rest of the paper we will focus on the classes
of A-, g-, resp. [A, B]-perfect digraphs, which allow for a richer structure.

We first consider digraphs with clique number 1, i.e. orientations of graphs,
which will be called simple digraphs. An in-star is a digraph with a center vertex
of in-degree n and n other vertices with in-degree 0 and no further vertices. We
observe

Proposition 4. The A-perfect (resp. g-perfect resp. [A, B]-perfect) digraphs
with clique number 1 are exactly the digraphs in which one component is an
in-star and the other components are isolated vertices.

Proof. Obviously, an in-star plus isolated vertices is S-perfect for S ∈
{A, g, [A, B]}: Alice colors the center of the in-star in the first move of the
S-coloring game with one color, and wins. We will prove that any other simple
digraph is not A-perfect, and hence, by (2), is not g- and not [A, B]-perfect. If a
simple digraph D contains two nontrivial components, it has a subdigraph on 4
vertices with two nonadjacent arcs, which is not A-nice (cf. Lemma 5, case F4),
implying that D is not A-perfect. Now let D be a connected simple digraph
which is not an in-star. We will prove that D is not A-nice (and therefore, not
A-perfect).
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Since D is not an in-star but connected, D has at least two vertices with
in-degree of at least 1. Let v and w be such vertices. A winning strategy for Bob
with 1 color is the following. If Alice, in her first move, colors a vertex z with
non-zero out-degree, Bob wins, since an out-neighbor of z cannot be colored
any more. Otherwise, we may assume w.l.o.g. that w has not been colored by
Alice. Then Bob colors an in-neighbor of w, so that w cannot be colored any
more. Thus he wins in any case. �

In the rest of the paper we will discuss some classes of digraphs with clique
number 2.

4 Paths

Every subdigraph of a path is a forest of paths. Therefore we consider the
hereditary class of forests of paths, i.e. of those digraphs each component of
which is a path. In all figures, a straight line between two vertices v and w
represents the two arcs (v, w) and (w, v). A single arc (v, w) is depicted by an
arrow directed from v to w.

Lemma 5. If a digraph D contains any of the forbidden configurations F3,1,
F3,2, F4, F5,1, F5,2, F7,1, F7,2, or F8 depicted in Fig. 2 as induced subdigraph,
then D is not A-perfect.

Proof. We verify that Bob has a winning strategy in the A-coloring game
with ω(F ) colors on each of the forbidden configurations F of Fig. 2. We refer
to the names of the vertices in the figure.

F3,1: In order not to create a win for Bob, Alice must miss her first turn or
color c. But then Bob colors a and wins with one color, since b cannot be
colored feasibly any more.

F3,2: In order not to create a win for Bob, Alice must miss her first turn or
color a or c. But then Bob colors b and wins with one color, since the
remaining uncolored vertex cannot be colored any more.

F4: If Alice misses her turn or colors c or d, Bob colors a, and b cannot be
colored any more. Otherwise, Bob colors c, so that d cannot be colored
feasibly any more with one color.

F5,1, F5,2: Now we consider the game with two colors. If Alice colors a vertex
with color 1, then Bob can color a vertex at distance 2 with color 2, which
results in a win for him. If Alice misses her first turn, Bob colors c with
color 1. In his second move he will color either a or e with color 2 next to
an uncolored vertex. Alice can destroy only one of the two possibilities in
her move. Thus Bob will win.

F7,1, F7,2: This is similar to the previous case: If Alice colors a vertex with
color 1, Bob can color a vertex at distance 2 with color 2. This results in
a win for him if he obeys the rule that, if Alice colors e, he has to color g.
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a b c

(a) The forbidden configuration F3,1

a b c

(b) The forbidden configuration F3,2

a b c d

(c) The forbidden configuration F4

a b c d e

(d) The forbidden configuration F5,1

a b c d e

(e) The forbidden configuration F5,2

a b c d e f g

(f) The forbidden configuration F7,1

a b c d e f g

(g) The forbidden configuration F7,2

a b c d e f g h

(h) The forbidden configuration F8

Figure 2: Some forbidden configurations for A-perfectness
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If Alice misses her first turn, Bob colors the central vertex d with color 1.
Alice, in her next move, cannot preclude Bob from coloring either vertex
b or vertex f with color 2 in his second move. Again, Bob wins.

F8: If Alice colors a vertex with color 1, Bob can color a vertex at distance
2 with color 2, so that he wins. (In case Alice colors d resp. e, he has to
color f resp. c.) If Alice misses her turn, Bob colors c with color 1. In his
next move he will either color a or e with color 2, in order to win. Alice
can avoid only one of these situations by her next move.

