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THE VARCHENKO DETERMINANT FOR ORIENTED MATROIDS

WINFRIED HOCHSTÄTTLER AND VOLKMAR WELKER

Abstract. We generalize the Varchenko matrix of a hyperplane arrangement to ori-
ented matroids. We show that the celebrated determinant formula for the Varchenko
matrix, first proved by Varchenko, generalizes to oriented matroids. It follows that the
determinant only depends on the matroid underlying the oriented matroid and analogous
formulas hold for closed supertopes in oriented matroids. We follow a proof strategy for
the original Varchenko formula first suggested by Denham and Hanlon. Besides several
technical lemmas this strategy also requires a topological result on supertopes which is
of independent interest. We show that a supertope considered as a subposet of the tope
poset has a contractible order complex.

1. Introduction

Let L be an oriented matroid on a finite ground set E given as a set of covectors
X = (Xe)e∈E ∈ {+,−, 0}E. We denote by T = T (L) the set of topes in L and call for two
topes P = (Pe)e∈E and Q = (Qe)e∈E the set Sep(P,Q) = {e ∈ E | Pe = −Qe 6= 0} the
separator of P and Q. For the oriented matroid L and a field K we consider the polynomial
ring K[Ue | e ∈ E] in the set of variables Ue, e ∈ E. We call the following matrix V = V(L)
the Varchenko matrix of L. The matrix V is the (#T ×#T )-matrix over K[Ue | e ∈ E]
with rows and columns indexed by the topes T in a fixed linear order. For P,Q ∈ T the

entry VP,Q in row P and column Q is given by
∏

e∈Sep(P,Q)

Ue. In particular, all entries VP,P

on the diagonal are equal to 1. For F ∈ L we set a(F ) :=
∏
e∈E
Fe=0

Ue. In this paper we prove:

Theorem 1.1. Let V be the Varchenko matrix of the oriented matroid with covector set
L. Then

det(V) =
∏
F∈L

(1− a(F )2)bF .

for nonnegative integers bF .

Note, that a factor (1 − a(F )2) is zero if and only if F is a tope. In this case it turns
out that bF = 0. By the convention 00 = 1 it follows that det(V) 6= 0. In Corollary 5.7
we give an alternative formulation of the product formula which will shed more light on
the exponents bF . In particular, it will follow that det(V) only depends on the matroid
underlying the oriented matroid defined by L.
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If L is given as the set of covectors of a hyperplane arrangement in some Rn then V is the
Varchenko matrix of the hyperplane arrangement and Theorem 1.1 is Varchenko’s result
from [13]. Initially, Varchenko was motivated by the case of the reflection arrangements
of the symmetric group. In that case the matrix relates to Drinfeld–Jimbo quantized
KacMoody Lie algebras in type A. This relation had been unraveled by Schechtman and
Varchenko in [11]. There it is shown that the kernel of specializations of the matrix describe
the Serre relations for the algebra. Motivated by these facts Zagier [16] gave a proof of
the determinant formula for the reflection arrangement of the symmetric group based on
calculations in its group algebra. Work of Hanlon and Stanley [8] ties in the matrix and
its kernel with combinatorial aspects of the representation theory of the symmetric group
when all variables are substituted by a fixed complex number. For general arrangements
of hyperplanes, Denham and Hanlon [6] show that the matrix and its determinant can be
used in an approach to determine the Betti numbers of the Milnor fiber of the complexified
arrangements; that is the fiber in complex space of the product of linear forms defining the
hyperplanes at complex numbers different from 0.

After the original proof in [13] there were attempts in [6] and [7] to provide a cleaner
proof of Varchenko’s original result. Our approach generalizes ideas from [6] and [7] to
oriented matroids and replaces the problematic parts from both works by alternative ar-
guments. Recently, a new proof using a different strategy was published in [1]. We have
not studied this proof thoroughly and cannot judge if it generalizes to oriented matroids as
well. This paper is not the first to study oriented matroid generalizations of the Varchenko
determinant formula. In the works [14, 15] an approach is sketched for proving Theo-
rem 1.1 originally for general oriented matroids in [14] and restricted to oriented matroids
that allow a representation as a pseudo point configuration, only, in the subsequent [15].
Despite several attempts we were not able to follow the argumentation of either thesis.
Philosophically, our work parallels the article of Bry lawski and Varchenko [5] who give a
matroid generalization of a determinant formula by Schechtman and Varchenko [10] for yet
another important class of matrices arising in representation theory. That paper probably
also motivated [14] and [15].

Besides amendments and the generalization to oriented matroids the key new ingredient
in our proof of Theorem 1.1 is the following result which we consider of independent interest.
For its formulation, let R ∈ T be a fixed base tope and consider T as a partially ordered
set with order relation P �R Q if Sep(R,P ) ⊆ Sep(R,Q). We write TR if we consider T
with this partial order. For disjoint subsets S+, S− ⊆ E such that S+ ∪ S− 6= ∅ the set of
topes

T (S+, S−) :=
{
T ∈ T | Tf = + for all f ∈ S+ and Tf = − for all f ∈ S−

}
is called a supertope. By [4, Proposition 4.2.6] supertopes are exactly the T -convex sets,
i.e. the sets of topes that contain any shortest path between any of two of its members. We
call a supertope T (S+, S−) a closed supertope, if for all supertopes T (S̃+, S̃−) such that
S+ ⊆ S̃+, S− ⊆ S̃− but (S+, S−) 6= (S̃+, S̃−) necessarily T (S̃+, S̃−) ( T (S+, S−). In case
the oriented matroid is given by an arrangement of hyperplanes then a closed supertope
corresponds to a closed cone cut out by the hyperplanes from the arrangement. Note that
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our notion of closed supertope is more general than the notion of a cone from [4, Definition
10.1.1 (iii)].

