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Abstract

We generalize the Equivalence Theorem for Nowhere-Zero-Flows to
NEUMANN-LARA-flows (N L-flows). In particular we show that the number
of group valued N L-flows of a given digraph is counted by a polynomial
in the order of the group.

1 Introduction

Victor Neumann-Lara [8] introduced the dichromatic number (D) of a digraph
D, also called acyclic chromatic number, as the smallest integer £ such that the
vertices V' of D can be colored with k colors and each color class induces a
directed acyclic graph. In a recent paper [6] we developed a flow theory for the
dichromatic number that mimics Tutte’s theory of nowhere-zero-flows for the
case of the classic chromatic number. The purpose of this paper is to pursue
this analogy introducing algebraic N L-flows and a polynomial, which counts
these flows.

Our notation is fairly standard and, if not explicitely defined, should follow
the books of Diestel [5] for graphs and Bjorner et. al. [3] for oriented matroids.
Note that all our digraphs may have parallel and antiparallel arcs.

2 The Equivalence Theorem

Definition 1. Let D = (V, A) be a (multi-)digraph. A NEUMANN-LARA-k-flow,
a NL-k-flow for short is a map

fi A= {041, £(k—1)},

which is a flow

YoeV: Y fla)= > fla)

acdt(v) acd~ (v)

such that D[A/supp(f)] is totally cyclic, i.e. every component is strongly con-
nected. If G is a finite Abelian group in additive notation, we define a NL-G-flow



as a map
f+A—=G,

which is a flow such that contracting its support yields a totally cyclic digraph.

With this definition we get an equivalence theorem in full analogy to the
case of nowhere-zero flows ([9, 7]).

Theorem 2. Let D = (V, A) be a digraph. Let k > 2 and G be an Abelian
group of order k. Then the following conditions are equivalent:

(i) There exists a N L-Z-flow in D.
(i) There exists a NL-G-flow in D.
(#ii) There exists a N L-k-flow in D.
Proof. (i1i) = (i) This is trivial. Just take the integer flow mod k.

(i) = (iii) Let f : A — Zy denote a Zj, flow. Choose f € {0,£1,...,£(k—1)}4
satisfying f(a) = f(a) mod k for all arcs a € A and minimizing

D) fla- Y ).

veV |a€dt (v) acd (v)

We claim that f is already a flow. Assume not and denote the set of
vertices with excess by V1 :={v € V| Dacorw) [(@) > X oco-w) [(@)}
and by V7 = {v € V | X corw) [(@) < X,co-( f(a)} the set of
vertices with demand. By assumption both sets are non-empty. Consider
an auxiliary network consisting of the arcs with positive flow in forward
direction and backward arcs for each arc with negative flow. Assume there
were no directed path from a demand vertex to an excess vertex. Then we
would find a cut separating the demand vertices from the excess vertices
with the additional property that the forward arcs have a negative flow
and the backward arcs have a positive flow. This contradicts the law of
flow conservation. Hence we find such a path. Replacing the positive flow
values on arcs a by f(a) — k and the negative ones by f(a) + k we find a
flow contradicting the minimality of f . Hence f must have been a flow,
already.

(i) <= (4i) In the following section we will show that the number of group
valued flows is a polynomial in the order of the group, independent of its
structure.

O



3 The NL-flow polynomial

The basic observation leading to the definition of the N L-flow polynomial is
that a flow is an IV L-flow if and only if its support is a dijoin of the digraph.

Definition 3. Let D = (V, A) denote a directed graph. A set of arcs S C A is
a dijoin, if S intersects every non-empty directed cut.

Proposition 4. S is a dijoin if and only D/S is totally cyclic.

Proof. If D/S is totally cyclic, then it does not contain a directed cut. Hence S
must have intersected every directed cut. If D/S is not totally cyclic it contains
a directed cut, which is a directed cut in D as well. Hence S is not a dijoin. [

As a consequence we find:
Proposition 5. f: A — G is an NL-G-flow if and only if supp(f) is a dijoin.

