

Luis A. Goddyn Winfried Hochstättler:

Nowhere-zero flows in regular matroids and Hadwiger's Conjecture

Technical Report feu-dmo031.13 Contact: goddyn@sfu.ca winfried.hochstaettler@fernuni-hagen.de

FernUniversität in Hagen Fakultät für Mathematik und Informatik Lehrgebiet für Diskrete Mathematik und Optimierung D – 58084 Hagen

2000 Mathematics Subject Classification: 05C15, 05B35, 52C40 Keywords: nowher zero flow, regular matroid, chromatic number, flow number, total unimodularity

NOWHERE-ZERO FLOWS IN REGULAR MATROIDS AND HADWIGER'S CONJECTURE

LUIS A. GODDYN AND WINFRIED HOCHSTÄTTLER

ABSTRACT. We present a tool that shows, that the existence of a k-nowhere-zero-flow is compatible with 1-,2and 3-sums in regular matroids. As application we present a conjecture for regular matroids that is equivalent to Hadwiger's conjecture for graphs and Tuttes's 4- and 5-flow conjectures.

KEYWORDS: nowhere zero flow, regular matroid, chromatic number, flow number, total unimodularity

1. INTRODUCTION

A (real) matrix is totally unimodular (TUM) if each subdeterminant belongs to $\{0, \pm 1\}$. Totally unimodular matrices enjoy several nice properties which give them a fundamental role in combinatorial optimization and matroid theory. In this note we prove that the TUM possesses an attractive property.

Let $S \subseteq \mathbb{R}$, and let A be a real matrix. A column vector f is a S-flow of A if Af = 0 and every entry of f is a member of $\pm S$.

For any additive abelian group Γ use the notation $\Gamma^* = \Gamma \setminus \{0\}$. For a TUM A and a column vector f with entries in Γ , the product Af is a well defined column vector with entries in Γ , by interpreting $(-1)\gamma$ to be the additive inverse of γ .

It is convenient to use the language of matroids. A regular oriented matroid M is an oriented matroid that is representable M = M[A] by a TUM matrix A. Here the elements E(M) of M label the columns of A. Each (signed) cocircuit $D = (D^+, D^-)$ of M corresponds to a $\{0, \pm 1\}$ -valued vector in the row space of A and having minimal support. The +1-entries in this vector constitute the sets D^+ . It is known [19, Prop. 1.2.5] that two TUMs represent the same oriented matroid if and only if the first TUM can be converted to the second TUM by a succession of the following operations: multiplying a row by -1, adding one row to another, deleting a row of zeros, and permuting columns (with their labels).

For $S \subseteq E(M)$ we use the notation $f(S) = \sum_{e \in S} f(e)$. Let M = M[A] be the regular oriented matroid represented by the TUM A. Let $S \subseteq \Gamma$ where Γ is an abelian group. An S-flow of M is a function $f : E(M) \to S$ for which Af = 0, where f is interpreted to be a vector indexed by the column labels of A. For any $S \subseteq \Gamma$ we say that a regular matroid M has an S-flow if any of the TUMs that represent M has an S-flow. By the previous paragraph, this property of M is well defined. Since the rows of a TUM A generate the cocycle space of M = M[A], we have that a function $f : E(M) \to \Gamma$ is a flow if and only if for every signed cocircuit $D = (D^+, D^-)$ we have that f(D) = 0 where f(D) is defined to equal $f(D^+) - f(D^-)$.

Let Γ be a finite abelian group. Let M be a regular oriented matroid, and let $F \subseteq E(M)$ and let $f: F \to \Gamma$. Let $\tau_{\Gamma}(M, f)$ denote the number of Γ^* -flows of M which are extensions of f.

THEOREM 1. Let M be an regular oriented matroid. Let $F \subseteq E(M)$ and let $f, f' : F \to \Gamma$. Suppose that for every minor N of M satisfying E(N) = F, we have that f is a Γ -flow of N if and only f' is a Γ -flow of N. Then $\tau_{\Gamma}(M, f) = \tau_{\Gamma}(M, f')$.

