
Diskrete Mathematik und Optimierung

Winfried Hochstättler
Michael Wilhelmi:

Sticky matroids and Kantor’s Conjecture

Technical Report feu-dmo044.17
Contact: {Winfried.Hochstaettler, Michael.Wilhelmi}@fernuni-hagen.de

FernUniversität in Hagen
Fakultät für Mathematik und Informatik
Lehrgebiet für Diskrete Mathematik und Optimierung
D – 58084 Hagen



2000 Mathematics Subject Classification: 05B35, 05B25, 06C10, 51D20
Keywords: matroids, amalgams, embeddings, projective spaces



STICKY MATROIDS AND KANTOR’S CONJECTURE

WINFRIED HOCHSTÄTTLER AND MICHAEL WILHELMI

Dedicated to Achim Bachem on the occasion of his 70th birthday.

Abstract. We prove the equivalence of Kantor’s Conjecture and the Sticky
Matroid Conjecture due to Poljak und Turzík.

1. Introduction

The purpose of this paper is to prove the equivalence of two classical conjectures
from combinatorial geometry. Kantor’s Conjecture [5] adresses the problem whether
a combinatorial geometry can be embedded into a modular geometry, i.e., a direct
product of projective spaces. He conjectured that for finite geometries this is always
possible if all pairs of hyperplanes are modular.

The other conjecture, the Sticky Matroid Conjecture (SMC) due to Poljak and
Turzík [8] concerns the question whether it is possible to glue two matroids together
along a common part. They conjecture that a “common part” for which this is
always possible, a sticky matroid, must be modular. It is well-known (see eg. [7])
that modular matroids are sticky and easy to see [8] that modularity is necessary
for ranks up to three. Bachem and Kern [1] proved that a rank-4 matroid that
has two hyperplanes intersecting in a point is not sticky. They also stated that a
matroid is not sticky if for each of its non-modular pairs there exists an extension
decreasing its modular defect. The proof of this statement had a flaw which was
fixed by Bonin [2]. Using a result of Wille [9] and Kantor [5] this implies that the
sticky matroid conjecture is true if and only if it holds in the rank-4 case. Bonin [2]
also showed that a matroid of rank r ≥ 3 with two disjoint hyperplanes is not sticky
and that non-stickiness is also implied by the existence of a hyperplane and a line
that do not intersect but can be made modular in an extension.

We generalize Bonin’s result and show that a matroid is not sticky if it has a
non-modular pair that admits an extension decreasing its modular defect. More-
over by showing the existence of the proper amalgam of two arbitrary extensions of
the matroid we prove that in the rank-4 case this condition is also necessary for a
matroid not to be sticky. As a consequence from every counterexample to Kantor’s
conjecture arises a matroid that can be extended in finite steps to a counterex-
ample of the (SMC), implying the equivalence of the two conjectures. A further
consequence of our results is the equivalence of both conjectures to the following:

Conjecture 1. In every finite non-modular matroid there exists a non-modular
pair and a single-element extension decreasing its modular defect.

Finally, we present an example proving that the (SMC), like Kantor’s Conjecture
fails in the infinite case.

We assume familiarity with matroid theory. The standard reference is [7].
1
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2. Our results

Let M be a matroid with groundset E and rank function r. We define the
modular defect δ(X,Y ) of a pair of subsets X,Y ⊆ E as

δ(X,Y ) = r(X) + r(Y )− r(X ∪ Y )− r(X ∩ Y ).

By submodularity of the rank function, the modular defect is always non-negative.
If it equals zero, we call (X,Y ) a modular pair. A matroid is called modular if all
pairs of flats form a modular pair.

An extension of a matroid M on a groundset E is a matroid N on a groundset
F ⊇ E such that M = N |E. If N1, N2 are extensions of a common matroid M
with groundsets F1, F2, E resp. such that F1 ∩ F2 = E, then a matroid A(N1, N2)
with groundset F1 ∪ F2 is called an amalgam of N1 and N2 if A(N1, N2)|Fi = Ni
for i = 1, 2.

Theorem 1 (Ingleton see [7] 11.4.10 (ii)). If M is a modular matroid then for any
pair (N1, N2) of extensions of M an amalgam exists.

We found a proof of this result only for finite matroids (see eg. [7]). We will
show that it also holds for infinite matroids of finite rank.

Conjecture 2 (Sticky Matroid Conjecture (SMC) [8]). If M is a matroid such that
for all pairs (N1, N2) of extensions of M an amalgam exists, then M is modular.

The following preliminary results concerning the (SMC) are known:

Theorem 2 ([8, 1, 2]). Let M be a matroid.
(i) If r(M) ≤ 3 then the (SMC) holds for M .
(ii) If the (SMC) holds for all rank-4 matroids, then it is true in all ranks.
(iii) Let l be a line and H a hyperplane in M such that l ∩H = ∅. If M has

an extension M ′ such that rM ′ (clM ′(l) ∩ clM ′(H)) = 1, then M is not
sticky.

(iv) If M has two disjoint hyperplanes then is not sticky.

We will generalize the last two assertions and prove:

Theorem 3. Let M be a matroid, X and Y two flats such that δ(X,Y ) > 0. If
M has an extension M ′ such that δM ′ (clM ′(X), clM ′(Y )) < δ(X,Y ) then M is not
sticky.

We postpone the proof of Theorem 3 to Section 3.
We call a matroid hypermodular if each pair of hyperplanes forms a modular

pair. With this notion we can rephrase Kantor’s Conjecture.

Conjecture 3 (Kantor [5], page 192). Every finite hypermodular matroid embeds
into a modular matroid.

Like the (SMC) Kantor’s Conjecture can be reduced to the rank-4 case (see
Corollary 3, Section 5).

Next, we consider the correspondence between single-element extensions of ma-
troids and modular cuts.

Definition 1. A set M of flats of a matroid M is called a modular cut of M if
the following holds:

(i) If F ∈M and F ′ is a flat in M with F ′ ⊇ F , then F ′ ∈M.
(ii) If F1, F2 ∈M and (F1, F2) is a modular pair, then F1 ∩ F2 ∈M.
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Theorem 4 (Crapo 1965 [3]). There is a one-to-one-correspondence between the
single-element extensions M +M p of a matroid M and the modular cutsM of M .
M consists precisely of the set of flats of M containing the new point p in M+M p.

The set of all flats of a matroid M is a modular cut, the trivial modular cut,
corresponding to an extension with a loop. The empty set is a modular cut corre-
sponding to an extension with a coloop, the only single-element extension increasing
the rank ofM . For a flat F ofM , the setMF = {G | G is a flat of M and G ⊇ F}
is a modular cut of M . We call it a principal modular cut. We say that in the
corresponding extension the new point is freely added to F . A modular cut MA
generated by a set of flats A is the smallest modular cut containing A.

The following is immediate from Theorem 7.2.3 of [7].

Proposition 1. If (X,Y ) is a non-modular pair of flats of a matroid M , then there
exists an extension decreasing its modular defect (we call the pair intersectable) if
and only if the modular cut generated by X and Y is not the principal modular cut
MX∩Y .

We call a matroid OTE (only trivially extendable) if all of its modular cuts
different from the empty modular cut are principal.

Most of this paper will be devoted to the proof of the following theorem.