One would expect that T -convex sets as subsets of the tope poset TR are contractible.
We will show that this is indeed the case.

Theorem 1.2. Let R ∈ T be the base tope of the poset TR and T (S+, S−) 6= ∅ be a
supertope. Then T (S+, S−) considered as subposet of TR is contractible.

The paper is organized as follows. In Section 2 we recall some basic notations and
results from oriented matroid theory and poset topology. We then use tools from poset
topology to derive results on the topology of complexes associated to oriented matroids in
Section 3. In Section 4 we provide the proof of Theorem 1.2 and exhibit why we cannot
follow the argumentation from [6] and [7]. In Section 5 we prove Theorem 1.1. The key
step in the proof is a factorization of the Varchenko matrix, one factor for each element
of the ground set E (Proposition 5.3). The key ingredient of the factorization is a result
on Möbius numbers which is a direct consequence of Theorem 1.2 (Corollary 4.5). Then
the determinant of each factor is analyzed. Möbius number implications of topological
results from Section 3 then show that each is block upper triangular with controllable
block structure (Lemma 5.6). Now Theorem 1.1 follows via basic linear algebra. As a
corollary we give a description of the numbers bF which implies that the determinant only
depends on the matroid underlying the oriented matroid. As a second corollary we show
that the result extends to closed supertopes and hence in particular to affine oriented
matroids.

2. Background on Oriented Matroids and Poset Topology

2.1. Poset Topology. In this paper we will associate various partially ordered sets, posets
for short, to oriented matroids. For our purposes it turns out to be useful to consider a
poset P as a topological space. We do this by identifying P with its order complex,
respectively the geometric realization of the order complex. Recall that the order complex
of a poset P is the simplicial complex whose chains are the linearly ordered subsets of P .
Using this identification we can speak about contractible and homotopy equivalent posets.
We will employ the following standard tools from poset topology (see [3] for details). For
their formulation we denote for a poset P and p ∈ P by P≤p the subposet {q ∈ P | q ≤ p}.
Analogously defined are P<p,P>p and P≥p. For p ≤ q in P we write (p, q)P for the open
interval P>p ∩ P<q and [p, q]P for the closed interval P≥p ∩ P≤q.

Proposition 2.1 (Quillen Fiber Lemma). Let P and Q be posets and f : P → Q a poset
map. If for all q ∈ Q we have that f−1(Q≤q) is contractible, then P and Q are homotopy
equivalent.

By simple induction on #S one derives the following corollary.

Corollary 2.2. Let P be a poset and S a subset such that P<s is contractible for all s ∈ S.
Then P \ S and P are homotopy equivalent.
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We will use poset topology also to prove results on the Möbius number of a poset P .
For that we take advantage of the following well known numerical consequence of the fact
that two posets are homotopy equivalent. For a poset P we denote by µ(P) the Möbius
number of P (see [12, Chapter 3]).

Proposition 2.3. For two homotopy equivalent posets P and Q we have µ(P) = µ(Q).
In particular, if P is contractible then µ(P) = 0.

2.2. Oriented Matroids. As mentioned in Section 1 we consider an oriented matroid L
on ground set E as a set of covectors X = (Xe)e∈E ∈ {+,−, 0}E. In our notation we
follow [4] which also contains all required background information on oriented matroids.
Frequently, we will use the following definitions and notations.

We order the covectors by the product order induced by the order 0 < +,− and write
0 = (0)e∈E for the unique minimal covector in this order. Following our conventions, for
a covector X we write (0, X)L for the open interval from 0 to X in L. It is well known
that the poset of covectors is graded and hence one can assign each covector X ∈ L a rank
rankL(X). The rank rank(L) of L is defined as the maximal rank of one of its covectors.

As usual for a covector X ∈ L we write X+ for {e ∈ E | Xe = +} and X− for
{e ∈ E | Xe = −}. In addition, we write z(X) = {e ∈ E | Xe = 0} for its zero-set.

Let A ⊆ E be a nonempty set. For F ∈ L we denote by F |A the covector (Fe)e∈A. For a
set K of covectors over E we then write K|A for the set {F |A | F ∈ K} of covectors over A.
For an oriented matroid L over E and a nonempty subset A ⊆ E the set of covectors L|A
defines an oriented matroid called the restriction of L to A. The contraction of A in L is
the oriented matroid L/A with covector set {F |E\A | F ∈ L, z(F ) ⊆ A}. In case A = {f}
is a singleton we also write L/f for L/A.

For two covectors X, Y ∈ L their composition X ◦ Y is defined by (X ◦ Y )+ = X+ ∪
(Y + \X−) and (X ◦ Y )− = X− ∪ (Y − \X+).

Next we repeat and extend some notation already stated in Section 1. We write T (L)
for the set of topes of L and simply T in case there is no danger of ambiguity. For P,Q ∈ T
we denote by Sep(P,Q) the separator of P and Q. Then for fixed R ∈ T the set of topes
T carries a poset structure defined by P �R Q if and only if Sep(R,P ) ⊆ Sep(R,Q) (see
[4, Definition 4.2.9]). We write TR to denote T with this poset structure. In order to
reduce the number of double subscripts we write write (P,Q)R for (P,Q)TR and [P,Q]R for
[P,Q]TR . For e ∈ E and P ∈ T we say that e does not define a proper face of P if the only
covector F ∈ L with F ≤ P and Fe = 0 is F = 0.

We will frequently encounter the situation where R,P ∈ T and e ∈ E are such that
+ = Re and − = Pe. Then after reordering and reorientation we can assume the following.

