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TU Dortmund, Germany

July 19, 2014

Abstract

We consider the problem of recovering monotonicity in noisy data.

1 Introduction

Frequently one has to deal with data, where external knowledge indicates that
the data should be monotone, but this property is broken due to measurement
errors. We consider the problem of best approximation of given data with
monotone data. Here, given data means some vector y ∈ Rn, where n is large
and we seek for x ∈ Rn such that xi ≤ xi+1 for 1 ≤ i ≤ n − 1 and ‖x − y‖ is
minimized, where ‖ · ‖ is the Euclidean norm.

We present a simple algorithm with quadratic running time that solves this
problem to optimality.

2 Prerequisites

Since minimizing the norm is equivalent to minimizing its square, we may as
well consider

min(x− y)>(x− y) = min(x>x− 2y>x+ y>y).

Neglecting the constant and dividing by two, in order to simplify later compu-
tations, the problem can be modelled as the following quadratic program (P )

min 1
2x
>x− y>x

subject to gi(x) = xi − xi+1 ≤ 0 for all 1 ≤ i ≤ n− 1.
(1)

Clearly, this program is strictly convex and hence the unique local mini-
mum is the unique global minimum. Local minima in non-linear programming
are characterized by the Karush-Kuhn-Tucker (KKT) conditions (see e.g. [1]
Theorem 12.1) which we recall for later reference.
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Theorem 1. Suppose that x is a local solution of (1). Since the gradients of
the constraints are linearly independent there is a Lagrange multiplier vector µ
such that the following conditions are satisfied at (x, µ)

∇f(x) +

n−1∑
i=1

µi∇gi(x) = 0 (2)

∀1 ≤ i ≤ n− 1 : gi(x) ≤ 0 (3)

∀1 ≤ i ≤ n− 1 : µi ≥ 0 (4)

∀1 ≤ i ≤ n− 1 : µigi(x) = 0. (5)

Here, the KKT-conditions are necessary and sufficient for a global minimum.
In our special situation, besides feasibility the KKT conditions are equivalent
to

x− y =

n−1∑
i=1

µi(ei − ei+1) (gradient equations) (6)

µi(xi − xi+1) = 0 for all 1 ≤ i ≤ n− 1 (7)

µi ≤ 0 for all 1 ≤ i ≤ n− 1. (8)

The gradient equations may be interpreted as follows. We have a path with
vertices ei, the µi are potentials at the vertices and xi − yi is the potential
difference along edge (ei, ei+1). The simple structure of these equations allows
to search for potentials which must be zero due to (7). This will split the path
into two parts which can be solved independently.

This motivates the procedure Monotone Projection in Figure 1.

(i) Initially set x := y.

(ii) Find an index 1 ≤ k ≤ n− 1 that minimizes

diff(k) =
1

k

k∑
i=1

xi −
1

n− k

n∑
i=k+1

xi.

(iii) If diff(k) < 0 then k is called a splitting point. Optimize the first k and
the last n− k coordinates of x recursively.

(iv) If diff(k) ≥ 0. Set xj := 1
n

∑n
i=1 xi for all j and return.

Figure 1: Procedure Monotone Projection

Clearly, the algorithm terminates after at most n − 1 iterations. In each
iteration the sums can be computed in O(n). Thus, in total we have a work
load of O(n2).

3 Feasibility

On termination by (iv) each yi in a certain connected range will be replaced
by the arithmetic mean of its range. By the splitting rule (iii) these ranges are
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disjoint and form a partition of the output vector which we denote by out(y)

out(y) = (z1, . . . , z1︸ ︷︷ ︸
λ1 entries

, z2, . . . , z2︸ ︷︷ ︸
λ2 entries

, . . . , zh, . . . , zh︸ ︷︷ ︸
λh entries

) (9)

where λi ≥ 1 denotes the length of the partition and there are h ≥ 1 different
partitions. If z1, z2, . . . , zh is a monotone sequence, we have proven the feasibility
of out(y). This will be our first goal.

We start with a simple observation relating the partitions alongside the split-
ting point to the corresponding arithmetic means. For notational convenience
we use the abbreviations

M l
k :=

1

k

k∑
i=1

yi Mr
k :=

1

n− k

n∑
i=k+1

yi,

for the left and right arithmetic means. We keep in mind, that the existence of
a splitting point always implies n, h ≥ 2. If k is a splitting point, we denote the
left slice of y by y[1 : k] and the right slice by y[k + 1 : n].

Proposition 1. Let k be a splitting point with k =
∑v
i=1 λi. Let v be the largest

partition index of out(y)[1 : k] thus v + 1 being the smallest partition index in
out(y)[k+1 : n]. Recall that, since k is a splitting point we have diff(k) ≤ diff(`)
for all 1 ≤ ` ≤ n− 1. This implies that if

i) v ≥ 2, then
M l
k − zv
k − λv

+
Mr
k − zv

n− k + λv
≥ 0 (10)

ii) v ≤ h− 2, then

zv+1 −M l
k

k + λv+1
+

zv+1 −Mr
k

n− k − λv+1
≥ 0. (11)

Proof. i)

M l
k −Mr

k ≤ M l
k−λv

−Mr
k−λv

=
kM l

k − λvzv
k − λv

− (n− k)Mr
k + λvzv

n− k + λv

= M l
k + λv

M l
k − zv
k − λv

−Mr
k + λv

Mr
k − zv

n− k + λv

⇐⇒ 0 ≤ M l
k − zv
k − λv

+
Mr
k − zv

n− k + λv
.

ii)

M l
k −Mr

k ≤ M l
k+λv+1

−Mr
k+λv+1

=
kM l

k + λv+1zv+1

k + λv+1
− (n− k)Mr

k − λv+1zv+1

n− k − λv+1

= M l
k + λv+1

zv+1 −M l
k

k + λv+1
−Mr

k + λv+1
zv+1 −Mr

k

n− k − λv+1

⇐⇒ 0 ≤ zv+1 −M l
k

k + λv+1
+

zv+1 −Mr
k

n− k − λv+1
.
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Lemma 1. If k =
∑v
i=1 λi is a splitting point then

zv < Mr
k and zv+1 > M l

k.