Theorem 5. If M is a rank-4 matroid that is OTE, then M is sticky.

As we will prove with Theorem 9, Theorem 3 implies that a matroid that is not
OTE is not sticky. Hence Theorem 5 implies that for rank-4 matroids being sticky
is equivalent to being OTE. Since the (SMC) is reducible to the rank-4 case, it
is equivalent to the conjecture that every rank-4 matroid that is OTE is already
modular. For finite matroids, this is our Conjecture 1, which is also reducible to
the rank-4 case (see the remark after the proof of Corollary 3).

Like Kantor’s Conjecture our Conjecture 1 is no longer true in the infinite case.
This will be a consequence of the following theorem, proven in Section 5.

Theorem 6. Every finite matroid can be extended to a (not necessarily finite)
matroid of the same rank that is OTE.

Starting from, say, the Vámos matroid this yields an infinite rank-4 non-modular
matroid that is OTE, hence a counterexample to the (SMC) in the infinite case.

Finally, Theorem 11 will imply that any finite counterexample to Kantor’s Con-
jecture can be embedded into a finite non-modular matroid that is OTE. In the
rank-4 case any counterexample to Kantor’s Conjecture this way yields a finite coun-
terexample to the (SMC). We wil show in Corollary 3 that Kantor’s Conjecture is
reducible to the rank-4 case, hence the (SMC) implies Kantor’s Conjecture. It had
already been observed by Faigle (see [1]) and was explicitely mentioned by Bonin
in [2] that Kantor’s Conjecture implies the (SMC). The latter is now immediate
from Theorem 3 and the former establishes the equivalence of the two conjectures.

Corollary 1. Kantor’s Conjecture holds true if and only if the Sticky Matroid
Conjecture holds true.

3. Proof of Theorem 3

We start with a proposition that states that the so called Escher matroid ([7]
Fig. 1.9) is not a matroid.
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Figure 1. This is not a matroid

Proposition 2. Let l1, l2, l3 be three lines in a matroid that are pairwise coplanar
but not all lying in a plane. If l1 and l2 intersect in a point p, then p must also be
contained in l3.

Proof. By submodularity of the rank function we have

r ((l1 ∨ l3) ∧ (l2 ∨ l3)) ≤ r(l1 ∨ l3) + (l2 ∨ l3)− r(l1 ∨ l2 ∨ l3) = 3 + 3− 4 = 2.

Now l3 ∨ p ≤ (l1 ∨ l3) ∧ (l2 ∨ l3) and hence p must lie on l3. �

Probably the easiest way to prove that the (SMC) holds for rank 3 is to proceed
as follows. If a rank-3 matroidM is not modular, then it has a pair of disjoint lines.
We consider two extensions N1 and N2 of M such that N1 adds to the two lines
a point of intersection and N2 erects a Vámos-cube (V8 in [7]) using the disjoint
lines as base points. By Proposition 2 the amalgam of N1 and N2 cannot exist (see
Figure 1).

Bonin [2] generalized this idea to the situation of a disjoint line-hyperplane pair
in matroids of arbitrary rank. We further generalize this to a non-modular pair of
a hyperplane H and a flat F that can be made modular by a proper extension. Our
first aim is to show that such a pair exists in any matroid that is not OTE. Again,
the following is immediate:

Proposition 3. Let M be a matroid, M ′ an extension of M and (X,Y ) a modular
pair of flats in M . Then (clM ′(X), clM ′(Y )) is a modular pair in M ′. Moreover

clM ′(X) ∩ clM ′(Y ) = clM ′(X ∩ Y ).

Proposition 4. Let M be a matroid,M a modular cut in M and M ′ = M +M p
the corresponding single-element extension. If M ′ does not contain a modular pair
of flats X ′ = X ∪ p, Y ′ = Y ∪ p such that X and Y are a non-modular pair in M ,
then

M′ := {clM ′(F ) | F ∈M}
is a modular cut in M ′.

Lemma 1. Let M0 be a matroid that is not OTE and (X,Y ) be a non-modular
pair of smallest modular defect δ := δ(X,Y ) such that there is a single-element
extension decreasing their modular defect. Then there exists a sequence M1, . . . ,Mδ

of matroids such that Mi is a single-element extension of Mi−1 for i = 1, . . . , δ and
δMi

(clMi
(X), clMi

(Y )) = δ − i. In particular (clMδ
(X), clMδ

(Y )) are a modular
pair in Mδ.
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Proof. Let M denote the modular cut generated by X and Y in M0. Inductively
we conclude, that by the choice of X and Y

Mi := {clMi(F ) | F ∈M}

is a modular cut in Mi for i = 1, . . . , δ − 1 implying the assertion. �

Lemma 2. Let M be a matroid that is not OTE. Then there exists an intersectable
non-modular pair (F,H) of smallest modular defect, where F is a minimal element
in the modular cutMF,H generated by H and F , and H is a hyperplane of M .

Proof. Since M is not OTE, it is not modular and hence of rank at least three.
Every non-modular pair of flats in a rank-3 matroid clearly satisfies the assertion.
Hence we may assume r(M) ≥ 4. Let (X,Y ) be a non-modular intersectable pair
of flats in M of smallest modular defect δmin and chosen such that, first, X is of
minimal and, second, Y of maximal rank. We claim that F = X and H = Y are
as required. LetMX,Y be the modular cut generated by these two flats.

Assume, contrary to the first assertion, that there exists an F ∈ MX,Y with
F ( X. Since the principal modular cutMX∩Y contains X and Y , it is a superset
of the modular cutMX,Y . Hence we obtain X ∩ Y ⊆ F . SinceMX,Y contains F
and Y but notX∩Y = F∩Y , the pair (F, Y ) is non-modular and intersectable inM
(according to Proposition 4). Due to submodularity of r we have r(X)+r(F ∪Y ) ≥
r(X ∪ Y ) + r(F ) and hence:

δ(F, Y ) = r(F ) + r(Y )− r(F ∪ Y )− r(F ∩ Y )

≤ r(X) + r(Y )− r(X ∪ Y )− r(X ∩ Y ) = δ(X,Y ) = δmin,

contradicting the choice of X. Next we show that cl(X ∪ Y ) = E(M). Assume to
the contrary that there exists p ∈ E(M) \ cl(X ∪ Y ) and let Y1 = cl(Y ∪ p). Then
X ∩ Y = X ∩ Y1 and hence δ(X,Y1) = δ(X,Y ). Since MX,Y1

⊆ MX,Y , the pair
(X,Y1) remains intersectable, contradicting the choice of Y , and hence verifying
cl(X ∪ Y ) = E(M). Finally, assume Y is not a hyperplane. Let Y ′ = cl(Y ∪ p)
with p ∈ X \ Y . Then

δ(X,Y ′) = r(X) + r(Y ′)− r(X ∪ Y ′)− r(X ∩ Y ′)
= r(X) + r(Y ) + 1− r(X ∪ Y )− r(X ∩ Y )− 1 = δ(X,Y ).