Situation 2.4. R = + · · ·+ and P = − · · · − + · · ·+ and e is the first coordinate of our
sign vectors.

In the rest of the paper, we will work in the general situation unless there is a technical
simplification when assuming Situation 2.4. In that case we will explicitly mention the
assumption.

Next we state well known facts about the topology of L and TR.
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Lemma 2.5 (Lemma 4.3.11 [4]). Let P,R ∈ T set

FR(P ) = {X ∈ (0, P )L | z(X) ⊆ Sep(P,R)} ⊆ L.
Then FR(P ) is a filter in (0, P )L. If P 6= ±R then FR(P ) is contractible.

For a covector X we set star(X) := {T ∈ T | X ≤ T}.

Theorem 2.6 (Theorem 4.4.2 [4]). Let L be an oriented matroid of rank r and R ∈ T .
For T1, T2 ∈ TR such that T1 �R T2 the order complex of (T1, T2)R is homotopy equivalent
to

(i) a sphere of dimension r− rankL(X)− 2 if [T1, T2]R equals star(X) for some covector
X,

(ii) a point, i.e. it is contractible, otherwise.

For e ∈ E and R ∈ T we write TR,e for the poset {T ∈ T | Te = −Re} ∪ {0̂} with 0̂
as its least element and the remaining poset structure induced from TR. For P ∈ TR,e we

write (0̂, P )R,e for the interval from 0̂ to P in TR,e. We set

(0̂, P )4R,e := {Q ∈ (0̂, P )R,e | ∃X ∈ L : [Q,P ]R = star(X)}.
The following is an immediate consequence of Theorem 2.6.

Corollary 2.7. Let R ∈ T , e ∈ E and P ∈ TR,e. Then (0̂, P )R,e and (0̂, P )4R,e are homotopy
equivalent.

Proof. Let

S = {Q ∈ (0̂, P )R,e | @X ∈ L : [Q,P ]R = star(X)}.
Then (0̂, P )4R,e = (0̂, P )R,e\S. For Q ∈ S Theorem 2.6 implies that ((0̂, P )R,e)>Q = (Q,P )R
is contractible. Now the assertion follows from Corollary 2.2. �

3. Some Oriented Matroid Topology

At the end of the last section we already recalled some known facts about the topology
of posets associated to oriented matroids. This section now contains oriented matroid
generalizations of topological results stated in [6] and [7] for hyperplane arrangements.

For P ∈ TR,e we set S = E \ Sep(P,R) and S ′ = Sep(P,R) \ {e}. Let B ∈ T (L|S′) be
the unique tope from T (L|S′) such that Bf = Pf = −Rf for all f ∈ S ′. Let G ∈ T (L|S)
be the unique tope from T (L|S) such that Gf = Pf for all f ∈ S.

We define

WR,e(P ) = {F ∈ (0, P )L | Fe = −Re, F |S = G, F |S′ ≤ B} ⊆ L.
We consider WR,e(P ) as a poset with order relation inherited from L. Assuming Situa-
tion 2.4 we have:

WR,e(P ) =
{
F ∈ (0, P )L | Fe = −, F |S = {+}S, F |S′ ≤ {−}S

′
}
⊆ L.

We consider the following map:
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αP :

{
(0̂, P )4R,e → L

C 7→ αP (C) := X, for the X∈L
such that (C,P )R=star(X)

Lemma 3.1. Let R ∈ T and e ∈ E. For P ∈ TR,e and C ∈ (0̂, P )4R,e the following holds:

(i) z(αP (C)) = Sep(C,P ) and αP (C) ∈ WR,e(P ).

(ii) αP is a poset map from (0̂, P )4R,e to WR,e(P ).

(iii) For F ∈ WR,e(P ) the tope F ◦R is the unique maximal element in α−1P (WR,e(P )≤F ).

Proof. We assume Situation 2.4.

(i) By definition [C,P ]R = star(X) = [X ◦ R,X ◦ (−R)]R. Hence, X ≤ P and Xe =
Ce = Pe = −, implying z(X) = Sep(C,P ) and αP (C) = X ∈ WR,e(P ).

(ii) Since C �R C ′ in (0̂, P )4R,e implies Sep(C ′, P ) ⊆ Sep(C,P ) it follows from (i) that
αP (C) ≤ αP (C ′). Hence αP is a map of posets.

(iii) Let F, F ′ ∈ WR,e(P ), F ′ ≤ F and C = F ◦ R. We have C ′ ∈ α−1P (F ′) if and only if
[C ′, P ]R = [F ′ ◦R,F ′ ◦ (−R)]R. As z(F ) ⊆ z(F ′) this implies Sep(C ′, R) ⊆ Sep(C,R)
and hence the assertion.

�

The following proposition allows us to determine the topology of the posets (0̂, P )R,e
through known results on WR,e(P ).

Proposition 3.2. Let R ∈ T and e ∈ E such that Re = + and P ∈ TR,e. Then:

(i) The order complex of the interval (0̂, P )R,e and the order complex of WR,e(P ) are
homotopy equivalent.

(ii) For e that do not define a proper face of P the order complex of WR,e(P ) is contractible
if ±R 6= P and homotopy equivalent to a (rank(L)− 2)-sphere if −R = P .

Proof. (i) From Corollary 2.7 it follows that (0̂, P )R,e and (0̂, P )4R,e are homotopy equiv-
alent.

Using Lemma 3.1 (iii) it follows that the order complex of each fiber α−1P (WR.e(P )≤F )
for F ∈ WR,e(P ) is a cone and hence contractible. Now the Quillen Fiber Lemma,

Proposition 2.1, shows that the order complexes of (0̂, P )4R,e and WR,e(P ) are homo-
topy equivalent.

