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Topological Sweeping in Oriented Matroids

Winfried Hochstättler
FernUniversität in Hagen

Abstract

According to [1] 10.4.6 it is in general impossible to sweep an ori-
ented matroid of rank ≥ 4 with a hyperplane. The authors immedi-
ately afterwards remark that

topological sweeping can be generalized to “Euclidean pseu-
doarrangements”.

This is cited and used in [2] but seems not to have been made explicit
anywhere. The purpose of this note is to fill that void.

1 Topological Sweeping in Oriented Matroids

Definition 1 ([1] 10.1.3, 10.5.2). 1. An oriented matroid program is a
triple (O, g, f), where O is an oriented matroid on a finite set E,
g, f ∈ E where g is not a loop, f is not a coloop and g 6= f . We
call g the hyperplane at infinity and f the objective function or sweep-
ing plane.

2. A single element extension Õ = O ∪ h, is such that h is parallel to f
with respect to g, if for all Y ∈ O we have Yg = 0 ⇒ Yf = Yh, or, in
other words, if h and f and h are parallel in Õ/g.

3. An oriented matroid program (O, g, f) is Euclidean if for every cocir-
cuit Y 0 ∈ O such that Y 0

g = +, there exists a single element extension

Õ = O∪ h, such that h is parallel to f with respect to g, and (Y 0, 0) is
a cocircuit of Õ.

From now on we will, furthermore, tacitly assume, that g is not a coloop,
f is not a loop and f and g are not parallel.

Next we consider an orientation of (some of) the edges of the 1-skeleton
of the affine oriented matroid (O, g).
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Definition 2 (see [1] 10.1.16). Let Gf be the graph whose vertices are the
cocircuits of (O, g) and whose edges are the covectors of rank 2 in O between
them. If Y 1, Y 2 are compatible vertices such that Y 1 ◦ Y 2 has rank 2, i.e.
(Y 1, Y 2) is an edge in Gf , let Z denote the cocircuit derived by corcircuit
elimination of g between Y 2 and −Y 1. If Zf = + we direct (Y 1, Y 2) from
Y 1to Y 2, if Zf = − we direct (Y 1, Y 2) from Y 2to Y 1. In the (degenerate)
case that Zf = 0 the edge (Y 1, Y 2) remains undirected.

A directed cycle in Gf with that orientation is a cycle which contains at
least one directed edge and which has a traversal where all directed edges are
traversed in forward direction.

In Figure 1 we depicted an oriented matroid program with the direction
of its edges and an extension by an element h parallel to f wrt. g.
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Figure 1: An oriented matroid program in rank 3

The undirected edges can be considered as directions in f . To make this
more precise we need the notion of a linear subclass of a matroid. In the
following we denote by M(O) the matroid underlying the oriented matroid
O.

Definition 3 (see [3], 7.2 Exercise 6). A linear subclass of a matroid M is a
subset H′ of its set of hyperplanes which with any modular pair H1, H2 ∈ H′

must contain all hyperplanes that cover H1 ∩H2.

It is well known ([3], 7.2 Exercise 6 (iii), 7.2.1) that the non-trivial lin-
ear subclasses of a matroid are in bijection with its non-trivial one-point-
extensions.

Proposition 4. Let (O, g, f) denote an oriented matroid program and Gf

its graph. Then (X, Y ) is an undirected edge in G if and only if z(Y ) is a
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member of the smallest linear subclass H containing z(X) and all hyperplanes
containing g and f in M(O), where z(X) denotes the zero set of X.

Proof. (X, Y ) is an undirected edge in Gf , if and only if f is contained in
H3 = (z(X) ∧ z(Y )) ∨ g. Since H3 is a hyperplane in M(O) which contains
f and g, and H3 and z(X) form a modular pair, z(Y ) must be a member of
H. On the other hand all colines covered by at least two hyperplanes in the
smallest linear subclass H′ containing z(X) and g and f must be covered by
a hyperplane containing g and f . If this were not the case, then f ∨ g and
such a coline l would form a modular pair, implying that the modular cut
associated with H′ (see [3], 7.2 Exercise 6 (iii)) is the full geometric lattice
and thus, h must be a loop contradicting (O, g, f) being Euclidean. Hence,
if (X, Y ) is an edge and z(Y ) is contained in H′, then z(X) ∧ z(Y ) must
be covered by a hyperplane containing f and g and thus (X, Y ) must be
undirected.

Hence every extension through a cocircuit X parallel to f wrt. g goes
exactly through the cocircuits reachable from X on a path using only undi-
rected edges.