Since Y is not a hyperplane and cl(X∪Y ) = E(M), we must have X∩Y ′ ( X, and
X being minimal inMX,Y implies X ∩ Y ′ /∈ MX,Y . NowMX,Y ′ ⊆ MX,Y yields
that X ∩ Y ′ 6∈ MX,Y ′ and thus by Proposition 4 the pair (X,Y ′) is intersectable
with δ(X,Y ′) = δ(X,Y ) = δmin, contradicting the choice of Y . �

Lemmas 1 and 2 now imply the following:

Theorem 7. Let M be a matroid that is not OTE. Then there exist
(i) a non-modular pair (F,H) where H is a hyperplane of M and
(ii) an extension N of M such that (clN (F ), clN (H)) is a modular pair in N .

On the other hand we also have:

Theorem 8. Let M be a matroid and (F,H) a non-modular pair of disjoint flats,
where H is a hyperplane of M . Then there exists an extension N of M such that
for every extension N ′ of N , (clN ′(F ), clN ′(H)) is not a modular pair in N ′.
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Proof. We follow the idea from [1] and Bonin’s proof [2] and erect a Vámos-type
matroid above F and H. Clearly, r := rM (M) ≥ 3 and 2 ≤ rM (F ) ≤ r − 1. We
extend M by first adding a set A of r − 1 − rM (F ) elements freely to H. Next,
we add, first, a coloop e, and then an element f freely to the resulting matroid,
yielding an extension N0 with groundset E(M)∪A∪{e, f} and of rank r+1. Note,
that clN0

(H) = H ∪A. We consider the following sets:
• T1 = F ∪A ∪ e
• T2 = H ∪A ∪ e
• B1 = F ∪A ∪ f
• B2 = H ∪A ∪ f

Note that (T1, T2), (B1, B2) are non-modular pairs of hyperplanes of rank r in N0

with the same modular defect

δ(T1, T2) = 2r − (r + 1)− (r − rM (F )) = rM (F )− 1 = δ(B1, B2).

Any non-modular pair of hyperplanes in a matroid is intersectable because the mod-
ular cut generated by the two hyperplanes contains additionally only the groundset
of the matroid and hence is non-principal (see Proposition 1). In the correspond-
ing single-element extension the modular defect of the hyperplane-pair decreases
by one. If this defect is still non-zero these two hyperplanes remain intersectable.
Repeating this process until they become a modular pair, the modular defect of
other hyperplane-pairs stays unaffected in these extensions. This way, we obtain
an extension N of the matroid N0 of rank r + 1 with groundset E(N0) ∪ P ∪ Q
where P and Q are independent sets of size rM (F )− 1 such that (clN (T1), clN (T2))
and (clN (B1), clN (B2)) are modular pairs in N and P ⊆ clN (T1) ∩ clN (T2) resp.
Q ⊆ clN (B1) ∩ clN (B2). We will show now that the matroid N is as required.

Assume to the contrary that there exists an extensionN ′ ofN such that (clN ′(F ),
clN ′(H)) is a modular pair. As A ⊆ clN ′(H) and A ∩ clN ′(F ) = ∅ we compute

rN ′((clN ′(F ) ∩ clN ′(H)) ∪A) = rN ′(clN ′(F ) ∩ clN ′(H))) + |A|
= rN ′(clN ′(F )) + |A|+ rN ′(clN ′(H))− rN ′(clN ′(F ) ∪ clN ′(H)))

= rN ′(clN ′(F ∪A)) + rN ′(clN ′(H))− rN ′(clN ′(F ∪H))

=(r − 1) + (r − 1)− r = r − 2.(1)

Let D1 = clN ′(A ∪ P ∪ e) and D2 = clN ′(A ∪ Q ∪ f). Proposition 3 yields
clN ′(clN (T1)) ∩ clN ′(clN (T2)) = clN ′(clN (T1) ∩ clN (T2)) and it holds rN ′(D1) =
rN ′(D2) = r − 1. We obtain

rN ′((clN ′(F ) ∩ clN ′(H)) ∪D1) ≤ rN ′((clN ′(F ∪D1) ∩ clN ′((H ∪D1))

= rN ′(clN ′(T1) ∩ clN ′(T2)) = rN ′(clN (T1) ∩ clN (T2)) = r − 1 = rN ′(D1).(2)

This implies clN ′(F )∩ clN ′(H) ⊆ D1. Similarly, using B1 and B2 instead of T1 and
T2, we get clN ′(F )∩clN ′(H) ⊆ D2 and conclude (clN ′(F )∩clN ′(H))∪A ⊆ D1∩D2.
This yields

(3) rN ′(D1 ∩D2) ≥ rN ′((clN ′(F ) ∩ clN ′(H)) ∪A)
(1)
= r − 2.

From rN ′(D1 ∪D2) = rN ′(A ∪ P ∪Q ∪ e ∪ f)) = r + 1 we finally obtain

rN ′(D1) + rN ′(D2)
(2)
= 2r − 2 < (r + 1) + (r − 2)

(3)
≤ rN ′(D1 ∪D2) + rN ′(D1 ∩D2)

contradicting submodularity. �
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Summarizing the two previous theorems yields the final result of this section:

Theorem 9. Let M be a matroid that is not OTE. Then M is not sticky.

Proof. By Theorem 7, M has a non-modular intersectable pair of flats (F,H)
such that H is a hyperplane, and there exists an extension N1 of M such that
(clN1(F ), clN1(H)) is a modular pair. Possibly contracting (F ∩H), and referring
to Lemma 7 of [1], we may assume that F and H are disjoint. Thus, by Theorem 8,
there also exists an extension N2 of M such that in every extension N of N2 the
pair (clN (F ), clN (H)) is not modular. Hence M is not sticky. �

4. Hypermodularity and OTE matroids

We collect some facts about hypermodular matroids and OTE matroids that we
need for the proof of Theorem 5 and the embedding theorems in the next section.
Recall that a matroid is hypermodular if any pair of hyperplanes intersects in a
coline. Modular matroids are hypermodular and hypermodular matroids of rank at
most 3 must be modular. Thus, a contraction of a hypermodular matroid of rank
n by a flat of rank n−3 is a modular matroid of rank 3. Every projective geometry
P (n, q) is hypermodular and remains hypermodular if we delete up to q − 3 of its
points. In the following we will focus on the case of hypermodular matroids of
rank 4.

Proposition 5. LetM be a hypermodular rank-4 matroid. IfM contains a disjoint
line and hyperplane, then M also contains two disjoint coplanar lines. The same
holds for a modular cut in M .

Proof. Let (l1, e1) be a disjoint line-plane pair in M . Take a point p in e1. Because
of hypermodularity, the plane l1 ∨ p intersects the plane e1 in a line l2 in M . The
lines l1 and l2 are coplanar and disjoint. If now l1 and e1 are elements of a modular
cutM in M then it holds also l2 ∈M. �

The next results are matroidal versions of similar results of Klaus Metsch (see
[6]) for linear spaces.

Lemma 3. Let M be a hypermodular matroid of rank 4 on a groundset E. Let
l1, l2 be two disjoint coplanar lines. Then E can be partitioned into l1, l2 and lines
that are coplanar with l1 and with l2. The modular cut M generated by l1 and l2
always contains such a line-partition of E.