In the following we will show that given a fixed set S of edges the number
of flows that are non-zero on S is a polynomial in the order of the group.

Definition 6. Let C C A, then f : C — G\ {eg} is a partial NZ-G-flow of D,
if for every cut 0(X) C C of D

Y. fla= ) fla)
a€dt(X) a€d—(X)
The following proposition is obvious.

Proposition 7. f: C — G\ {eg} is a partial NZ-G-flow of D if and only if
fis a NZ-G-flow of D/(A\ C).

Since the number of NZ-G-flows of D/(A\ C) is a given by polynomial it
now suffices to count the number of ways in which a partial NZ-G-flow can be
extended to a flow of G.

Lemma 8. Let G be an Abelian group, M € {0, £1}™*" qa totally unimodular
matriz of full row rank and b € G™. Then the number of solutions of Mx = b
is |G|,

Proof. Choose a basis B of M. Then

Mx = b
= MMz = MGZb
<=>(Im,M>( e ) = M3,
T{1,...n}\B

where M is a totally unimodular (m x (n —m))-matrix. Thus, for every choice
of values for the columns of M we get exactly one solution of the equation. [



As an immediate consequence we have the following theorem:

Theorem 9. Let f : C — G define a partial NZ-flow for C C A. Then the
number of extensions of f to a G-flow in D is kI\CI=KANC) “yyhere rk(A\C) =
|V | — #components of D[A\ C].

Summarizing we get

Theorem 10. Let C C A and ¢c(x) denote the flow polynomial of D/(A\ C).
The number of G-flows that are non-zero on C' is

dc(|G)|GH I,
Note, that the order of ¢¢ is given by the corank of D/(A\ C') which com-

putes to

Cl =1k(D/(A\ C))

|C] = V(D/(A\ C))| = #comp. of D/(A\ C)
|C| — |V|+ k(A \ C) — #comp. of D.

Hence the polynomial ¢¢(|G|)|G|A\CI=ANE) hag order |A| — rk(A).
Using Proposition 5 we can now derive the desired result using the principle
of inclusion and exclusion.

Definition 11. Let D = (V, A) be a digraph and {S1,...,S,} denote its set of
inclusionwise minimal dijoins. For I C {1,...,r} let St := U;erS;. As above
denote by ¢s, the flow polynomial of D/(A\ Sr). Then the N L-flow polynomial
of D is defined as

oRL(a) = S (DI ()l AN,
0AIC{1,...,r}

Theorem 12. The number of N L-G-flows of a digraph D depends only on the
order k of G and is given by ¢%, (k).

Proof. By Proposition 5 a flow is a N L-flow if and only if its support is a dijoin.
If we denote by 3; the set of all G-flows with S; in its support, then the principle
of inclusion and exclusion immediately yields that the number of NL-G-flows

of D is given by
DRCL e
PA£IC{1,...,r} i€l

Clearly (;c; i is the set of flows with S; = (J,;c; S; in its support. By Theo-
rem 10 thus |(,c; X = bs, (|G))|G|IANSTI=rk(ANST) and the claim follows. [



4 Oriented Regular Matroids

The equivalence theorem for nowhere-zero-flows has been generalized to regular
oriented matroids by Crapo [4] and Arrowsmith and Jaeger [2]. Like them, we
can generalize our results of the previous sections to oriented regular matroids.
Our main tool will be the following variant of Farkas’ Lemma:

Theorem 13 (see 3.4.4 (4P) in [3]). Let O denote an oriented matroid on a
finite set E given by its set of covectors and O* its dual. Let E = PUNU % UO
be a partition of E and ig € P. FEither there exists X € O such that iy €
supp(X) C PUN Ux, supp(X)NP C X* and supp(X) NN C X~ or there
erists Y € O such that ig € supp(Y) € PUNUO, supp(Y)NP C YT,
supp(Y) NN C Y, but not both.