Proof. We proceed by induction on $d = |E \setminus F|$. If d = 0, then there is nothing to prove. Otherwise let $e \in E \setminus F$. If e is a coloop of M, then $\tau_{\Gamma}(M, f) = \tau_{\Gamma}(M, f') = 0$. If e is a loop of M, then by applying induction to $M \setminus e$, we have $\tau_{\Gamma}(M, f) = \tau_{\Gamma}(M, f') = (|\Gamma| - 1)\tau_{\Gamma}(M \setminus e, f)$. Otherwise we apply Tutte's deletion/contraction formula [3] and induction to get

$$\tau_{\Gamma}(M, f') = \tau_{\Gamma}(M/e, f') - \tau_{\Gamma}(M\backslash e, f') = \tau_{\Gamma}(M/e, f) - \tau_{\Gamma}(M\backslash e, f) = \tau_{\Gamma}(M, f).$$

COROLLARY 2. Let D be a positively oriented cocircuit of a regular oriented matroid M. Let $f, f': D \to \Gamma$. Suppose that for every $S \subseteq D$ we have that f(S) = 0 if and only if f'(S) = 0. Then $\tau_{\Gamma}(M, f) = \tau_{\Gamma}(M, f')$.

Proof. Let N be a minor of M satisfying E(N) = D. Then E(N) is a disjoint union $\bigcup_i D_i$ of positively oriented cocircuits of N [9, Prop. 9.3.1]. Thus f is a Γ *-flow of N if and only if f has no zeros, and $f(D_i) = 0$ for each i. The result follows from Theorem 1.

COROLLARY 3. Let M be a regular oriented matroid which has a Γ^* -flow f.

- (1) Let $e \in E(M)$ and $\gamma \in \Gamma^*$. Then M has a Γ^* -flow f' with $f'(e) = \gamma$.
- (2) Let D be a signed cocircuit of M of cardinality three. Let $f': D \to \Gamma^*$ satisfy f'(D) = 0. Then f' extends to a Γ^* -flow of M.
- *Proof.* (1) In any minor N with $E(N) = \{e\}$, both f' and $f \upharpoonright_{\{e\}}$ are Γ^* -flows of N if and only if N is a loop. Thus by Theorem 1 $\tau_{\Gamma}(M, f') = \tau_{\Gamma}(M, f) > 0$.
 - (2) Let $S \subset D$. For any $e \in D$ we have $f'(D \setminus \{e\}) = f'(D) f'(e) = -f'(e) \neq 0$. Therefore f'(S) = 0 if and only if S = D. Since f is a Γ -flow and D is a positively oriented cocircuit of D we have f(D) = 0. Since $f(e) \neq 0$ for $e \in D$ we again have that f(S) = 0 if and only if S = D. It follows from Theorem 1 that $\tau_{\Gamma}(M, f') = \tau_{\Gamma}(M, f) > 0$.

A k-nowhere zero flow (k-NZF) of a regular oriented matroid M is an S-flow of M for $S = \{1, 2, ..., k-1\} \subset \mathbb{R}$. We frequently use the following observation of Tutte [15].

PROPOSITION 4. Let Γ be an abelian group of order k, and let $S = \{1, 2, ..., k - 1\} \subset \mathbb{R}$. Then M has a k-NZF if and only if M has a Γ^* -flow. In particular, the existence of a Γ^* -flow in M depends only on $|\Gamma|$.

A key step in the proof of Proposition 4 is the conversion of a Γ^* -flow into a k-NZF, where Γ is the group of integers modulo k. By modifying this argument, one can show that the statement of Corollary 3 remains true if each occurrence of the symbol Γ^* is replaced by the set of integers $S = \{\pm 1, \pm 2, \ldots, \pm (k-1)\}$. We omit the proof of this fact, as it is not needed in this paper.

2. Seymour decomposition

We provide here a description of Seymour's decomposition theorem for regular oriented matroids. We refer the reader to [13] for further details. We first describe three basic types of regular oriented matroids.

A oriented matroid is graphic if it can be represented by the $\{0, \pm 1\}$ -valued vertex-edge incidence matrix of a directed graph, where loops and multiple edges are allowed. Any $\{0, \pm 1\}$ -valued matrix which whose rows span the nullspace of a network matrix is called a *dual network matrix*. Dual network matrices are also TUM, and an oriented matroid is *cographic* is it is representable by a dual network matrix. The third class consists of all the all the orientations of one special regular matroid R_{10} . Every orientation of R_{10} can be represented by the matrix [I|B] where B is obtained by negating a subset of the columns of the following matrix.