Proof. We set e = cl(l1∪ l2). Then lp := (l1∨p)∧(l2∨p) is a line for every p ∈ E \e
and coplanar to l1 and l2. By Proposition 2 it must be disjoint from l1 and l2 and
from e. This together with Proposition 2 implies that for q ∈ E \ e with p 6= q we
must have either lp∧lq = 0 or lp = lq = p∨q. We denote the set of lines constructed
this way by ∆. Now we choose a line lp∗ ∈ ∆ and for each r ∈ e \ (l1 ∪ l2) we get a
line lr = e∧ (lp∗ ∨ r). Let Σ be the set of lines obtained in that way. It is clear that
Σ is a line partition of e \ (l1 ∪ l2). Again, Proposition 2 implies that these lines
must be pairwise disjoint and disjoint from l1, l2, lp∗ and all lines lq ∈ ∆. Now, the
set Γ = l1 ∪ l2 ∪Σ∪∆ is the desired set of lines partitioning E. Obviously, it holds
Γ ⊆M. �

A non-trivial and non-principal modular cut in a matroid always contains a non-
modular pair of flats. Proposition 5 implies, that in a hypermodular rank-4 matroid
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it even must contain two disjoint coplanar lines. By Lemma 3 we, thus, get a set
of pairwise disjoint lines that partition the ground set. Moreover we have:

Theorem 10. (i) Under the assumptions of Lemma 3 the following two state-
ments are equivalent:
(a) There exists a single-element extensionM ′ where clM ′(l1) and clM ′(l2)

intersect.
(b) The modular cut generated by l1 and l2 in M contains a set of pair-

wise coplanar lines, l1 and l2 among them, partitioning the groundset
E(M).

(ii) If a single-element extension M ′ as in (i) exists, then the restriction to
M of any line in M ′ is a line.

(iii) If there is no single-element extension as in (i), the matroid M contains
two non-coplanar lines l3, l4 such that li and lj are coplanar for all i ∈
{1, 2} and j ∈ {3, 4} and no three of them are coplanar, i.e., it has the
Vámos matroid containing l1 and l2 as a restriction.

Proof. (i) By Lemma 3 the modular cut M generated by l1 and l2 contains a set
of lines partitioning the groundset E. Since any two of these lines intersect in the
extension M ′ in the new point, they must be coplanar.

On the other hand, if we have a set Γ of pairwise coplanar lines partitioning the
groundset E, l1 and l2 among them, these lines must form the minimal elements
of a modular cut. This is seen as follows. Consider the setM of flats in M which
are elements or supersets of elements of Γ. Any two lines of M are disjoint and
coplanar, hence they do not form a modular pair. For p ∈ E let lp denote the line
in Γ containing p and let h ∈M be a hyperplane containing p. Then h contains lp
or some other line l that is coplanar with lp. Since in the second case lp ≤ l∨ p ≤ h
we always have lp ≤ h. Let h1 6= h2 be two hyperplanes in M, let l = h1 ∧ h2
and p 6= q be two points on l. Then lp ≤ hi and lq ≤ hi for i ∈ {1, 2} implying
lp = lq = l. Finally, consider a hyperplane h and a line l. If they are a modular
pair then they must intersect in a point r, hence l = lr and l ≤ h. Thus M is a
modular cut defining a single-element extension where l1 and l2 intersect.

(ii) Let p denote the new point and l a line containing p. Let q be another point
on l. Then q is contained in a line lq in M of the partition of E(M) in lines. In
M ′ we obtain {p, q} ⊆ clM ′(lq). Since {p, q} ⊆ l we obtain clM ′(lq) = l hence the
restriction of l to M is the line lq.

(iii) Let Γ = l1 ∪ l2 ∪ Σ ∪ ∆ be the line-partition of the groundset E from
the proof of Lemma 3. By (i) there exist l3 and l4 in Γ \ {l1, l2} that are not
coplanar and hence l3 ∪ l4 6⊆ cl(l1 ∪ l2) = e. If l3, l4 ∈ ∆ we are done hence we
may assume that l3 = lr ∈ Σ and l4 = lq ∈ ∆ where lq = (l1 ∨ q) ∧ (l2 ∨ q)
and lr = e ∧ (lp∗ ∨ r), as in the proof of Lemma 3. Since lp∗ and l3 are coplanar
we conclude lp∗ 6= l4. If lp∗ and l4 are not coplanar, we replace l3 by lp∗ and
are done. Hence we may assume that they are coplanar. The hyperplanes l4 ∨ r
and lp∗ ∨ r intersect in the line l′3 = (l4 ∨ r) ∧ (lp∗ ∨ r). Assuming l′3 ≤ e yields
l′3 = (l4∨r)∧(lp∗∨r)∧(l1∨ l2) = lr = l3, contradicting l3 and l4 being not coplanar.
Hence l′3 intersects e only in r. Furthermore, by Proposition 2, l′3 must be disjoint
from lp∗ and l4. Choose p′ on l′3 but not on e and define l′′3 := lp′ ∈ ∆. We claim
that lp′ must be noncoplanar with at least one of lp∗ or l4. Otherwise, we would
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have

l′′3 = (lp∗ ∨ lp′) ∧ (l4 ∨ lp′) = (lp∗ ∨ p′) ∧ (l4 ∨ p′) = (lp∗ ∨ l′3) ∧ (l4 ∨ l′3) = l′3

which is impossible since l′′3 ∈ ∆ is disjoint from e. �

The absence of a configuration in Theorem 10 (iii) is called bundle condition in
the literature.

Definition 2. A matroid M of rank at least 4 satisfies the bundle condition if for
any four disjoint lines l1, l2, l3, l4 of M , no three of them coplanar, the following
holds: If five of the six pairs (li, lj) are coplanar, then all pairs are coplanar.

Since a non-modular pair of hyperplanes together with the entire groundset al-
ways forms a modular cut that is not principal, OTE matroids must be hypermod-
ular. Hence, Theorem 10 has the following corollary:

Corollary 2. Let M be an OTE matroid of rank 4. If the bundle-condition in M
holds, then M is modular.

Proof. Let M be a rank-4 OTE-matroid that is not modular. Then, because M is
hypermodular and because of Proposition 5 it contains two disjoint coplanar lines.
From Theorem 10 (iii) follows that the bundle-condition does not hold in M . �

5. Embedding Theorems

With these results, we can prove a first embedding theorem. Assertion (iii) is a
result of Kahn [4].

Theorem 11. Let M be a hypermodular rank-4 matroid with a finite or countably
infinite groundset. Then M is embeddable in an OTE matroid M of rank 4 where
the restriction of any line of M is a line in M . Furthermore:

(i) M is finite if and only if M is finite.
(ii) The simplification of M/p is isomorphic to the simplification of M/p for

every p ∈ E(M).
(iii) If M fulfills the bundle-condition then M is modular.

Proof. Let P be a list of all disjoint coplanar pairs of lines ofM . Clearly, P is finite
or countably infinite. We inductively define a chain of matroidsM = M0,M1,M2 . . .
as follows: Let M0 = M , suppose Mi−1 has already been defined for an i ∈ N. Let
li1 and li2 denote the pair of disjoint lines in the list at index i. If li1 and li2 are not
intersectable in the matroidMi−1, setMi = Mi−1. Otherwise, letMi be the single-
element extension of Mi−1 corresponding to the modular cut Mi−1 generated by
li1 and li2 in Mi−1.