Thus the forbidden configurations are not A-perfect. Then, by the definition
of A-perfectness, D is not A-perfect. �

Lemma 6. Let P be a path with n ≥ 10 vertices. Then P is not A-perfect.
Moreover, P contains a forbidden configuration as an induced subdigraph.

Proof. Assume P is A-perfect. If P contains 3 single arcs, P has an induced
F3,1, F3,2 or F4. So P has at most 2 single arcs. If there are 2 single arcs then
these are adjacent or at distance 1, otherwise P has an induced F4. Since the
length of the path is n − 1 ≥ 9, P contains either an induced P5 = F5,2, which
is a forbidden configuration, or P is of the form v1v2v3v4v5v6v7v8v9v10, where
v1v2v3v4 and v7v8v9v10 are (undirected) P4’s, v5v6 is an edge, and between v4

and v5 resp. between v6 and v7 there are single arcs. If there was an arc (v5, v4)
or an arc (v6, v7), P would contain F5,1. So there are arcs (v4, v5) and (v7, v6).
But then P contains F7,2, which is a contradiction. �

Lemma 7. For each of the paths Qi (i = 0, . . . , 47) from Fig. 3, Alice wins the
A-coloring game played on Qi with ω(Qi) colors.

Proof. We describe winning strategies for Alice in the A-coloring game.
Remark that in most cases Alice does not need to make use of her right to miss
the first turn, furthermore these strategies are also winning strategies in the g-
resp. [A, B]-coloring game. In some cases we note even two strategies, here Alice
wins no matter which player begins, both situations will be used later. We refer
to the names of the vertices in Fig. 3.

Q0: Alice obviously wins with one color.

Q1: Alice colors b and wins with one color.

Q2: Here, Alice always wins with 2 colors.

Q3, Q4, Q5, Q6: Alice misses her first turn. No matter how Bob plays, after
her second move she can assure that the central vertex b is colored, hence
she will win.

Second (alternative) strategy: If Alice, in her first move, colors the central
vertex b, she will win.

8



a b c d a b c d a b c d a b c d a b c d

a b c d a b c d a b c d e a b c d e a b c d e

a b c d e a b c d e a b c d e a b c d e

a b c d e a b c d e a b c d e f a b c d e f

a b c d e f a b c d e f a b c d e f

a b c d e f a b c d e f a b c d e f

a b c d e f a b c d e f a b c d e f

a b c d e f g a b c d e f g a b c d e f g

a b c d e f g a b c d e f g a b c d e f g

a b c d e f g a b c d e f g h a b c d e f g h

a b c d e f g h a b c d e f g h

a b c d e f g h i a b c d e f g h i

a b a b a b c a b c a b c a b c a b c d

Q1Q0 = P1 Q3Q2 = P2 Q4 Q5 Q7Q6 = P3

Q8 Q9 Q10 Q11 Q12

Q13 Q14 = P4 Q15 Q16 Q17

Q18 Q19 Q20 Q21

Q22 Q23 Q24 Q25

Q26 Q27 Q28

Q29 Q30 Q31

Q32 Q33 Q34

Q35 Q36 Q37

Q38 Q39 Q40

Q41 Q42 Q43

Q44 Q45

Q46 Q47

Figure 3: The 48 A-perfect paths
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Q7, Q8, Q9, Q10, Q11, Q12, Q13, Q14: Alice’s strategy is the same as in the
undirected case (Q14): she misses her first turn, then she colors a vertex
at distance 2 to the vertex Bob has colored in the same color.

Second strategy for Q7, Q13: Alice colors c and wins.

Second strategy for Q9, Q10, Q11: Alice colors d and reduces the digraph
to Q4, Q5, or Q6.

Q15: Alice misses her first turn. If Bob then colors a with color 1, she colors
d with color 2. If Bob colors b resp. d, then she colors d resp. b with the
same color. If Bob colors c resp. e, she colors e resp. c with the same color.
In all cases she will win now. (Note that vertex c, if colored, is no danger
for vertex b.)

Q16: Alice colors e and reduces the digraph to the configuration Q13. On this
digraph she has a winning strategy even if she misses her first turn, which
means if Bob plays first, as seen above.

Q17: Alice colors c and reduces the digraph to 2P2.

Q18: Alice colors e and reduces the digraph to Q13.

Q19: Alice colors b and reduces the digraph essentially to Q4.

Q20: Alice colors d and reduces the digraph essentially to P3.

Q21: Alice’s strategy is the same as for Q15 with the following permutation of
vertices: (a, e)(b, d). In particular she wins on this configuration even if
she is the second player.

Q22: Alice colors d and reduces the digraph essentially to P3.

Q23: Alice colors e and reduces the digraph to P4.

Q24: Alice colors e and reduces the digraph to a partially colored P2 and an
uncolored P4.