(ii) Since e does not define a proper face of P , we have WR,e(P ) = FR(P ). If P = −R then
WR,e(P ) = (0, P )L and hence is homotopy equivalent to a (rank(L) − 2)-sphere. If
P 6= ±−R then WR,e(P ) = FR(P ) and Lemma 2.5 shows that WR,e(P ) is contractible.

�

We summarize the results in the following theorem.

Theorem 3.3. Let P ∈ TR,e such that e does not define a proper face of P . Then the

interval (0̂, P )R,e is contractible if −R 6= P and homotopy equivalent to a (rank(L) − 2)-
sphere if −R = P .
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Proof. The result is an immediate consequence of Proposition 3.2(i) and (ii). �

The well known connection of homotopy type and Möbius-number from Proposition 2.3
yields.

Corollary 3.4. Let P ∈ TR,e such that e does not define a proper face of P . Then the

Möbius number µ((0̂, P )R,e) is 0 if −R 6= P and (−1)rank(L) if −R = P .

The next result overlaps with Theorem 3.3 but also covers some of the cases where e
defines a face of P . Note that e defines a proper face of R if and only if e defines a proper
face of −R. Hence the interval (0̂,−R)R,e is covered by Theorem 3.3 if e does not define a
proper face of R and it is covered by Theorem 3.5 otherwise.

Theorem 3.5. Let R ∈ T and let e ∈ E define a proper face of R. Let F ∈ L be the
maximal covector such that F ≤ R and Fe = 0 and choose Ptop ∈ TR,e \ star(F ). Then

(0̂, Ptop)R,e is contractible. In particular, µ((0̂, Ptop)R,e) = 0.

Proof. Let P ∈ (0̂, Ptop)R,e. Then by the gate property [4, Exercise 4.10] the tope Q =
F ◦ P ∈ star(F ) is the unique tope in star(F ) such that for all O ∈ star(F ) we have

Sep(P,O) = Sep(P,Q) ∪ Sep(Q,O)

∅ = Sep(P,Q) ∩ Sep(Q,O).

Since Fe = 0 it also follows that Qe = −. Since F ≤ R, clearly Sep(R,Q) = Sep(R,F ◦P ) ⊆
Sep(R,P ) and hence Q �R P . This shows Q ∈ (0̂, Ptop)R,e. Now let Q ≤R Q′. Then
F ◦Q �R F ◦Q′. Since F ≤ R it follows that F ◦Q �R Q. Obviously F ◦ (F ◦Q) = F ◦Q.

This shows that the map : ◦F : (0̂, Ptop)R,e → (0̂, Ptop)R,e is a closure operator. And

hence (0̂, Ptop)R,e is homotopy equivalent to its image (see e.g, [3, Corollary 10.12]).

Since Ptop 6∈ star(F ) and F ◦ Ptop ∈ star(F ) ∩ (0̂, Ptop)R,e, it also follows that F ◦ Q �R
F ◦ Ptop for all Q ∈ (0̂, Ptop)R,e. Hence the image of ◦F has a maximal element and hence
is contractible. �

4. Supertopes

In this section we identify supertopes that are relevant for our purposes and provide the
proof of Theorem 1.2. We also deduce Corollary 4.3, which is crucial for the derivation of
Theorem 1.1 from Theorem 1.2. Throughout this section we assume Situation 2.4.

In order to apply the Quillen fiber in the proof of Theorem 1.1 we need the following
lemma.

Lemma 4.1. Let S+, S− ⊆ E such that S+ ∩ S− = ∅, S+ ∪ S− 6= E and f ∈ E \ (S+ ∪
S−). Let T f denote the set of topes of L \ f and T fR\f the corresponding tope poset with

base polytope R \ {f}. Consider the poset map πf : T (S+, S−) → T f (S+, S−) given by
restriction. Let Q ∈ T f (S+, S−). Then

(πf )−1(T f�Q) = T (Q+, S−).
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Proof. Let Q̃ ∈ T f�Q∩T f (S+, S−). As R\f is all positive, we must have S− ⊆ Q̃− ⊆ Q− and

hence Q+ ⊆ Q̃+ implying (πf )−1(Q̃) ⊆ T (Q+, S−). On the other hand, if Q̂ ∈ T (Q+, S−),

then S− ⊆ Q̂− ⊆ Q− ∪ {f}, S+ ⊆ Q+ ⊆ Q̂+ ∪ {f}. As f 6∈ S+ ∪ S− we have that πf (Q̂)

is well defined and πf (Q̂) � Q. �

We need another preparatory lemma for the proof of Theorem 1.2.

Lemma 4.2. Let L be an oriented matroid on E and T be the set of its topes. Let
E = S+∪̇S−∪̇S∗ be a partition of the ground set into nonempty sets S+, S− and S∗. If for
all f ∈ S∗ there exists T f ∈ T such that

T fg =


+ if g ∈ S+

− if g ∈ S−
− if g ∈ S∗ \ {f}
+ if g = f,

then either there exists a tope Tmax ∈ T satisfying

Tmax
g =

 + if g ∈ S+

− if g ∈ S−
− if g ∈ S∗,

or there exists a tope Tmin ∈ T satisfying

Tmin
g =

 + if g ∈ S+

− if g ∈ S−
+ if g ∈ S∗

or a covector Y ∈ L satisfying

Yg =


+ if g ∈ S+

− if g ∈ S−
0 if g ∈ S0

− if g ∈ S∗ \ S0

for some set ∅ 6= S0 ⊆ S∗.
Hence, for a fixed R ∈ T the subposet T (S+, S−) of TR either has a unique maximal

element or it has a unique minimal element. In particular, it is contractible.