By Theorem 10 (ii), the restriction of a line in Mi+1 is a line in Mi and hence
is also a line in M . As a consequence also the restriction of a plane in Mi+1 is a
plane in M hence two planes in Mi+1 intersect in a line. Thus all matroids Mi are
hypermodular of rank 4. Now let M be the set system (E, I) where I ⊆ P(E),
E =

⋃∞
i=0(E(Mi)) and I ∈ I if and only if I is independent in some Mi. Clearly,

I satisfies the independence axioms of matroid theory. We call M the union of the
chain of matroids. The matroid M is hypermodular of rank 4 and has no new lines
as well.

Assume there were a modular cutM inM that is not principal. By Proposition 5
it contains a pair of disjoint coplanar lines. The restriction of this pair in M is on
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the list, say with index i. The modular cut Mi−1 generated by these two lines
in Mi−1 must contain clMi−1(∅), otherwise the lines would intersect in Mi, hence
also in M . Since {clM (X)|X ∈ Mi} ⊆ M we also must have clM (∅) ∈ M, a
contradiction toM not being principal. Thus, M is OTE. If M is finite, so is the
list P and hence M proving (i).

It suffices to show that for every point p ∈ E(M) every point q ∈ E(M) −
(E(M)∪ p) is parallel to a point in M/p. As the restriction of the line spanned by
p and q in M is a line in M it contains a point different from p and (ii) follows.
Finally, (iii) is Corollary 2. �

This embedding theorem has the following corollary:

Corollary 3. Kantor’s conjecture is reducable to the rank-4 case.

Proof. Assume Kantor’s conjecture holds for rank-4 matroids. Let M be a finite
hypermodular matroid of rank n > 4. All contractions of M by a flat of rank n− 4
are finite hypermodular matroids of rank 4, hence are embeddable into a modular
matroid. Using Theorem 11, it is easy to see that these contractions are also
strongly embeddable (as defined in [5], Definition 2) into a modular matroid. Hence
the matroidM satisfies the assumptions of Theorem 2 in [5], and thus is embedabble
into a modular matroid, implying the general case of Kantor’s Conjecture. �

Similarly, it is easy to show that our Conjecture 1 is reducible to the rank-4 case.
We have a second embedding theorem:

Theorem 12. Let M be a matroid of finite rank on a set E where E is finite or
countably infinite. Then M is embeddable in an OTE matroid of the same rank.

Proof. We proceed similar to the proof of Theorem 11. Let P be the list of all in-
tersectable non-modular pairs ofM . We build a chain of matroidsM = M0,M1 . . .,
where each matroid Mi+1 is the extension of Mi, where the modular defect of the
i-th pair on the list can no longer be decreased. Let M be the union of the ex-
tension chain as in the proof before. Then M is a matroid of finite rank with a
finite or countably infinite ground set. If there still are intersectable non-modular
pairs in M we repeat the process and obtain M1. This yields a chain of matroids
M,M1,M2, . . .. Let M be the union of that extension chain. Clearly, M is a ma-
troid. We claim it is OTE. For assume it had a non-trivial modular cut generated
by a non-modular pair of intersectable flats f1, f2. Since their rank is finite, there
exists an index k such that the matroid Mk contains a basis of f1 as well as of f2.
But then in the matroid Mk+1 the pair would not be intersectable anymore and
we get a contradiction. Thus, M is an OTE matroid. �

We have a similar result for hypermodular matroids:

Theorem 13. Every matroid M of finite rank r with finite or countably infinite
groundset is embeddable in a infinite hypermodular matroid M of rank r.

Proof. The proof mimics the one of Theorem 12, except that we have only the
non-modular pairs of hyperplanes in the list. This generalizes the technique of
free closure of rank-3 matroids and it is not difficult to show (see e.g. Kantor [5],
Example 5) that if M is non-modular (hence r ≥ 3), every contraction of M by a
flat of rank r−3 in M is an infinite projective non-Desarguesian plane and hence
M must be infinite, too. �
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6. On the Non-Existence of Certain Modular Pairs in Extensions of
OTE Matroids

In order to prove that the proper amalgam exists for any two extensions of a
finite rank-4 OTE matroid we need some technical lemmas. We will show that
certain modular pairs cannot exist in extensions of rank-4 OTE matroids. We need
some preparations for that.

Proposition 6. Let M be matroid with groundset T , let (X,Y ) be a modular pair
of subsets of T and let Z ⊆ X \ Y . Then (X \ Z, Y ) is a modular pair, too.

Proof. Submodularity implies r(X ∪ Y )− r(X) ≤ r((X \Z)∪ Y )− r(X \Z). Using
modularity of (X,Y ) we find

r(X \ Z) + r(Y ) = r(X ∪ Y ) + r((X \ Z) ∩ Y )− r(X) + r(X \ Z)

≤ r((X \ Z) ∪ Y ) + r((X \ Z) ∩ Y )

and another application of submodularity implies the assertion. �

By (D) we abbreviate the following list of assumptions:
• M is a matroid with groundset T and rank function r.
• M ′ is an extension of M with rank function r′ and groundset E′.
• X and Y are subsets of E′ such that X ∩T = lX and Y ∩T = lY are two

disjoint coplanar lines in M .
• X ∩ Y is a flat in M ′.

Proposition 7. Assume (D) and, furthermore, that X \T ⊆ Y and that (X,Y ) is
a modular pair of sets in M ′. Then x /∈ clM ′(Y ) for all x ∈ lX .

Proof. Assume to the contrary that there exists x ∈ lX with x ∈ clM ′(Y ). Then
coplanarity of lX and lY implies

X ∩ T = lX ⊆ lX ∨ lY = x ∨ lY ⊆ clM ′(Y ).

Hence X ⊆ clM ′(Y ), implying r′(Y ) = r′(X ∪ Y ) and modularity of (X,Y ) yields
r′(X) = r′(X ∩ Y ), a contradiction, because X ∩ Y is a flat in M ′ and a proper
subset of X. �

Lemma 4. Assume (D) and that M is of rank 4 (the rank of M ′ may be larger)
and, furthermore,

• (X,Y ) is a modular pair of sets inM ′ with X\T ⊆ Y and T * clM ′(X∪Y )
and

• l′ ⊆ T is a line disjoint coplanar to lX and lY , not lying in lX ∨ lY .
Then X ′ = (X \ T ) ∪ l′ implies r′(X ′) = r′(X).

Proof. Choose x ∈ lX and x′ ∈ l′ = X ′ ∩ T . Because lX and lY are coplanar and
X \T ⊆ Y we conclude clM ′(x∪Y ) = clM ′(X∪Y ). Similarly, we get clM ′(x

′∪Y ) =
clM ′(X

′ ∪ Y ).
By assumption M , being of rank 4, is spanned by l′, lX and lY and hence T ⊆

clM ′({x, x′} ∪ Y ). If we had x′ ∈ clM ′(x ∪ Y ), then this would imply that T ⊆
clM ′(x ∪ Y ) = clM ′(X ∪ Y ), contradicting the assumptions, thus x′ /∈ clM ′(x ∪ Y ).
In particular x′ /∈ clM ′(X).