Q25, Q26: In her first move, Alice colors b with color 1. If Bob then colors a
or c, Alice replies by coloring e with color 2. If Bob colors d resp. f , Alice
colors f resp. d with the same color. In case Bob colors e, Alice answers
by coloring d with the other color. After that the possible colors for the
uncolored vertices are fixed (except possibly for a P1 consisting of f in
case of Q25).

Q27: Alice colors e and reduces the digraph to P4 ∪ P1.

Q28: Alice colors d and reduces the digraph to a P3 (left half) and a Q5 with
one colored vertex (right half). The latter will be colored completely in
any case.

10



Q29: Alice colors f and reduces the digraph to Q21. For Q21, Alice has a
winning strategy when playing as second player, as seen above.

Q30: Alice, in her first move, colors e. No matter what Bob does, Alice can
color b or c appropriately in order to fix the coloring (except for the isolated
vertex f).

Q31: Alice colors d and reduces the digraph to a P3 and a P2.

Q32: Alice colors a with color 1. If Bob then colors b or c, Alice colors d. If
Bob colors d or e, Alice colors c. In case Bob colors f , Alice colors d with
color 2. After that Alice will win.

Q33, Q34: Alice colors e and reduces the digraph essentially to Q13, on which
Alice wins even when playing as second player as seen above.

Q35: Alice colors e and reduces the digraph to a P4 and a P2.

Q36: Alice colors d and reduces the digraph to a 2P3.

Q37: Alice colors e and reduces the digraph to an uncolored P4 and a partially
colored Q5. On the latter Alice will win in any case.

Q38: Alice colors e. In case Bob replies by coloring f , g, or d, Alice answers
by coloring b with the second color. If Bob colors c, Alice colors b with a
suitable color. If, on the other hand, Bob colors a resp. b, Alice colors c
with the same resp. the other color. Then Alice will win.

Q39: Alice colors f and reduces the digraph essentially to Q21, on which Alice
has a winning strategy as second player as seen above.

Q40: Alice colors d. Now Alice has to make b and f colored as quickly as
possible. She uses for her next move the strategy that, if Bob plays in the
right half, she answers in the right half, otherwise in the left half. In her
third move she can accomplish her goal, resulting in a win.

Q41: Alice colors b with color 1. If Bob colors a, c, or g, Alice answers by
coloring e with color 2. If Bob colors d resp. f , then Alice colors f resp.
d with the same color. In case Bob colors e, Alice colors d with the other
color. After that Alice will win.

Q42: Alice colors e and reduces the digraph to a P4 and a P3.

Q43: Alice colors e with color 1. If Bob plays in the component {a, b, c, d},
Alice answers in this component in such a way that the coloring of the
component is fixed. If Bob colors f or h, Alice colors g; if Bob colors
g, Alice colors f . She then misses her turn until Bob starts coloring the
component {a, b, c, d} and then follows her winning strategy for a P4.

11



Q44: Alice colors d. She then answers to moves of Bob in the component
{a, b, c} according to her strategy for the P3 in the same component, and
to the first move of Bob in the right component in the following way: If
Bob colors e, Alice colors g with the same color. If Bob colors f resp. h,
Alice colors h resp. f with the same color. If Bob colors g, Alice colors f
with the other color.

Q45: Alice misses her first turn. If Bob colors a or b resp. c, Alice colors c
resp. b leaving a component Q21 at the right, on which Alice has a winning
strategy as a seond player. By reasons of symmetry, a similar reasoning
holds if Bob colors f , g, or h. If, on the other hand, Bob colors d with
color 1, Alice colors b with color 1. If Bob, in his second move, colors a,
c, or e, Alice colors g with color 2. If Bob, in his second move, colors f ,
Alice colors h with the same color. If Bob, in his second move, colors g or
h, Alice colors f . The case that Bob, in his first move, colors e, is similar,
by reasons of symmetry. In any case, after Alice’s third move the coloring
will be fixed.

Q46: Alice colors e and reduces the digraph to a 2P4.

Q47: Alice colors e. Now she uses a reply-strategy: if Bob plays in the left
component {a, b, c, d}, she answers according to her strategy for the P4; if
Bob plays in the right component, she replies as follows: if Bob colors f
or g, she colors h, if Bob colors h or i, she colors g. This will result in a
win.

This completes the proof. �

Lemma 8. The configurations of Fig. 3 are exactly those paths with at most 9
vertices which do not contain any of the forbidden configurations of Fig. 2 as
induced subdigraphs.