Definition 14. Let O denote the set of covectors of an oriented matroid on a
finite set E. We say that O is totally cyclic, if the all +-vector is in O*, i.e. it is
a vector. S C E is a dijoin, if Y € O\ {0} and Y = 0 implies supp(Y) NS # 0,
i.e. S meets every positive cocircuit.

Proposition 15. S C E is a dijoin if and only if O/S is totally cyclic.

Proof. Set P = E\ S,* =S and N = O = (. Since S is a dijoin, there is
no non-zero vector Y € O such that supp(Y) C P and supp(Y) NP = Y™ .
Thus, by Theorem 13 for every e € P there exists X, € O* such that e €
supp(X,) and supp(X.) N P = X}. The composition of these vectors proves
that @/S is strongly connected. Reading the proof backwards yields the other
implication. O

It is clear that with this definition we can define the N L-flow polynomial
as before. The crucial Lemma 8 for the equivalence of the first two statements
in Theorem 2 dealt with totally unimodular matrices anyway. The only impli-
cation we are left to verify for an equivalence theorem for N L-flows in regular
oriented matroids is (i) implies (iii). The following lemma suffices for that pur-
pose. It could be deduced from Proposition 5 in [2]. We give a short proof for
completeness.

Lemma 16. Let M € {0,£1}™*" be a totally unimodular matriz and let x
denote a Zy-flow in the corresponding regular matroid O, i.e. Mx =0 mod k.
Then there exists a k-flow y € {0,£1,...,£(k — 1)}™ in O such that y = z
mod k.

Proof. Choose y € {0,%1,...,£(k — 1)}" satisfying y = 2 mod k that mini-
mizes |[Myl1 = > i~ [(My);|. We claim that y must be as required. Assume
not and set Y™ := {i |y >0}, YO := {i |y =0}, Y™ = {i | y < 0},
P :={i| (My); >0} and N := {i | (My); > 0}. By assumption P U N # .
We consider only the case P # (), the other case is similar. Hence let ig € P.
There cannot exist v € R such that up > 0, u;, > 0, uy <0, u'Ay+ <0
and u' Ay~ > 0 for the first three inequalities imply u" Ay > 0 and the last



two u' Ay < 0. Hence by Theorem 13, applied to the pair of oriented ma-
troids defined by the kernel and the row space of the totally unimodular matrix
M = (A, Ip,Iyn), there exists (§',25,25)" such that gy+ < 0, §y- > 0,
gyo =0, zp > 0, 2, > 0, 2y <0 such that My = —Ipzp — Inzy. Since M is
totally unimodular we may assume that ¢, zp and zx have entries in {0,1, —1}
only. Thus, y + kj € {0, £1,...,+£(k—1)}" and y + kg = z mod k. But since
My is divisible by k£ we have

M (y + kg)lly = [My — kIpzp — kInznlls < [Myl,
contradicting the choice of y. O

Corollary 17. Let O be an oriented regular matroid given by a totally unimod-
ular matric M. Let k > 2 and G be an Abelian group of order k. Then the
following conditions are equivalent:

(i) There exists a N L-Zy-flow in O.
(i) There exists a NL-G-flow in O.
(iii) There exists a N L-k-flow in O.

5 Open Problems

Our definition of the N L-flow polynomial uses in each term of the inclusion-
exclusion formula a flow polynomial which itself uses that formula in its expan-
sion. It might be possible to exploit this and find a simpler closed formula for
our polynomial.

Considering the cographic oriented matroid our flow polynomial becomes the
N L-coflow polynomial of D which equals the chromatic polynomial [1] for the
dichromatic number divided by z. The natural question arises whether, as in
the classical case, there exists a meaningful two variable polynomial combining
both? Moreover, does such a polynomial or the two single variable polynomials
have any meaning in the case of general oriented matroids?

Finally, it might be interesting to study the structure of the N L-flow poly-
nomial for some special classes of orientations of graphs.
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