Proof. We proceed by induction on |S∗|. If |S∗| = 1 the assertion is trivial. If S∗ = {f, g},
then, either f and g are antiparallel and we find a Y as required, or on a shortest path
from T f to T we must pass through Tmax or Tmin . Assume |S∗| ≥ 3 and let g ∈ S∗. If
there exists some f ∈ S∗ \{g} such that eliminating g between T g and T f yields a covector

Xf such that Xf
f ∈ {0,−}, then X ◦ T h for h ∈ S∗ \ {f, g} is an element Tmax . Hence we
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may assume that for all f ∈ S∗ \ {g} we find X satisfying

Xf
h =


+ if h ∈ S+

− if h ∈ S−
− if h ∈ S∗ \ {f, g}
+ if h = f
0 if h = g.

Then the image of Xf in L/g satisfies the assumptions of the lemma in the oriented
matroid L/g. By induction we find either an appropriate Ỹ ∈ L/g which clearly yields a
Y as required in L, or we find an element Xmax ∈ L such that

Xmax
h =


+ if h ∈ S+

− if h ∈ S−
− if h ∈ S∗ \ {g}
0 if h = g

and Xmax ◦ T f is as required for f ∈ S∗ \ g and similarly Xmin ◦ T g in the remaining case.
The assertion about the topology of T (S+, S−) now follows from the fact that either

Tmax , Tmin of Y ◦ (−R) has a unique minimal or a unique maximal element.
�

Now we are in position to prove Theorem 1.2.

Proof of Theorem 1.2. We proceed by induction on |E \ (S+ ∪S−)|. If S+ ∪S− = E, then
T (S+, S−) is a singleton and thus contractible. If S+ ∪ S− 6= E, then S∗ := E \ (S+ ∪
S−) 6= ∅. If for all f ∈ S∗ there exists T f as in Lemma 4.2, T (S+, S−) is contractible
by Lemma 4.2. Hence we may assume that there exists f ∈ S∗ such that T f 6∈ T . Let
T fR\{f} denote the tope poset in the oriented matroid L \ f with base tope R \ {f}. By

inductive assumption its subposet T f (S+, S−) is contractible. Consider the poset map
πf : T (S+, S−)→ T f (S+, S−) given by restriction. Let Q ∈ T f (S+, S−). By Lemma 4.1

(πf )−1(T f�Q) = T (Q+, S−).

Clearly S+ ⊆ Q+. If S+ ( Q+, then (πf )−1(Q�) is contractible by inductive assumption.
Consider the case that S+ = Q+. By the choice of f the preimage (πf )−1(Q) is a singleton
{Z} with Z = −. Hence, this is the unique maximal element in (πf )−1(Q�) and that fiber
is also contractible. Hence by Proposition 2.1 T (S+, S−) and T f (S+, S−) are homotopy
equivalent and the claim follows. �

Corollary 4.3. Let R ∈ T be the base tope of the poset TR. Let e 6∈ S ⊆ E. Then∑
Q∈T (∅,{e})

S=Sep(P,Q)∩Sep(Q,R)

µ((0̂, Q)R,e) =

{
−1 if S = ∅
0 if S 6= ∅ .

Proof. We prove the assertion by induction on #S.
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If S = ∅ then ∑
Q∈T (∅,{e})

S=Sep(P,Q)∩Sep(Q,R)

µ((0̂, Q)R,e) =
∑

0̂<R,eQ≤R,eP

µ((0̂, Q)R,e)

= −µ((0̂, 0̂)R,e)

= −1.

Assume #S > 0. Set

T+ = {f ∈ E \ (S ∪ {e}) | Rf = +} and T− = {f ∈ E \ S | Rf = −} ∪ {e}.
Then ∑

Q∈T (∅,{e})
Sep(P,Q)∩Sep(Q,R)⊆S

µ((0̂, Q)R,e) =
∑

Q∈T (T+,T−)

µ((0̂, Q)R,e)(1)

The right hand side of (1) is the sum of Möbius function values from 0̂ to P where
P 6= 0̂ ranges by Theorem 1.2 over the elements of a contractible poset. By classical
Möbius function theory (see e.g. [3, (9.14)]) this sum then is −µ(0̂, 0̂) = −1 plus the
Möbius number of the poset. Since the poset is contractible its Möbius number is 0 and
we have shown that:

∑
Q∈T (∅,{e})

Sep(P,Q)∩Sep(Q,R)⊆S

µ((0̂, Q)R,e) = −1(2)

Now rewrite the right hand side of (2) as:

∑
Q∈T (∅,{e})

Sep(P,Q)∩Sep(Q,R)⊆S

µ((0̂, Q)R,e) =
∑
T⊆S

∑
Q∈T (∅,{e})

Sep(P,Q)∩Sep(Q,R)=T

µ((0̂, Q)R,e)(3)

By induction the summand
∑

Q∈T (∅,{e})
Sep(P,Q)∩Sep(Q,R)=T

µ((0̂, Q)R,e) is 0 for T 6= S, ∅ and −1 for

T = ∅. Thus combining (2) and (3) we obtain:

−1 =
∑

Q∈T (∅,{e})
Sep(P,Q)∩Sep(Q,R)⊆S

µ((0̂, Q)R,e)

= −1 +
∑

Q∈T (∅,{e})
Sep(P,Q)∩Sep(Q,R)=S

µ((0̂, Q)R,e)

From this we conclude ∑
Q∈T (∅,{e})