Proof. We enumerate all paths with at most 9 vertices and check that they
contain a forbidden configuration or are one of the configurations Qi. Note that,
as in the proof of Lemma 6, we can restrict ourselves to paths with at most 2
single arcs, and if a path has two single arcs, they are adjacent or at distance
1, otherwise the path would contain a forbidden configuration F3,1, F3,2 or F4.
Furthermore, by the symmetry of paths, we may assume that, if there are one or
two single arcs, then the barycenter of these single arcs is in the “right” half of
the path. We denote the paths under consideration by an n-tuple (x1, . . . , xn),
where xi = 0, 1, 2 means that between the ith and the (i + 1)st vertex there
is an edge, a “forward” single arc (from left to right), a backward single arc,
respectively.

Using these simplifications, we distiguish four cases. First, if a path contains
no single arcs, then we have P1 = Q0, P2 = Q2, P3 = Q6, P4 = Q14, and for
n ≥ 5 the path contains an induced P5 = F5,2.

Now consider the second case: the paths with exactly one single arc. See
Table 1.
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1 Q1

2 Q1

01 Q5

02 Q4

001 Q11

002 Q12

010 Q13

020 Q13

0001 Q23

0002 is F5,1

0010 Q22

0020 Q21

00001 contains F5,2

00002 contains F5,2

00010 Q24

00020 contains F5,1

00100 Q26

00200 Q26

000001 contains F5,2

000002 contains F5,2

000010 contains F5,2

000020 contains F5,2

000100 is F7,1

000200 contains F5,1

0000001 contains F5,2

0000002 contains F5,2

0000010 contains F5,2

0000020 contains F5,2

0000100 contains F5,2

0000200 contains F5,2

0001000 contains F7,1

0002000 contains F5,1

00000001 contains F5,2

00000002 contains F5,2

00000010 contains F5,2

00000020 contains F5,2

00000100 contains F5,2

00000200 contains F5,2

00001000 contains F5,2

00002000 contains F5,2

Table 1: Case 2: Paths with exactly one single arc

We are left with the paths with exactly two single arcs. First consider those
with adjacent single arcs. In view of F3,1 and F3,2 we only have to consider
pairs of single arcs of type (1, 2). See Table 2.

12 Q3

012 Q7

0012 Q20

0120 Q17

00012 Q27

00120 Q31

000012 contains F5,2

000120 Q35

001200 Q36

0000012 contains F5,2

0000120 contains F5,2

0001200 Q42

00000012 contains F5,2

00000120 contains F5,2

00001200 contains F5,2

00012000 Q46

Table 2: Case 3: Paths with two adjacent single arcs

The last case are paths with two nonadjacent single arcs. See Table 3.
This proves the lemma. �
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101 Q9

102 Q8

201 Q10

202 Q9

0101 Q16

0102 Q15

0201 Q18

0202 Q19

00101 Q28

00102 Q25

00201 Q29

00202 Q30

01010 Q33

01020 Q32

02010 Q34

02020 Q33

000101 Q37

000102 is F7,2

000201 contains F5,1

000202 contains F5,1

001010 Q40

001020 Q41

002010 Q39

002020 Q38

0000101 contains F5,2

0000102 contains F5,2

0000201 contains F5,2

0000202 contains F5,2

0001010 Q43

0001020 contains F7,2

0002010 contains F5,1

0002020 contains F5,1

0010100 Q44

0010200 is F8

0020100 Q45

0020200 Q44

00000101 contains F5,2

00000102 contains F5,2

00000201 contains F5,2

00000202 contains F5,2

00001010 contains F5,2

00001020 contains F5,2

00002010 contains F5,2

00002020 contains F5,2

00010100 Q47

00010200 contains F7,2

00020100 contains F5,1

00020200 contains F5,1

Table 3: Case 4: Paths with two non-adjacent single arcs

14



Theorem 9. Let F be a forest of paths with components D1, D2, . . . , Dk. Then
the following statements are equivalent:

(a) F is A-perfect.

(b) F does not contain any of the forbidden configurations F3,1, F3,2, F4, F5,1,
F5,2, F7,1, F7,2, or F8 depicted in Fig. 2 as an induced subdigraph.

(c) Every component of F , except at most one, is either an undirected path P1,
P2, P3, or P4, and the remaining component is one of the 48 configurations
depicted in Fig. 3.

In particular, the only A-perfect paths are those depicted in Fig. 3.

Proof. By Lemma 5 we have (a) =⇒ (b).
Consider (b) =⇒ (c). Assume that F does not contain any forbidden config-

uration. As F4 is forbidden, every component Di (with at most one exception,
say D1) is a graph, i.e. an undirected path Pni

. Since P5 = F5,2 is forbidden,
ni ≤ 4 for all i ≥ 2. By Lemma 6 the remaining component D1 has at most 9
vertices. Therefore, by Lemma 8, D1 is one of the 48 configurations of Fig. 3.
Thus F is of the desired form.