Proposition 7 yields x /∈ clM ′(Y ). If we had x ∈ clM ′(x
′∪Y ) using the exchange-

axiom of the closure-operator we would find x′ ∈ clM ′(x ∪ Y ) which is impossible.
Hence we obtain x /∈ clM ′(x

′ ∪ Y ) = clM ′(X
′ ∪ Y ). In particular x /∈ clM ′(X

′).
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The choice of x and x′ implies clM (lX∪x′) = clM (l′∪x) and using X \T = X ′\T
we obtain clM ′(X ∪ x′) = clM ′(X

′ ∪ x). We conclude

r′(X ′) + 1 = r′(X ′ ∪ x) = r′(X ∪ x′) = r′(X) + 1,

hence r′(X ′) = r′(X). �

Lemma 5. Assume (D), M is a rank-4 OTE matroid and X \ T ⊆ Y , Y \ T ⊆ X
and T * clM ′(X ∪ Y ). Then (X,Y ) is not a modular pair in M ′.

Proof. OTE matroids are hypermodular, hence M is hypermodular, OTE and of
rank 4. By Theorem 10 (iii), it has two lines l1 und l2 that span M but are both
disjoint coplanar to lX and lY and disjoint to lX ∨ lY .

Assume that (X,Y ) were a modular pair in M ′. Let X ′ = (X \ T ) ∪ l1 and
Y ′ = (Y \ T ) ∪ l2. Then by Lemma 4

(4) r′(X ′) = r′(X) and r′(Y ′) = r′(Y ).

Since T ⊆ clM (l1, l2) ⊆ clM ′(X
′ ∪ Y ′) and T * clM ′(X ∪ Y ) we get

(5) r′(X ∪ Y ) < r′(X ∪ Y ∪ T ) = r′(X ′ ∪ Y ′ ∪ T ) = r′(X ′ ∪ Y ′).
By definition X ′ ∩ Y ′ = (X \ T ) ∩ (Y \ T ) = X ∩ Y and hence by sumodularity

r′(X ∪ Y ) + r′(X ∩ Y ) < r′(X ′ ∪ Y ′) + r′(X ′ ∩ Y ′) by (5)

≤ r′(X ′) + r′(Y ′)

= r′(X) + r′(Y ) by (4)

contradicting (X,Y ) being a modular pair. �

We come to the main result of this section.

Theorem 14. Let M be a rank-4 OTE matroid with groundset T and M ′ an
extension of M with ground set E′. Let X,Y ⊆ E′ be sets such that X ∩Y is a flat
in M ′ and the restrictions lX = X ∩ T and lY = Y ∩ T are disjoint coplanar lines
in M . If T * clM ′(X ∪ Y ) then (X,Y ) is not a modular pair in M ′.

Proof. Assume to the contrary that (X,Y ) were a modular pair in M ′. Let X ′ =
(X ∩ T ) ∪ (X ∩ Y ) and Y ′ = (Y ∩ T ) ∪ (X ∩ Y ). Applying Proposition 6 twice, we
find that the pair (X ′, Y ′) is modular in M ′, too, and satisfies the assumptions of
Lemma 5 yielding the required contradiction. �

By contraposition we get

Corollary 4. Let M be a rank-4 OTE matroid with groundset T and M ′ an ex-
tension of M . Let (X,Y ) be a modular pair of flats in M ′ such that (X ∩T, Y ∩T )
is a non-modular pair in M . Then T ⊆ clM ′(X ∪ Y ).

Regarding the case that (X ∩T, Y ∩T ) is a disjoint line-plane pair, we show the
following.

Lemma 6. Let M be a rank-4 OTE matroid with groundset T and rank function r
and let M ′ be an extension of M with groundset E′ and rank function r′. Assume
that X,Y ⊆ E′ are sets such that X ∩T = eX is a plane, Y ∩T = lY a line disjoint
from eX in M , and that X ∩ Y is a flat in M ′. Assume that there exists a line
lX ⊆ eX coplanar with lY such that r′((X ∩ Y )∪ eX) = r′((X ∩ Y )∪ lX) + 1. Then
(X,Y ) is not a modular pair in M ′.
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Proof. Assume, for a contradiction, (X,Y ) were a modular pair in M ′ and let
X ′ = (X ∩Y )∪eX . Since X ′ = X \Z with Z = X \ (Y ∪eX) ⊆ X \Y , we find that
by Proposition 6, (X ′, Y ) is a modular pair in M ′, too. Let X ′′ = (X ∩ Y ) ∪ lX .
By assumption r′(X ′) = r′(X ′′) + 1 and X ′′ ∩T is a line disjoint from and coplanar
to lY . Moreover X ′′ ∩ Y = X ∩ Y , thus X ′′ ∩ Y is a flat in M ′. Furthermore
submodularity implies r′(X ′ ∪ Y ) ≤ r′(X ′′ ∪ Y ) + 1. Because (X ′, Y ) is a modular
pair we obtain:

r′(X ′′ ∪ Y ) + 1 + r′(X ′′ ∩ Y ) ≥ r′(X ′ ∪ Y ) + r′(X ′ ∩ Y )

= r′(X ′) + r′(Y ) = r′(X ′′) + 1 + r′(Y )

and again submodularity of r′ implies that equality must hold throughout. Hence
(X ′′, Y ) is a modular pair and

r′(X ′′ ∪ Y ) + 1 = r′(X ′ ∪ Y ) = r′(X ′ ∪ Y ∪ T ) = r′(X ′′ ∪ Y ∪ T )

implying T * clM ′(X
′′ ∪ Y ). The pair (X ′′, Y ) now contradicts Theorem 14. �

7. The Proper Amalgam

We prove Theorem 5 by constructing the proper amalgam of two given extensions
of a rank-4 OTE matroid. In this section we define this amalgam and we analyse
some of its properties. Throughout, if not mentioned otherwise, we assume the
following situation.

Let M be a matroid with groundset T and rank function r and M1 and M2

be extensions of M with groundsets E1 resp. E2 and rank functions r1 resp. r2,
where E1 ∩ E2 = T and E1 ∪ E2 = E. All matroids are of finite rank with finite
or countably infinite ground set. We define two functions η : P(E) → Z und
ξ : P(E)→ Z by

η(X) = r1(X ∩ E1) + r2(X ∩ E2)− r(X ∩ T )

and ξ(X) = min{η(Y ) : Y ⊇ X}.
The following is immediate:

Proposition 8. The function ξ is subcardinal, finite and monotone. That is,

R1 : 0 ≤ ξ(X) ≤ |X|, for all X ⊆ E.
R1a : For all X ⊆ E there exist an X ′ ⊆ X, |X ′| <∞, such that ξ(X) = ξ(X ′).

R2 : For all X1 ⊆ X2 ⊆ E we have ξ(X1) ≤ ξ(X2).

Moreover ξ(X) ≤ η(X) for all X ⊆ E.

If ξ is submodular on P(E), then ξ is the rank function of an amalgam of M1

and M2 along M (see eg. [7], Proposition 11.4.2). This amalgam, if it exists, is
called the proper amalgam of M1 and M2 along M .

Now let L(M1,M2) be the set of all subsets X of E, so that X ∩E1 and X ∩E2

are flats in M1 resp. M2. Then it is easy to see that L(M1,M2) with the inclusion-
ordering is a complete lattice of subsets of E. Let ∧L and ∨L be the meet resp. the
join of this lattice. Clearly, for two sets X,Y ∈ L(M1,M2) we have X∧LY = X∩Y
and X ∨L Y ⊇ X ∪ Y . We need two results from [7].