Sep(P,Q)∩Sep(Q,R)=S

µ((0̂, Q)R,e) = 0.
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�

R

P

(+,+,+)

(+,+,-) (+,-,+)

(-,-,+)

(+,+,-)

(+,-,+)

(+,+,+)

(-,-,+)

1

2

3

Figure 1. The shaded region has two maximal elements

Remark 4.4. Denham and Hanlon mention in [6] that a “routine argument shows” that
the poset on {Q ∈ T (∅, {e}) | Sep(P,Q) ∩ Sep(Q,R) = S} induced by TR always contains
a unique maximal element. While this can be shown to hold true for line arrangements,
it fails already in 3-dimensional hyperplane arrangements. In Figure 1, we provide a
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counterexample. The element e is supposed to be the drawing plane. The tope R is below
and P and the shaded region above e. The separator Sep(P,R) without e is given by the
thin lines, while the intersection of the remaining hyperplanes with e are the bold lines. S
is given by the two bold lines that intersect in a vertex at R. The poset induced on the
shaded regions is sketched on the bottom of the figure. While it is contractible it has two
maximal elements.

5. The Varchenko matrix

In this section we prove Theorem 1.1 and its corollaries. The proof consists of a factor-
ization of the matrix V into matrices with controllable determinant.

Recall, that we assume T to be linearly ordered. For any sign pattern ε = (ε1, ε2) ∈
{+,−}2 let Ve,ε be a (`× `)-matrix with rows indexed by T ({e}, ∅) for ε1 = +, T (∅, {e})
for ε1 = − and columns indexed by T ({e}, ∅) for ε2 = +, T (∅, {e}) for ε2 = −. For a
tope P indexing a row and a tope Q indexing a column we set Ve,ε

P,Q = VP,Q. We set

` = #T ({e}, ∅) = #T (∅, {e}). Note that ` = 1
2
#T is independent of e. We fix a linear

ordering on E and set M e to be the (`×`)-matrix with rows indexed by T (∅, {e}), columns
indexed by T ({e}, ∅) and entries

M e
Q,R =

{
−µ((0̂, Q)R,e) ·VQ,R if e is the maximal element of Sep(Q,R) and

0 otherwise,

where Q ∈ T (∅, {e}) and R ∈ T ({e}, ∅). We write I` for the (` × `)-identity matrix and
define

Me =

(
I` M e

M e I`

)
.

Lemma 5.1. Let e be the maximal element of E. Then Ve,(−,+) factors as

Ve,(−,+) = Ve,(−,−) ·M e.(4)

Proof. For P ∈ T (∅, {e}) and R ∈ T ({e}, ∅) the entry in row P and column R on the left
hand side of (4) is VP,R. On the right hand side the corresponding entry is:∑

Q∈T (∅,{e})

VP,Q ·M e
Q,R = −

∑
Q∈T (∅,{e})

µ((0̂, Q)R,e) ·VP,Q ·VQ,R

By definition for Q ∈ T (∅, {e}) we have

VP,Q ·VQ,R = VP,R ·
∏

f∈Sep(P,Q)∩Sep(Q,R)

U2
f

Thus the claim of the lemma is proved once we have shown that for a fixed subset S ⊆ E
and fixed Q,R we have:∑

Q∈T (∅,{e})
S=Sep(P,Q)∩Sep(Q,R)

µ((0̂, Q)R,e) =

{
0 if S 6= ∅
−1 otherwise.

.(5)

But this is the content of Corollary 4.3 and we are done. �
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Next we use the matrices Me to factorize V. The following lemma yields the inductive
step in the factorization.

Lemma 5.2. Let e be the maximal element of E and let VUe=0 be the matrix V after
evaluating Ue to 0. Then

V = VUe=0 · Me

Proof. Let T (∅, {e}) = {P1, . . . , P`} and T ({e}, ∅) = {P`+1, . . . , P2`} be numbered such
that −Pi = P`+i for 1 ≤ i ≤ `. Assume the rows and columns of V are ordered according
to this numbering of T . This yields a block decomposition of V as

V =

(
Ve,(−,−) Ve,(−,+)

Ve,(+,−) Ve,(+,+)

)
.

Since VP,Q = V−P,−Q it follows that Ve,(−,−) = Ve,(+,+) and Ve,(−,+) = Ve,(+,−). Then
by Lemma 5.1 we know Ve,(−,+) = Ve,(−,−) ·M e and hence

Ve,(+,−) = Ve,(−,+) = Ve,(−,−) ·M e = Ve,(+,+) ·M e.

Thus

V =

(
Ve,(−,−) 0

0 Ve,(+,+)

)
·
(
I` M e

M e I`

)
(6)

=

(
Ve,(−,−) 0

0 Ve,(+,+)

)
· Me.

Now the monomial VP,Q has a factor Ue if and only if P ∈ T (∅, {e}) and Q ∈ T ({e}, ∅)
or P ∈ T ({e}, ∅) and Q ∈ T (∅, {e}). Hence

VUe=0 =

(
Ve,(−,−) 0

0 Ve,(+,+)

)
.(7)

Combining (6) und (7) yields the claim. �

Now we are in position to state and prove the crucial factorization.

Proposition 5.3. Let E = {e1 ≺ · · · ≺ er} be a fixed ordering. Then

V =Me1 · · ·Mer .