Finally we prove (c) =⇒ (a). Assume that F is of the form as in (c). By
Lemma 7, the 48 configurations of Fig. 3 are A-nice. Every digraph consisting
of an arbitrary component C′ which is one of the digraphs of Fig. 3 and some
components which are undirected paths P1, P2, P3, or P4 is A-nice as well, as
we shall see. Indeed, a winning strategy for Alice is the following: in her first
move she plays on C′, after that she always plays in the component on which
Bob has played in his last move, in both cases according to her winning strategy
for the respective components. Playing on a component possibly includes the
use of Alice’s right to miss a turn if this is necessary according to her winning
strategy for C′ or if a component is completely colored. Note that her winning
strategies for Pj , 1 ≤ j ≤ 4, always allow her to make Bob color the first
vertex, therefore the strategy described above is feasible. Since every induced
subdigraph of F is also of the type of digraphs described in (c), F is not only
A-nice, but A-perfect. �

Corollary 10. Let F be a forest of paths with components D1, D2, . . . , Dk.
Then the following statements are equivalent:

(a) F is [A, B]-perfect

(b) F is g-perfect.

(c) F does neither contain any of the forbidden configurations F3,1, F3,2, F4,
depicted in Fig. 2, nor any of the paths Q8, Q12, Q14, depicted in Fig. 3,
as an induced subdigraph.

(d) Every component of F , except at most one, is either an undirected path P1,
P2, or P3, and the remaining component is one of the 24 configurations
Q0 — Q7, Q9 — Q11, Q13, Q16 — Q20, Q22, Q28, Q31, Q33, Q34, Q36,
Q40, depicted in Fig. 3.
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Proof. By (2) we have (a) =⇒ (b).
Consider (b) =⇒ (c). Assume that F is g-perfect. By (2), F is A-perfect,

therefore, by Theorem 9, F does not contain any of the forbidden configurations
F3,1, F3,2, and F4. Furthermore, on the paths Q8, Q12, and Q14, Bob has the
following winning strategy in the g-coloring game with 2 colors. After Alice has
colored a vertex, Bob colors the vertex at distance 2 with a different color. This
will lead to a win for him.

Consider (c) =⇒ (d). If F does not contain any of the six in (c) mentioned
configurations, it does, in particular, not contain any of the configurations of
Fig. 2 as induced subdigraphs, since P4 = Q14 is contained in Fi,j with i ∈ {5, 7}
and j ∈ {1, 2}, and Q8 is contained in F8. Therefore, by Theorem 9 and since
P4 is forbidden, every component of F , except of at most one, is P1, P2, or
P3, and the exceptional component is one of the 48 configurations of Fig. 3.
As the forbidden configuration Q8 is contained in Q15, Q25, Q32, and Q41, the
forbidden configuration Q12 is contained in Q21, Q26, Q29, Q30, Q38, Q39, Q44,
and Q45, and the forbidden configuration Q14 is contained in Q23, Q24, Q27,
Q35, Q37, Q42, Q43, Q46, and Q47, only the 24 configurations mentioned in (d)
are allowed.

Finally, consider (d) =⇒ (a). First note that the 24 configurations mentioned
in (d) are [A, B]-nice. This has been proven in Lemma 7, cf. the remark at
the beginning of the proof. By a similar strategy on the components as in
Theorem 9, Alice wins the [A, B]-coloring gamne on F with 2 colors. Therefore
F is [A, B]-nice. Since every induced subdigraph of F is also of the type of
digraphs described in (d), F is not only [A, B]-nice, but [A, B]-perfect. �

5 Cycles and more

Lemma 11. Let C be a cycle with n ≥ 7 vertices. Then C is not A-perfect.

Proof. Assume C is A-perfect. If C has three single arcs, then it contains a
forbidden configuration F3,1, F3,2, or F4 as induced subdigraph. So C has at
most 2 single arcs, and if there are two, then these are adjacent or at distance 1.
There are remaining m ≥ n− 3 ≥ 4 edges, which form a (forbidden) P5 = F5,2,
a contradiction. �

Lemma 12. For each of the cycles Oi (i = 1, . . . , 8) from Fig. 4, Bob wins the
A-coloring game played on Oi with ω(Oi) colors.

Proof. We refer to the names of the vertices in Fig. 4. A winning strategy for
Bob for the Oi is as follows.

O1: Here, we play with one color. In order not to loose directly, Alice has to
miss her turn or to color c. But then Bob colors a and wins, since b cannot
be colored any more.

O2: The coloring of any vertex results in a win for Bob.
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O5 O6 O7
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b c

d

ef

aa a

a a a a

Figure 4: 8 forbidden cycles

O3: In the following configurations we play with 2 colors. If Alice colors a,
Bob colors c. If Alice colors b or c with the first color, Bob colors a with
the second color. If Alice misses her turn, Bob colors a. In all cases he
will win.