Proof. If v = 1 then diff(k) < 0 implies M l
k = z1 < Mr

k .
If v = h− 1 then diff(k) < 0 implies zv+1 = Mr

k > M l
k.

By assumption we have M l
k < Mr

k , hence zv ≥Mr
k implies

M l
k − zv < Mr

k − zv ≤ 0

contradicting (10) for 2 ≤ v ≤ h− 1.
Similarly, zv+1 ≤M l

k implies zv+1−Mr
k < zv+1−M l

k ≤ 0 contradicting (11)
for 1 ≤ v ≤ h− 2.

Corollary 1. If k =
∑v
i=1 λi is a splitting point then

zv < zv+1.

Proof. Assuming 2 ≤ v ≤ h−2 and multiplying (10) and (11) with their common
denominators and adding the resulting equalities yields:

(M l
k − zv)(n− k + λv) + (Mr

k − zv)(k − λv)
+ (zv+1 −M l

k)(n− k − λv+1) + (zv+1 −Mr
k )(k + λv+1) ≥ 0

⇐⇒ (λv + λv+1)(M l
k −Mr

k )︸ ︷︷ ︸
<0

+n(zv+1 − zv) ≥ 0.

The cases v = 1 and v = h − 1 remain open. We will prove only the first
case, since the other one is proven in a very similar way. The first inequality
holds due to the minimality of the splitting point.

zv −Mr
k ≤

kzv + λv+1zv+1

k + λv+1
− (n− k)Mr

k − λv+1zv+1

(n− k)− λv+1

zv −Mr
k ≤zv

k

k + λv+1
+ zv+1

(
λv+1

k + λv+1
+

λv+1

(n− k)− λv+1

)
−Mr

k

(
n− k

(n− k)− λv+1

)
zv

(
λv+1

k + λv+1

)
≤−Mr

k

(
λv+1

(n− k)− λv+1

)
+ zv+1

(
λv+1n

(k + λv+1)((n− k)− λv+1)

)
zv(n− (k + λv+1))− nzv+1 ≤−Mr

k (k + λv+1)

nzv − nzv+1 ≤(zv −Mr
k )(k + λv+1)

zv − zv+1 ≤ (zv −Mr
k )︸ ︷︷ ︸

<0

(k + λv+1)

n
< 0

Thus, out(y) is feasible. Furthermore, we have proven, that according to (7)
µk = 0 must hold at every splitting point for the Lagrange multipliers of the
optimum solution.
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4 Optimality

Setting µ0 = µn = 0 we may rewrite (6) to

n∑
i=1

(µi − µi−1)ei = x− y (12)

and iteratively compute the values of the µi for 1 ≤ i ≤ n− 1. It is immediate
that this equation is solvable if and only if

n∑
i=1

xi =

n∑
i=1

yi

which is guaranteed to hold for x = out(y). Hence, in order to verify the KKT-
conditions for (out(y), µ) we are left to prove µi ≤ 0 for all 1 ≤ i ≤ n− 1.

Since the equations after a split are fully decoupled, it suffices to consider
the situation that diff(k) ≥ 0, i.e. in the terminating case (iv). Hence, we know

xi =
1

n

k∑
j=1

yn for 1 ≤ i ≤ n.

Proposition 2. Suppose diff(k) ≥ 0 for all 1 ≤ k ≤ (n− 1). Then setting

µi =
i

n

n∑
j=1

yj −
i∑

j=1

yj (13)

the vector µ solves the gradient equation (6).

Proof. We will prove the hypothesis by induction on i.

i) i = 1:
The first scalar equation of (6) yields

µ1 =
1

n

n∑
j=1

yj − y1.

ii) If (13) holds for i, then also for i+ 1 (consider equation i+ 1 of (6)):

µi+1 =
1

n

n∑
j=1

yj − yi+1 + µi

=
1

n

n∑
j=1

yi − yi+1 +
i

n

n∑
j=1

yi −
i∑

j=1

yj

=
i+ 1

n

n∑
j=1

yi −
i+1∑
j=1

yj .

As mentioned above, the n-th equation is also satisfied.

Corollary 2. If diff(k) ≥ 0 for all 1 ≤ k ≤ (n − 1), then (8) and (7) hold for
all 1 ≤ i ≤ (n− 1).
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Proof. Condition (7) holds as out(y)1 = . . . = out(y)n = 1
n

∑n
i=1 yi and hence

gi(x) = 0 for 1 ≤ i ≤ n− 1. The following computation verifies (8):

0 ≥ −diff(i)

= Mr
i −M l

i

=
1

n− i

n∑
j=i+1

yj −
1

i

i∑
j=1

yj

=
1

i(n− i)

i n∑
j=i+1

yj − (n− i)
i∑

j=1

yj


=

1

i(n− i)

i n∑
j=1

yj − n
i∑

j=1

yj


=

n

i(n− i)
µi

.

Summarizing, we thus have proven.

Theorem 2. The procedure in Figure 1 terminates with the unique out(y) min-
imizing ‖x− y‖ for monotone x.
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