(1)
$$\begin{pmatrix} + & 0 & 0 & + & - \\ - & + & 0 & 0 & + \\ + & - & + & 0 & 0 \\ 0 & + & - & + & 0 \\ 0 & 0 & + & - & + \end{bmatrix}$$

Here "+" and "-" respectively denote +1 and -1.

Let M_1 , M_2 be regular oriented matroids. If $E(M_1)$ and $E(M_2)$ are disjoint, then the 1-sum $M_1 \oplus_1 M_2$ is just the direct sum of M_1 and M_2 . The signed cocircuits of $M_1 \oplus_1 M_2$ are the signed subsets of $E(M_1) \cup E(M_2)$ which are signed cocircuits of either M_1 or M_2 . If $M_1 \cap M_2 = \{e\}$ and e is neither a loop nor a coloop in each M_i , then the 2-sum $M_1 \oplus_2 M_2$ has element set $E(M_1) \Delta E(M_2)$, where " Δ " is the symmetric difference operator. A signed cocircuit is a signed subset of $E(M_1 \oplus_2 M_2)$ that is either a signed cocircuit of M_1 or M_2 , or is a signed set of the form

(2)
$$D = (D_1^+ \Delta D_2^+, D_1^- \Delta D_2^-)$$

where each (D_i^+, D_i^-) is a signed cocircuit of M_i , and $e \in (D_1^+ \cap D_2^+) \cup (D_1^- \cap D_2^-)$. If $M_1 \cap M_2 = B$ and $B = (B^+, B^-)$ is a signed cocircuit of cardinality 3 in each M_i , then the 3-sum $M_1 \oplus_3 M_2$ has element set $E(M_1)\Delta E(M_2)$. A signed cocircuit is a signed subset of $E(M_1 \oplus_3 M_2)$ that is either a signed cocircuit of M_1 or M_2 , or a signed subset of the form (2) where each (D_i^+, D_i^-) is a signed cocircuit of M_i , with $D_1 \cap D_2 = \emptyset$ and (B^+, B^-) equals one of the following ordered pairs:

$$((D_1^+ \cap B^+) \cup (D_2^+ \cap B^+), (D_1^- \cap B^-) \cup (D_2^- \cap B^-)) ((D_1^- \cap B^+) \cup (D_2^- \cap B^+), (D_1^+ \cap B^-) \cup (D_2^+ \cap B^-)).$$

The oriented version of Seymour's decomposition theorem [13] and can be derived from [5, Theorem 6.6].

THEOREM 5. Every regular oriented matroid M can be constructed by means of repeated application of k-sums, k = 1, 2, 3, starting with oriented matroids, each of which is isomorphic to a minor of M and each of which is either graphic, cographic, or an orientation of R_{10} .

We note that Schriver [12] states an equivalent version of Theorem 5 in terms of TUMs, that requires a second representation of R_{10} in (1) due to his implicit selection of a basis.

Here is the main tool of this paper, which we employ in two subsequent applications.

THEOREM 6. Let $k \ge 2$ be an integer and let \mathcal{M} be a set of regular oriented matroids that is closed under minors. If every graphic and cographic member of \mathcal{M} has a k-NZF, then every matroid in \mathcal{M} has a k-NZF.

Proof. Let $M \in \mathcal{M}$. We proceed by induction on |E(M)|. If M is an orientation of R_{10} , then M has a 2-NZF since R_{10} is a disjoint union of circuits, and each circuit is the support of a $\{0, \pm 1\}$ -flow in M. If M is graphic or cographic, then we are done by assumption. Otherwise, by Theorem 5, M has two proper minors M_1 , $M_2 \in \mathcal{M}$. such that $M = M_1 \oplus_i M_2$, for some i = 1, 2, 3. By induction, each M_i has a k-NZF. Thus by Proposition 4, both minors have a Γ^* -flow where Γ is any fixed group of order k. By Corollary 3, we may assume that these Γ^* -flows coincide on $M_1 \cap M_2$. Hence the union of these functions is a well defined Γ^* -flow on M and we are done by another application of Proposition 4.