O4: Coloring b results in a direct win for Bob. If Alice colors a or c or misses
her turn, Bob colors b.

O5: Since O5 = C5 is not perfect, it is in particular not A-perfect.

O6: If Alice colors a vertex with color 1, Bob colors a vertex at distance 2 with
color 2 with the following restriction: if Alice colors c, Bob colors e. If
Alice misses her turn, Bob colors b. In both cases, Bob will win, in the
second case by the same reason by which an undirected 5-cycle cannot be
colored with 2 colors.

O7: If Alice colors a resp. d with color 1, Bob colors d resp. a with color 2. If
Alice colors b or c with color 1, Bob colors e with color 2. If Alice colors
e with color 1, Bob colors b with color 2. If Alice misses her turn, Bob
colors e with color 1. In his next move he will either color b with color 2
and leave a uncolored or color c with color 2 and leave d uncolored. Alice,
in her intermediate move, cannot preclude Bob from doing so.

O8: If Alice colors a with color 1, Bob colors e with color 2 and wins directly.
In case Alice colors b with color 1, Bob colors e with color 1. After Alice’s
next move, Bob can either color c with color 2 and leave d uncolored (and
thus uncolorable) or color a with color 2 and leave f uncolored (and thus
uncolorable). The cases that Alice colors c, d, e, or f are in line by the
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Figure 5: The 14 A-perfect semiorientations of cycles

symmetry of the digraph. If Alice misses her first turn, Bob colors a with
color 1. In his next move he will color a vertex at distance 2 with color
2, leaving an uncolored vertex inbetween. Alice cannot prevent him from
doing so. Note that even if Alice colors d with color 2, Bob can color e
with color 2. So Bob wins in any case.

This proves the lemma. �

Lemma 13. For each of the cycles Oi (i = 9, . . . , 22) from Fig. 5, Alice wins
the A-coloring game played on Oi with ω(Oi) = 2 colors.

Proof. We refer to the names of the vertices in Fig. 5. A winning strategy for
Alice for the Oi is as follows.

O9: We play with two colors. Alice colors b and wins.

O10: Alice colors c and wins.

O11: Obviously, the K3 can be colored with three colors.

O12, O13, O14, O15, O16: In the following we play again with two colors. Alice
misses her first turn. If Bob colors a vertex, Alice colors the unique vertex
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at distance 2 with the same color. Then, in any case, the two remaining
vertices can be colored with the second color.

Second strategy for O12, O13: Alice colors a vertex with minimum out-
degree in her first move. If then the vertex at distance 2 is not colored by
Bob, Alice colors it in her second move. In any case she wins.

O17, O18: Alice colors e and reduces the digraph to a path Q13 or P4 for which
she has a winning strategy even as the second player, see Appendix B.

O19: Alice colors c. If Bob colors a resp. b, Alice colors e with a different resp.
the same color. If Bob colors d resp. e, Alice colors a with the same resp.
the other color. In any case, Alice will win thereafter.

O20: Alice colors e. By reasons of symmetry, we may assume that Bob colors
a resp. b. Then Alice colors c with the same resp. the other color. After
that the coloring is fixed.

O21: Alice colors f . If Bob then colors a or c, Alice colors d with the other
color. If Bob colors b resp. d, Alice colors d resp. b with the same color as
Bob. If Bob colors colors e, Alice colors c with the same color.

O22: Alice misses her first turn. Then she uses a copy cat strategy: In case
Bob colors a vertex on the left side, Alice colors the corresponding vertex
on the right side with the other color, and vice versa. Playing this way,
she will win.

This proves the lemma. �

Lemma 14. The configurations of Fig. 4 and Fig. 5 are exactly those cycles
with at most 6 vertices which do not contain any of the forbidden configurations
F3,1, F3,2, F4, resp. F5,1 of Fig. 2 as induced subdigraphs.

Proof. Let C be an n-cycle with at most 6 vertices. The undirected cycles C3,
C4, C5, resp. C6, are O11, O16, O5, resp. contain a forbidden P5 = F5,2. So we
only have to consider cycles with at least one single arc. We encode the cycle,
assuming a fixed orientation and starting vertex, by an n-tuple (x1, . . . , xn),
where xi = 1 denotes a forward single arc, xi = 2 denotes a backward single
arc, and xi = 0 denotes an edge. W.l.o.g. x1 = 1. We list all such tuples with
the following restrictions. For n ≥ 4, if there are three (cyclically!) consecutive
single arcs, then the cycle contains a forbidden F3,1 or F3,2. So we leave all
tuples with three consecutive single arcs away. Furthermore, if n = 6, we may
assume that x4 = 0, otherwise the cycle contains a forbidden F4.