Lemma 7 (see [7] Prop. 11.4.5.). For all X ⊆ E
ξ(X) = min{η(Y ) : Y ∈ L(M1,M2) and Y ⊇ X}.
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Lemma 8 (see [7] Lemma 11.4.6.). Let Y ⊆ E and Z be the smallest element of
L(M1,M2) containing Y , then η(Z) ≤ η(Y ) holds.

The proof of Lemma 11.4.6 in [7] must be slightly modified in the end in order
to make it work for matroids of finite rank but infinite groundset as well.

Proof. As in [7] for all X ⊆ E we define φ1(X) = cl1(X ∩ E1) ∪ (X ∩ E2) and
φ2(X) = (X ∩ E1) ∪ cl2(X ∩ E2). Following [7] we derive

η(φi(X)) ≤ η(X) for all X ⊆ E and i = 1, 2.

Now let Z be the minimal element in L(M1,M2) such that Y ⊆ Z and choose
Y ⊆W ⊆ Z maximal with

η(W ) ≤ η(Y ).

From Y ⊆W ⊆ φi(W ) ⊆ Z and η(φi(W )) ≤ η(W ) follows φi(W ) = W for i = 1, 2
and hence W = Z ∈ L(M1,M2) and Lemma 8 follows, also implying Lemma 7. �

Note that the proof of this lemma and part (R1a) of Proposition 8 imply that
Theorem 1 holds for infinite matroids of finite rank as well. Now we generalize a
result of Ingleton (cf. [7], Theorem 11.4.7):

Theorem 15. Assume that for any pair (X,Y ) of sets of L(M1,M2) the inequality
defining submodularity is satisfied for at least one of η or ξ. Then ξ is submodular
on P(E) and the proper amalgam of M1 and M2 along M exists.

Proof. Let X1, X2 ⊆ E. By Lemma 7 we find Yi ∈ L(M1,M2) such that Xi ⊆ Yi
and ξ(Xi) = η(Yi) for i = 1, 2. From η(Yi) = ξ(Xi) ≤ ξ(Yi) ≤ η(Yi) we conclude
that ξ(Xi) = ξ(Yi) = η(Yi). By assumption either η or ξ or both are submodular
on the pair of flats (Y1, Y2). Furthermore, X1 ∩ X2 ⊆ Y1 ∩ Y2 = Y1 ∧L Y2 and
X1 ∪X2 ⊆ Y1 ∪ Y2 ⊆ Y1 ∨L Y2. Hence, by Proposition 8

ξ(X1 ∩X2) + ξ(X1 ∪X2) ≤ ξ(Y1 ∧L Y2) + ξ(Y1 ∨L Y2).

Thus, if η is submodular on (Y1, Y2)

ξ(X1 ∩X2) + ξ(X1 ∪X2) ≤ η(Y1 ∧L Y2) + η(Y1 ∨L Y2)

≤ η(Y1) + η(Y2) = ξ(X1) + ξ(X2)

and otherwise

ξ(X1 ∩X2) + ξ(X1 ∪X2) ≤ ξ(Y1) + ξ(Y2) = ξ(X1) + ξ(X2).

Hence ξ is submodular on P(E) and the proper amalgam exists. �

Lemma 8 immediately yields

Lemma 9. If X,Y are in L(M1,M2), then η(X ∪ Y ) ≥ η(X ∨L Y ). Moreover we
have ξ(X ∪ Y ) = ξ(X ∨L Y ).

We finish this section with a small lemma.

Lemma 10. Additionally to the assumptions from the second paragraph of this
section let M be of rank 4. Let X ∈ L(M1,M2) with r(X ∩ T ) ≥ 2. Then ξ(X) =
η(X).
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Proof. Assume there exists Y ⊇ X such that ξ(X) = η(Y ) < η(X). Then r(Y ∩
T ) > r(X ∩ T ). Hence there exists an element t ∈ (Y ∩ T ) \ X, and because
X ∩ E1, X ∩ E2 and X ∩ T are flats we get

η(X ∪ t) = r1((X ∪ t) ∩ E1) + r2((X ∪ t) ∩ E2)− r((X ∪ t) ∩ T )

= r1(X ∩ E1) + 1 + r2(X ∩ E2) + 1− r(X ∩ T )− 1 = η(X) + 1.

But since M is of rank 4 and r((X ∪ t) ∩ T ) ≥ 3, the decrease of η for supersets
of X ∪ t is bounded by 1 and thus η(Y ) ≥ η(X ∪ t)−1 = η(X), a contradiction. �

8. Proof of Theorem 5

Our proof of Theorem 5 may be considered as a generalization of the proof of
Proposition 11.4.9. in [7]. Oxley refers to unpublished results of A.W. Ingleton. We
start with a lemma.

Lemma 11. Let M be a rank-4 OTE matroid with ground set T . Let M1 and M2

be two extensions of M with the ground sets E1, E2 and rank functions r1, r2. Let
E1∩E2 = T and E1∪E2 = E and let η, ξ and L(M1,M2) be defined as in Section 7.

Let (X,Y ) be a pair of elements of L(M1,M2) that violates the submodularity of
η. Then

(i) η(X) + η(Y )− η(X ∩ Y )− η(X ∪ Y )
= δ(X ∩ E1, Y ∩ E1) + δ(X ∩ E2, Y ∩ E2)− δ(X ∩ T, Y ∩ T ) = −1.

(ii) (X ∩ Ei, Y ∩ Ei) is a modular pair in Mi for i = 1, 2.
(iii) (X ∩T, Y ∩T ) are two disjoint coplanar lines or a disjoint line-plane pair

in M .
(iv) η(X) = ξ(X) and η(Y ) = ξ(Y ).

Proof. For part (i) a straightforward computation yields the first equality. The
second one follows from the fact that OTE-matroids are hypermodular and that
the modular defect in a hypermodular rank-4 matroid is bounded by 1. Parts (ii)
and (iii) are immediate from (i) and part (iv) follows from Lemma 10. �

Lemma 12. Under the assumptions of Lemma 11, let (X,Y ) be a pair of elements
of L(M1,M2) such that the submodularity of η in L(M1,M2) is violated, and either
ξ(X ∪ Y ) < η(X ∪ Y ) or ξ(X ∩ Y ) < η(X ∩ Y ). Then ξ is submodular for (X,Y )
in L(M1,M2).

Proof. Recall that ξ(X ∪Y ) ≤ η(X ∪Y ) and ξ(X ∩Y ) ≤ η(X ∩Y ) and ξ(X ∩Y ) =
ξ(X ∧L Y ) as well as ξ(X ∪ Y ) = ξ(X ∨L Y ) by Lemma 9. Moreover by Lemma 11
(iv), η(X) = ξ(X) and η(Y ) = ξ(Y ). Altogether this implies

ξ(X) + ξ(Y )− ξ(X ∧L Y )− ξ(X ∨L Y )

= ξ(X) + ξ(Y )− ξ(X ∩ Y )− ξ(X ∪ Y )

> η(X) + η(Y )− η(X ∩ Y )− η(X ∪ Y ) = −1

proving the assertion. �

We are now ready to tackle the proof of Theorem 5 which is an immediate
consequence of the following:

Theorem 16. Let M be a rank-4 OTE matroid. Then for any pair of extensions
of M the proper amalgam exists.
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Proof. Let T denote the ground set of M and M1,M2 be two extensions of M
with ground sets E1, E2 and rank functions r1, r2, such that E1 ∩ E2 = T and
E1 ∪ E2 = E. We show that for these two extensions the proper amalgam exists.
Let η and ξ be defined as in the previous section. By Lemma 15 it suffices to show
that for each pair (X,Y ) of elements of L(M1,M2) either η or ξ is submodular.