3. TUTTE'S FLOW CONJECTURES AND HADWIGER'S CONJECTURE

In this section we will present a conjecture that unifies two of Tutte's Flow Conjectures and Hadwiger's Conjecture on graph colorings.

CONJECTURE 7 (H(k)[4]). If a simple graph is not k-colorable, then it must have a K_{k+1} -minor.

While H(1) and H(2) are trivial, Hadwiger proved his conjecture for k = 3 and pointed out that Klaus Wagner proved that H(4) is equivalent to the Four Color Theorem [18, 2, 10]. Robertson, Seymour and Thomas [11] reduced H(5) to the Four Color Theorem. The conjecture remains open for $k \ge 6$.

Tutte [15] pointed out that the Four Color Theorem is equivalent to the statement that every planar graph admits an 4-NZ-flow. Generalizing this to arbitrary graphs he conjectured that

CONJECTURE 8 (Tutte's Flow Conjecture [15]). There is a finite number $k \in \mathbb{N}$ such that every bridgeless graph admits a k-NZ-flow.

and moreover that

CONJECTURE 9 (Tutte's Five Flow Conjecture [15]). Every bridgeless graph admits a 5-NZ-flow.

Note that the latter is best possible as the Petersen graph does not admit a 4-NZ-flow. Conjecture 8 has been proven independently by Kilpatrick [7] and Jaeger [6] with k = 8 and improved to k = 6 by Seymour [14]. Conjecture 9 has a sibling which is a more direct generalization of the Four Color Theorem.

CONJECTURE 10 (Tutte's Four Flow Conjecture [16, 17]). Every graph without a Petersen-minor admits a 4-NZ-flow.

In [16, 17] Tutte cited Hadwiger's conjecture as a motivating theme and pointed out that while "Hadwiger's conjecture asserts that the only irreducible chain-group which is graphic is the coboundary group of the complete 5-graph"

LUIS A. GODDYN AND WINFRIED HOCHSTÄTTLER

Conjecture 10 means that

"the only irreducible chain-group which is cographic is the cycle group of the Petersen graph."

The first statement refers to the case where the rows of a totally unimodular matrix A consist of a basis of signed characteristic vectors of cycles of a digraph.

Combining these we derive the following formulation in terms of regular matroids. First let us call any integer combination of the rows of A a *coflow*. Clearly, by duality resp. orthogonality, flows and coflows yield the same concept in regular matroids. Note that the existence of a k-NZ-coflow in a graph is equivalent to k-colorability [16].

CONJECTURE 11 (Tutte's Four Flow Conjecture, matroid version). A regular matroid that does not admit a 4-NZ-flow has either a minor isomorphic to the cographic matroid of the K_5 or a minor isomorphic to the graphic matroid of the Petersen graph.

Equivalently, we have

CONJECTURE 12 (Hadwigers's Conjecture for regular matroids and k = 4). A regular matroid that is not 4-colorable, i.e. that does not admit a NZ-4-coflow, has a K_5 or a Petersen-dual as a minor.

Some progress concerning this Conjecture was made by Lai, Li and Poon using the Four Color Theorem

THEOREM 13 ([8]). A regular matroid that is not 4-colorable has a K_5 or a K_5 -dual as a minor.

Tutte's Five Flow Conjecture now suggests the following matroid version of Hadwiger's conjecture:

CONJECTURE 14 (Hadwigers's Conjecture for regular matroids and $k \ge 5$). If a regular matroid is not k-colorable for $k \ge 5$, then it must have a K_{k+1} -minor.

THEOREM 15. (1) Conjecture 11 is equivalent to Conjecture 10.