We have the following theorem linking Euclidean oriented matroid pro-
grams and Gf

Theorem 5 (Edmonds-Mandel, see [1] 10.5.5, 10.5.10). Let (O, g, f) denote
an oriented matroid program, and Y 0 ∈ (O, g) be a cocircuit. Then there is
a Euclidean extension of (O, g, f) by a hyperplane h through Y 0 parallel to f
wrt. g, if and only if Y 0 is not contained in a directed cycle of Gf .

In particular, (O, g, f) is Euclidean if and only if Gf contains no directed
cycle.

The restrictions on the signs of the old vertices wrt. the new element are
given by:

Lemma 6 (see [1] 10.5.3). Let (O, g, f) be an oriented matroid program,
Y 0 ∈ (O, g) a cocircuit, and (Õ = O ∪ h, g, f) be an extension through Y 0

by a hyperplane parallel to f wrt. g. Let Y1, Y2 ∈ (O, g) be two conformal
cocircuits such that Y1 ◦ Y2 is an edge. Let Ỹ 1, Ỹ 2 denote the corresponding
cocircuits in Õ. Then, if (Y1, Y2) is undirected we have Ỹ 1

h = Ỹ 2
h and if

(Y1, Y2) is directed from Y1 to Y2, we have Ỹ 1
h � Ỹ 2

h with respect to the order
− ≺ 0 ≺ +, where Ỹ 1

h = Ỹ 2
h = 0 cannot occur.

We observe, that hyperplanes parallel wrt. g cannot cross in the affine
oriented matroid:
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Proposition 7. Let (O, g) be an affine oriented matroid and (Õ, g) = (O ∪
{f1, f2}, g) an extension by two elements that are parallel wrt. g. Then there
do not exist X, Y in Õ such that Xg = Yg = +, Xf1 = Yf2 = + and Xf2 =
Yf1 = −.

Proof. Assume there were two such elements. Then covector elimination of
g between X and −Y would yield a vector Z satisfying Zg = 0, Zf1 = + and
Zf2 = − contradicting f1, f2 being parallel wrt. g.

After these preparations we can show the possibility of topological sweep-
ing in Euclidean oriented matroid programs.

Definition 8. Let (O, f, g) be a Euclidean oriented matroid program and let
D+ denote its set of affine cocircuits, i.e. those cocircuits Y ∈ O satisfying
Yg = +.

A topological sweep of (O, f, g) is a total order Y 1, . . . , Y r of D+, the
sweep order, together with an r-point-extension Õ = O ∪ {h1, . . . , hr} such
that

1. forall 1 ≤ i ≤ r hi is parallel to f wrt. g

2. forall 1 ≤ i ≤ r there exist 1 ≤ i1 ≤ i ≤ i2 such that

Ỹ i
hj

=


− if j < i1
0 if i1 ≤ j ≤ i2
+ if j > i2.

We say that the sweep is non-degenerate if i1 = i = i2 for all 1 ≤ i ≤ r.

Theorem 9. Let (O, g, f) be a Euclidean oriented matroid program. Then
there exists a topological sweep of O. The sweep is non-degenerate if and only
f and g are not contained in a common hyperplane h of M(O) that covers a
coline l disjoint from f and g.

Proof. Let Y 1, . . . , Y r denote the affine cocircuits of (O, g). The undirected
edges in Gf define equivalence classes. Pick one representative from each
class and extend the program by an element parallel to f wrt. g for each such
representative, this way generating extensions h1, . . . , hk. Then by Lemma 6
and Proposition 4 for every vertex Ỹ i of the extension there exists a unique
j such that Ỹ i

hj
= 0. Now, if Ỹ i1 , Ỹ i2 are two affine cocircuits such that

Ỹ i1
hj1

= 0 and Ỹ i2
hj2

= 0 where j1 6= j2, then by Proposition 7 the sets of indices

from {h1, . . . , hk} \ {hj1 , hj2} with positive signs on Y i1 and Y i2 must not
cross, i.e. one is contained in the other. By Lemma 6 the containment must
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be strict unless one of Ỹ i1
hj2

and Ỹ i2
hj1

is positive and the other one negative.

This induces a linear order on the equivalence classes of cocircuits. This
linear order finally yields the topological sweep if we add sufficiently many
parallel copies of an extension through an equivalence class containing more
than one vertex.

Remark 10. We can and frequently will identify a single element extension
Õ = O ∪ h with its localization σh in O where for all Y ∈ O : σh(Y ) = ε if
and only if (Y, ε) ∈ Õ.
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