Proof. We will prove by downward induction on i that

V = VUi=···=Ur=0 · Mei · · ·Mer .(8)

For i = r the assertion follows directly from Proposition 5.3. For the inductive step
assume i > 1 and (8) holds for i. We know from Lemma 5.2 that if we choose a linear
ordering on E for which ei−1 is the largest element then

V = VUi−1=0 · N ,(9)
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where N = (NQ,R)Q,R∈T is defined as

NQ,R =


1 if Q = R

−µ((0̂, Q)R,ei−1
)VQ,R if R ∈ T ({ei−1}, ∅), Q ∈ T (∅, {ei−1})

−µ((0̂,−Q)−R,ei−1
)VQ,R if −R ∈ T ({ei−1}, ∅),−Q ∈ T (∅, {ei−1})

0 otherwise

.

This shows:

(NQ,R)Ui=···=Ur=0



1 if Q = R

−µ((0̂, Q)R,ei−1)VQ,R if ei−1 is the largest element in Sep(Q,R),
R ∈ T ({ei−1}, ∅), Q ∈ T (∅, {ei−1})

−µ((0̂,−Q)−R,ei−1)VQ,R if ei−1 is the largest element in Sep(Q,R),
−R ∈ T ({ei−1}, ∅),−Q ∈ T (∅, {ei−1})

0 otherwise

.

But then NUi=···=Ur=0 =Mei−1 .
Now (9) implies

VUi=···=Ur=0 = VUi−1=···=Ur=0 · NUi=···=Ur=0

= VUi−1=···=Ur=0 · Mei−1

With the induction hypothesis this completes the induction step by

V = VUi=···=Ur=0 · Mei · · ·Mer

= VUi−1=Ui=···=Ur=0 · Mei−1 · · ·Mer .

For i = 1 the matrix VU1=···=Ur=0 is the identity matrix. Thus (8) yields:

V =Me1 · · ·Mer .

�

Let F ∈ L and e ∈ z(F ) be the maximal element of z(F ). Define T F,e as the set of topes
P ∈ T such that F is the maximal element of L for which Fe = 0 and F ≤ P .

Proposition 5.4. For any pair of topes Q,R ∈ T F,e we have

µ((0̂,±Q)±R,e) =

{
−(−1)rank(L|z(F ) if Qz(F ) = −Rz(F )

0 otherwise
.

Proof. By the definition of T F,e we have F ≤ Q,R. Thus, if we consider the poset
TRz(F ),e in the contraction L/z(F ) we find that the interval (0̂,±Q)±R,e is isomorphic to

(0̂,±Qz(F ))±Rz(F ),e. Furthermore, since F is the maximal element satisfying Fe = 0 and
F ≤ Q, e does not define a proper face of Qz(F ). Hence the claim follows from Corol-
lary 3.4. �

We define bF,e = 0 if e is not the maximal element of z(F ) and 1
2
#T F,e otherwise. Since

P 7→ F ◦ (−P ) is a perfect pairing on T F,e it follows that T F,e contains an even number of
topes. In particular, bF,e is an integer. We denote byMF,e the submatrix ofMe obtained
by selecting rows and columns indexed by T F,e.
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Lemma 5.5. Let F ∈ L and e ∈ z(F ). If T F,e 6= ∅. then

det(MF,e) = (1− a(F )2)bF,e .

Proof. By definition of Me we obtain that for Q,R ∈ T F,e we have

Me
Q,R =



1 if Q = R

−µ((0̂, Q)R,e) ·VQ,R if e is the largest element of Sep(Q,R),
R ∈ T ({e}, ∅), Q ∈ T (∅, {e})

−µ((0̂,−Q)−R,e) ·VQ,R if e is the largest element of Sep(Q,R),
−R ∈ T ({e}, ∅),−Q ∈ T (∅, {e})

0 otherwise

.

If Qz(F ) = −Rz(F ) then VQ,R = a(F ). Using Proposition 5.4 we find

Me
Q,R =


1 if Q = R

−(−1)rank(L|S)a(F ) if Q = F ◦ (−R)
e largest element of Sep(Q,R)

0 otherwise

.

We order rows and columns of MF,e so that the elements R and F ◦ (−R) are paired in
consecutive rows and columns. With this orderingMF,e is a block diagonal matrix having
along its diagonal bF,e two by two matrices(

1 −(−1)rank(L|z(F ))a(F )
−(−1)rank(L|z(F ))a(F ) 1

)
if e is the maximal element of z(F ) and identity matrices otherwise. In any case we find
det(MF,e) = (1− a(F )2)bF,e as desired. �

Lemma 5.6. After suitably ordering T the matrixMe is the block lower triangular matrix
with the matrices MF,e for F ∈ L with Fe = 0 and T F,e 6= ∅ on the main diagonal.

Proof. We fix a linear ordering of T such that for fixed e ∈ E and F ∈ L the topes from
T F,e form an interval and such that the topes from T F,e precede those of T F ′,e if F < F ′.

For this order the claim follows if we show that the entry (Me)Q,R is zero whenever
R ∈ T F,e, Q ∈ T F ′,e and F ′ < F .

If Qe = Re then by Q 6= R we have (Me)Q,R = 0. Hence it suffices to consider the case
Qe 6= Re.

If Q 6∈ star(F ), Q ∈ T (∅, {e}) and R ∈ T ({e}, ∅) then it follows from Theorem 3.5 that
µ((0̂, Q)R,e) = 0 and therefore (Me)Q,R = 0. Analogously if Q 6∈ star(F ), −Q ∈ T (∅, {e})
and −R ∈ T ({e}, ∅) then µ((0̂,−Q)−R,e) = 0 and therefore (Me)Q,R = 0.

On the other hand, if Q ∈ star(F ), then in particular F ≤ Q. Since by definition of
T F ′,e we have that F ′ is the maximal covector such that F ′ ≤ Q and F ′e = 0 it follows
that F ≤ F ′. Since F 6= F ′ we must have that F < F ′, i.e. (Me)Q,R is an entry above the
diagonal and we are done.