The restricted listing is displayed in Table 4.
This proves the lemma. �
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100 O3

101 O10

102 O4

110 O10

111 O2

112 O1

120 O9

121 O1

122 O1

1000 O15

1001 contains F3,1

1002 contains F3,2

1010 O13

1020 O14

1100 contains F3,1

1200 O12

10000 O6

10001 contains F3,1

10002 contains F3,2

10010 O19

10020 O7

10100 O19

10101 contains F3,1

10102 contains F3,2

10110 contains F3,1

10120 O17

10200 O20

10201 contains F3,1

10202 contains F3,2

10210 contains F3,2

10220 contains F3,1

11000 contains F3,1

11010 contains F3,1

11020 contains F3,1

12000 O18

12010 O17

12020 O17

100000 contains F5,2

100001 contains F5,2

100002 contains F5,2

100010 contains F5,1

100020 contains F5,1

101000 contains F5,1

101001 contains F3,1

101002 contains F3,2

101010 O8

101020 O21

102000 O22

102001 contains F3,1

102002 contains F3,2

102010 O21

102020 O21

110000 contains F3,1

110010 contains F3,1

110020 contains F3,1

120000 contains F5,2

120010 contains F4

120020 contains F4

Table 4: All cycles relevant for Lemma 14.
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Theorem 15. Let C be a cycle. C is A-perfect if, and only if, C is one of the
14 configurations of Fig. 5.

Proof. By Lemma 14, there are exactly 22 cycles with at most 6 vertices
which do not contain any of the forbidden configurations F3,1, F3,2, F4, resp.
F5,1 as induced subdigraphs. These cycles are those of Figs. 4 and 5. Among
these cycles, there are 8 cycles (see Fig. 4) which are not A-nice, by Lemma 12.
By Lemma 13, the 14 cycles of Fig. 5 are A-nice. Since their proper induced
digraphs are forests of paths satisfying the condition of Theorem 9 (c), these
cycles are A-perfect. By Lemma 11, cycles with more than 6 vertices are not
A-perfect, therefore the list in Fig. 5 is complete. �

Corollary 16. Let C be a cycle. C is g-perfect (resp., [A, B]-perfect) if, and
only if, C is one of the 6 configurations O9, O10, O11, O12, O13, or O17, depicted
in Fig. 5.

Proof. The 6 configurations are [A, B]-nice, cf. the proof of Lemma 13, in
particular the second strategy for O12 resp. O13. The remaining 8 configurations
are neither g- nor [A, B]-perfect, since O20, O21 and O22 contain the forbidden
path Q8, O18 contains Q14, and O19 conatins Q12, and for O14, O15 resp. O16

Bob has the following winning strategy in the g-coloring game with 2 colors.
After Alice has colored a vertex with color 1, Bob colors a vertex at distance 2
with color 2. �

We now consider semiorientations of complete graphs with clique number 2.
Fig. 6 depicts all semiorientations of the complete graph K3 with clique number
of at most 2. We conclude

Corollary 17. The only A-perfect (resp. g-perfect, resp. [A, B]-perfect) semior-
ientations of K3 with clique number of at most 2 are O9 and O10.

O1 O2 O3 O4 O9 O10

Figure 6: Semiorientations of K3

Theorem 18. The only A-perfect semiorientation of K4 with clique number of

at most 2 is ~C4, the complement of the directed 4-cycle (see Fig. 7).

Proof. Let D be a semiorientation of K4 with vertices v1, v2, v3, v4. In case D
has at most one edge, D contains an orientation of a K3 (i.e. O1 or O2), which
is not A-perfect. If D has two adjacent edges, either D contains a O3, which
is not A-perfect, or D has clique number at least 3. So we may assume that D
contains the edges v1v2 and v3v4 and no further edges. W.l.o.g. the arc between
v1 and v3 is directed as (v1, v3). Since the subdigraph on the vertices v1, v3, v4
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v v

v v

1 2

4 3

Figure 7: ~C4

may not be O4, which is not A-perfect, the arc between v1 and v4 is directed
as (v4, v1). With the same arguments concerning the sets of vertices {v1, v2, v4}
resp. {v2, v3, v4} one finds the orientation of the other arcs that are (v2, v4) resp.
(v3, v2).

A winning strategy for Alice on ~C4 is the following: She misses her first turn.
Then she colors the vertex which is connected by an edge to the vertex Bob has
colored. After her move the coloring is fixed and she will win. Alice also wins

on every proper induced subdigraph of ~C4 as follows from Theorem 17. �

Theorem 19. For n ≥ 4, there is no semiorientation with clique number 2 of
Kn that is g-perfect (resp. [A, B]-perfect).