- (2) Conjecture 14 for k = 5 is equivalent to Conjecture 9.
- (3) Conjecture 14 for $k \ge 6$ is equivalent to Conjecture 7.
- Proof. (1) By Weiske's Theorem [4] a graphic matroid has no K_5^* -minor. Hence Conjecture 11 clearly implies Conjecture 10. The other implication is proven by induction on |E(M)|. Consider a regular matroid M, that is not 4-colorable, i.e. that does not admit a NZ-4-coflow. Clearly, M cannot be isomorphic to R_{10} . If M is graphic, it must have a K_5 -minor by the Four Color Theorem [2, 10] and an observation of Klaus Wagner [18]. If M is cographic it must have a Petersen-dual-minor by Conjecture 10. Otherwise, by Theorem 5, M has two proper minors $M_1, M_2 \in \mathcal{M}$. such that $M = M_1 \oplus_i M_2$, for some i = 1, 2, 3 and at least one of them is not 4-colorable by Theorem 6. Using induction we find either a Petersen-dual-minor or a K_5 -minor in one of the M_i and hence also in M. Thus, Conjecture 10 implies Conjecture 11.
 - (2) We proceed as in the first case using H(5) for graphs [11] instead of the Four Color Theorem.
 - (3) We proceed similar to the first case, with only a slight difference in the base case. If M is graphic, it must have a K_{k+1} -minor by Conjecture 7. M cannot be cographic by Seymour's 6-flow-theorem [14].

REMARK 16. James Oxley pointed that Theorem 15 could also be proven using splitting formulas for the Tutte polynomial (see e.g. [1]), Seymour's decomposition and the fact that the flow number as well as the chromatic number are determined by the smallest non-negative integer non-zero of certain evaluations of the Tutte polynomial.

References

- 1. Artur Andrzejak, Splitting formulas for tutte polynomials, Journal of Combinatorial Theory, Series B **70** (1997), no. 2, 346 366.
- 2. Kenneth I. Appel and Wolfgang Haken, Every planar map is four colorable, Bull. Amer. Math. Soc. 82 (1976), no. 5, 711–712.
- D.K Arrowsmith and F Jaeger, On the enumeration of chains in regular chain-groups, Journal of Combinatorial Theory, Series B 32 (1982), no. 1, 75–89.
- 4. Hugo Hadwiger, Über eine Klassifikation der Streckenkomplexe, Vierteljahresschrift der Naturforschenden Gesellschaft in Zürich 88 (1943), 133–142.

4

- 5. Winfried Hochstättler and Robert Nickel, *The flow lattice of oriented matroids*, Contributions to Discrete Mathematics **2** (2007), no. 1, 68–86.
- 6. F. Jaeger, Flows and generalized coloring theorems in graphs, Journal of Combinatorial Theory, Series B 26 (1979), no. 2, 205 216.
- 7. Peter Allan Kilpatrick, Tutte's first colour-cycle conjecture., Master's thesis, University of Cape Town, 1975.
- 8. Hong-Jian Lai, Xiangwen Li, and Hoifung Poon, Nowhere zero 4-flow in regular matroids, J. Graph Theory 49 (2005), no. 3, 196–204.
- 9. James G. Oxley, Matroid theory, The Clarendon Press Oxford University Press, New York, 1992.
- Neil Robertson, Daniel Sanders, Paul Seymour, and Robin Thomas, The Four-Colour theorem, Journal of Combinatorial Theory, Series B 70 (1997), no. 1, 2–44.
- Neil Robertson, Paul Seymour, and Robin Thomas, Hadwiger's conjecture for k₆-free graphs, Combinatorica 13 (1993), 279–361.
- 12. Alexander Schrijver, Theory of linear and integer programming, Wiley, June 1998.
- P. D. Seymour, Decomposition of regular matroids, J. Combin. Theory Ser. B 28 (1980), no. 3, 305–359. MR 579077 (82j:05046)
- 14. _____, Nowhere-zero 6-flows, J. Combin. Theory Ser. B 30 (1981), no. 2, 130–135. MR MR615308 (82j:05079)
- 15. W.T. Tutte, A contribution to the theory of chromatic polynomials, Canad. J. Math. 6 (1954), 80–91.
- 16. _____, On the algebraic theory of graph colorings, Journal of Combinatorial Theory 1 (1966), no. 1, 15 50.
- 17. _____, A geometrical version of the four color problem, Combinatorial Math. and Its Applications (R. C. Bose and T. A. Dowling, eds.), Chapel Hill, NC: University of North Carolina Press, 1967.
- 18. K. Wagner, Über eine Eigenschaft der ebenen Komplexe, Mathematische Annalen 114 (1937), no. 1, 570–590.
- 19. Neil White, Combinatorial geometries, Cambridge University Press, September 1987.