�
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Proof of Theorem 1.1. After fixing a linear order on E it follows from Proposition 5.3 that
detV is the product of the determinants ofMe for e ∈ E. By Lemma 5.6 the determinant
of eachMe is a product of determinants ofMF,e for e ∈ E and F ∈ L for which T F,e 6= ∅.
Then Lemma 5.5 completes the proof. �

As an immediate consequence of the proof we can give a refined version of Theorem 1.1
which also implies that det(V) only depends on the matroid Mat(L) underlying the oriented
matroid L.

Let us first state an additional fact about an oriented matroid L over ground set E and
its underlying matroid Mat(L). Recall, that for a fixed e ∈ E the bounded topes of the
affine oriented matroid defined by e in L are the topes in L for which e does not define a
proper face. By [4, Theorem 4.6.5] the cardinality of this set of topes is given by twice the
β-invariant β(Mat(L)) of Mat(L) and hence is independent of e.

Corollary 5.7. Let V be the Varchenko matrix of the oriented matroid with covector set
L and M = Mat(L) the matroid underlying L. Then

det(V) =
∏
A⊆E

A is closed in M

(1−
∏
e∈A

U2
e )mA ,

where mA is the product of number of topes in the contraction L/A and of β(Mat(L|A)).
In particular, it follows that det(V)) only depends on the matroid M = Mat(L).

Proof. Fix A ⊆ E. Using the notation of Theorem 1.1 it follows that mA =
∑

F∈L
z(F )=A

bF .

The number of summands equals the number of topes in the contraction L/A of A. The
latter only depends on Mat(L/A) which only depends on Mat(L). By Lemma 5.5 we have
bF = bF,e where e is the maximal element of z(F ). Now bF,e is half the number of elements
of T F,e, which is the set of topes P for which F is the unique maximal element of L such
that F ≤ P and Fe = 0. The map sending P to Pz(F ) is then a bijection between the topes
in T F,e and the topes of L|z(F ) for which e does not define a proper face. As mentioned
above, by [4, Theorem 4.6.5] the number of topes in L|z(F ) for which e ∈ z(F ) does not
define a proper face in L|z(F ) is independent of e and coincides with twice the beta invariant
β(Mat(L|z(F ))). Hence we find that bF,e = β(Mat(L|z(F ))). Since for a nonempty subset
the matroid Mat(L|A) depends on A and Mat(L) only it follows that mA is an invariant of
Mat(L). �

Finally, as a second corollary we extend Theorem 1.1 to row and column selected sub-
matrices of V corresponding to topes in a closed supertope. For oriented matroids coming
from hyperplane arrangements this formula can also be found in [1] and [7].

Corollary 5.8. Let V be the Varchenko matrix of the oriented matroid with covector set
L. For a subset E ′ ⊆ E and signs ε = (εe)e∈E′ ∈ {+,−}E

′
such that T (ε+, ε−) is a

closed supertope let Vε be the matrix constructed from V by selecting all rows and columns
corresponding to topes P ∈ T for which Pe = εe for e ∈ E ′.
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Then

det(Vε) =
∏
F∈L

Fe 6=0,e∈E′

(1− a(F )2)bF,ε ,

for some numbers bF,ε.

Proof. Consider the case E ′ = {e}. Order T = {P1 ≺ · · · ≺ P2s} such that (P1)e = · · · =
(Ps)e = + and Pi+s = −Pi for 1 ≤ i ≤ s. Then Vε is a block diagonal matrix with two
blocks identical to Vε on the main diagonal. By Theorem 1.1 we have

detVUe=0 =
∏
F∈L
Fe 6=0

(1− a(F ))bF

= det(Vε)
2.

Since the main diagonal in Vε is constant 1 and since this are the only constant entries it
follows that det(Vε) has constant term +1. It follows that

det(Vε) =
∏
F∈L
Fe 6=0

(1− a(F ))
bF
2 .

Now induction on the cardinality of E ′ proves the assertion. �

Remark 5.9. If E ′ = {e} in Corollary 5.8, i.e. in the case of an affine oriented matroid,
then [4, Theorem 4.6.5] implies, that det(Vε) is still a matroid invariant.

Remark 5.10. The formulas in Theorem 1.1 and Corollary 5.7 are very explicit in terms of
combinatorial invariants of the matroid and are useful for further analysis of the matrix.
Nevertheless, it seems computationally hard to write down the formulas in concrete cases.
We refer to [9] for an analysis of reflection arrangements of the symmetric groups. The
case that originally motivated Varchenko’s work.

Remark 5.11. Recently, Bandelt et. al. introduced complexes of oriented matroids (COMs)
[2] as families of signed vectors which satisfy the covector elimination axiom and a sym-
metrized version of the axiom of conformal composition of oriented matroid theory. A
COM is an oriented matroid if and only if it contains 0. Examples of COMs are affine ori-
ented matroids and “closed supertopes without boundary”. The authors even conjecture
that the latter case characterizes COMs. A generalization of Corollary 5.8 to COMs would
support that conjecture. Our proof of supertope contractability uses only covector elimi-
nation, thus Theorem 1.2, Corollary 4.3 and Proposition 5.3 should generalize to COMs.
In order to zero out the Möbius function values below the diagonal of the M matrices
though, we frequently use results about the global topology of an oriented matroid. An
exception is Proposition 5.4 which should go for COMs. Note that its proof is based on
properties of a proper contraction of a covector. As such a proper contraction of a COM
contains 0 it is an oriented matroid. It is not immediately clear, though, that this suffices
to generalize Corollary 5.8 without extending all topological results to COMs which should
be a non-trivial project on its own.
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