Proof. Obviously, it is sufficient to prove the theorem for n = 4. In view
of Theorem 18, it is sufficient to describe a winning strategy for the g-coloring

game with 2 colors on the digraph ~C4 depicted in Fig. 7. If Alice colors a vertex
vi with the first color, then vi has exactly one single arc of the form (vi, vj).
Bob colors vj with the second color. Then the vertex joined with vi by an edge
cannot be colored any more. This completes the proof. �

Theorem 20. For n ≥ 5, there is no semiorientation with clique number 2 of
Kn that is A-perfect.

Proof. Obviously, it is sufficient to prove the theorem for n = 5. Let D
be a semiorientation of K5 with vertices v1, v2, v3, v4, v5. Assume that D is
A-perfect and has clique number 2. By Theorem 18, the subdigraph on the
vertices v1, v2, v3, v4 must be the digraph of Fig. 7. Again, by Theorem 18 the
subdigraph on the vertices v1, v5, v3, v4 must be isomorphic to the digraph of
Fig. 7, in particular there must be an edge v1v5. But then the digraph induced by
v1, v2, v5 is either an undirected triangle (which contradicts the precondition that
D has clique number 2) or O3 (which is not A-perfect, again a contradiction). �

22



6 Open problems

By a previous result [6], the class of g-perfect graphs is exactly the class of
[A, B]-perfect graphs. In view of this, Corollary 10 and Corollary 16 suggest
the following.

Conjecture 21. For any digraph D, D is g-perfect if and only if D is [A, B]-
perfect.

Note that in spite of this there are digraphs D with χg(D) 6= χ[A,B](D) (e.g.
P4 ∪ P1).

In Fig. 4, 8 forbidden cycles are depicted. These are minimal forbidden
configurations, i.e. they do not contain other forbidden configurations as proper
induced subdigraphs. Together with the 7 forbidden paths F3,1, F3,2, F5,1, F5,2,
F7,1, F7,2, and F8, and the non-connected forbidden configuration F4, so far we
have found 16 minimal forbidden configurations for A-perfectness of digraphs.
There are many more minimal forbidden configurations. E.g., from the results
in [4] we conclude that the chair (a tree with 5 vertices that is neither a path
nor a star) is such a minimal forbidden configuration, as well as some of its
semiorientations.

The next step in order to complete the list of minimal forbidden configura-
tions for A-perfectness would be to consider forests in general, instead of forests
of paths. By Lemma 6 we have that a tree of diameter d ≥ 9 is not A-perfect.
However, a lot of trees would have to be examined in order to determine the
forbidden configurations. Note that the number of A-perfect trees is infinite
since, for example, every in-star is A-perfect.

Conjecture 22. The number of minimal forbidden trees is finite.

This conjecture is in contrast to the fact that there are infinitely many mini-
mal forbidden configurations in total, since every odd antihole (the complement
of a cycle of odd length k ≥ 5) is a minimal forbidden configuration, as remarked
in [6].

Problem 23. Give a characterization of A-perfect semiorientations of forests
by a set of forbidden induced subdigraphs.

In [4], the following theorem was proved:

Theorem 24. A graph G with ω(G) ≤ 2 is A-perfect if, and only if, every
component of G is either a singleton K1 or a complete bipartite graph Km,n or
a complete bipartite graph Km,n − e in which one edge e is missing (for some
m, n).

Problem 25. Give a characterization of A-perfect digraphs with clique number
2 by a set of forbidden induced subdigraphs.

It is clear that every component but one of an A-perfect digraph with clique
number 2 must be a bipartite graph of the form as described in Theorem 24.
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Problem 26. Give a characterization of A-perfect graphs by a set of forbidden
induced subgraphs.

Some partial results for Problem 26 are given in [4, 6]. Problems 23, 25
resp. 26 are intermediate steps to solve and special cases of Problem 2. In view
of our results, maybe easier to attack might be the following.

Problem 27. Give a characterization of [A, B]- resp. g-perfect digraphs by a
set of forbidden induced subdigraphs.

Problem 27 has been solved in the case of undirected graphs [6].
In the weak digraph coloring game defined by Yang and Zhu [28] the play-

ers may color a vertex in a color that does not create a monochromatic di-
rected cycle. For weak S-game chromatic numbers we might also define weak
S-perfectness of a digraph. The analog of Problem 2 is the following.

Problem 28. For S ∈ S, characterize the class of weakly S-perfect digraphs.

Note that in the case of (undirected) graphs weak S-perfectness and S-
perfectness coincide. We remark that the classes of weakly S-perfect digraphs
are richer than the classes of S-perfect digraphs, e.g. the configurations F3,1,
F3,2, F4, F5,1, F7,1, F7,2, and F8 are weakly A-perfect (but not A-perfect).

Conjecture 29. For any S ∈ S and any digraph D, if D is S-perfect, then D
is weakly S-perfect.
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