By cases, we check all possible pairs (X,Y ) of sets of L(M1,M2) where the
submodularity of η could be violated, and show that ξ(X ∪ Y ) < η(X ∪ Y ) or
ξ(X ∩ Y ) < η(X ∩ Y ) and hence (by Lemma 12) ξ is submodular on (X,Y ).

By Lemma 11, (X ∩Ei, Y ∩Ei) are modular pairs of flats in Mi for i = 1, 2 and
(X ∩ T, Y ∩ T ) is a pair of disjoint coplanar lines or a disjoint line-plane-pair.

Disjoint coplanar lines: Assume X ∩T = lX and Y ∩T = lY are two disjoint
coplanar lines. By Corollary 4 the fact that (X ∩Ei, Y ∩Ei) are modular pairs for
i = 1, 2 implies that T ⊆ clMi((X ∪ Y ) ∩Ei) for i = 1, 2. Let t ∈ T \ clM (lX ∪ lY ).
Then

η(X ∪ Y ∪ t)
= r1((X ∪ Y ∪ t) ∩ E1) + r2((X ∪ Y ∪ t) ∩ E2)− r((X ∪ Y ∪ t) ∩ T )

= r1((X ∪ Y ) ∩ E1) + r2((X ∪ Y ) ∩ E2)− r((X ∪ Y ) ∩ T )− 1

= η(X ∪ Y )− 1.

Hence ξ(X ∪ Y ) < η(X ∪ Y ).
Disjoint point-line pair: Assume X ∩ T = eX is a plane and Y ∩ T = lY is a

line disjoint from eX . By Lemma 6 for every line l ⊆ eX such that r(l ∨ lY ) = 3 we
must have

(6) ri((X ∩ Y ∩ Ei) ∪ eX) = ri((X ∩ Y ∩ Ei) ∪ l) for i = 1, 2.

Choose a point p1 ∈ eX . Since M must be hypermodular lX = (eX ∧ (lY ∨ p1))
is a line in M and p1 ∈ lX . Since Y ∩ E1 is a flat in M1 not containing p1 and
X ∩ Y ∩ E1 is a flat in M1 disjoint from T we have

r1((Y ∪ p1) ∩ E1) = r1(Y ∩ E1) + 1(7)
r1((X ∩ Y ∩ E1) ∪ p1) = r1(X ∩ Y ∩ E1) + 1.(8)

Choose a second point p2 ∈ lX such that p2 6= p1. Since lX and lY are coplanar,
we obtain

p2 ∈ lX ⊆ clM (p1 ∪ lY ) = clM (p1 ∪ (Y ∩ T )) ⊆ clM1(p1 ∪ (Y ∩ E1))

and thus

(9) r1((Y ∪ lX) ∩ E1) = r1((Y ∪ {p1, p2}) ∩ E1) = r1((Y ∪ p1) ∩ E1).

Furthermore, since {p1, p2} ⊆ lX ⊆ X:

(10) r1((X ∪ Y ∪ {p1, p2}) ∩ E1) = r1((X ∪ Y ) ∩ E1)
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Using these equations and the modularity of (X ∩ E1, Y ∩ E1) in M1 we compute

r1(X ∩ E1) + r1((Y ∪ {p1, p2}) ∩ E1)

(9)
= r1(X ∩ E1) + r1((Y ∪ p1) ∩ E1)

(7)
= r1(X ∩ E1) + r1(Y ∩ E1) + 1

(Mod.)
= r1((X ∪ Y ) ∩ E1) + r1(X ∩ Y ∩ E1) + 1

(10)
= r1((X ∪ Y ∪ {p1, p2}) ∩ E1) + r1(X ∩ Y ∩ E1) + 1

(8)
= r1((X ∪ Y ∪ {p1, p2}) ∩ E1) + r1((X ∩ Y ∩ E1) ∪ p1)

≤ r1((X ∪ Y ∪ {p1, p2}) ∩ E1) + r1((X ∩ Y ∩ E1) ∪ {p1, p2})

By submodularity of r1 the last inequality must hold with equality and hence

r1((X ∩ Y ∩ E1) ∪ lX) = r1((X ∩ Y ∩ E1) ∪ p1).(11)

By symmetry (8) and (11) are also valid for r2 and E2. Recalling thatX∩Y ∩T = ∅,
we compute

η((X ∩ Y ) ∪ eX) =

[
2∑
i=1

ri((X ∩ Y ∩ Ei) ∪ eX)

]
− r(eX)

(6)
=

[
2∑
i=1

ri((X ∩ Y ∩ Ei) ∪ lX)

]
− 3

(11)
=

[
2∑
i=1

ri((X ∩ Y ∩ Ei) ∪ p1)

]
− 3

(8)
=

[
2∑
i=1

(ri(X ∩ Y ∩ Ei) + 1)

]
− r(X ∩ Y ∩ T )− 3

= η(X ∩ Y )− 1.

Hence ξ(X ∩ Y ) < η(X ∩ Y ). �

9. Conclusion

Now if we put the embedding theorems together with Theorem 5, we get the
equivalence of three conjectures:

Theorem 17. The following statements are equivalent:
(i) All finite sticky matroids are modular. (SMC)
(ii) Every finite hypermodular matroid is embeddable in a modular matroid.

(Kantor’s Conjecture)
(iii) Every finite OTE matroid is modular.

Proof. (i) ⇒ (ii) These two statements can be reduced to the rank-4 case (see
Theorem 2 and Corollary 3). Now consider a finite hypermodular rank-4 matroid
M . Because of Theorem 11, it can be embedded into a finite rank-4 OTE matroid
M ′ that is sticky due to Theorem 5. If (i) holds then M ′ is modular and M can be
embedded into a modular matroid and (ii) holds.
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(ii) ⇒ (iii) Let M be a finite OTE matroid. It is also hypermodular. If (ii)
holds, it is embeddable into a modular matroid. Since M is OTE, it must itself
already be modular.

(iii) ⇒ (i) Let M be a finite sticky matroid. Because of Theorem 3 it must be
an OTE matroid and, if (iii) holds, must be modular and (i) holds. �

A slightly weaker conjecture than the (SMC) in the finite case, which could also
hold in the infinite case, is the generalization of Theorem 5 to arbitrary rank.

Conjecture 4. A matroid is sticky if and only if it is an OTE matroid.

Our proof of Theorem 5 frequently uses the fact that we are dealing with rank
4 matroids. We think there is a way to avoid Lemma 10, but the case checking in
the proof of of Theorem 16 seems to become tedious even for ranks only slightly
larger than 4. Moreover, we need a generalization of Theorem 10 (iii) in order to
generalize Lemma 4.
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