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Abstract

We generalize the Equivalence Theorem for Nowhere-Zero-Flows to
Neumann-Lara-flows (NL-flows). In particular we show that the number
of group valued NL-flows of a given digraph is counted by a polynomial
in the order of the group.

1 Introduction

Vı́ctor Neumann-Lara [8] introduced the dichromatic number ~χ(D) of a digraph
D, also called acyclic chromatic number, as the smallest integer k such that the
vertices V of D can be colored with k colors and each color class induces a
directed acyclic graph. In a recent paper [6] we developed a flow theory for the
dichromatic number that mimics Tutte’s theory of nowhere-zero-flows for the
case of the classic chromatic number. The purpose of this paper is to pursue
this analogy introducing algebraic NL-flows and a polynomial, which counts
these flows.

Our notation is fairly standard and, if not explicitely defined, should follow
the books of Diestel [5] for graphs and Björner et. al. [3] for oriented matroids.
Note that all our digraphs may have parallel and antiparallel arcs.

2 The Equivalence Theorem

Definition 1. Let D = (V,A) be a (multi-)digraph. A Neumann-Lara-k-flow,
a NL-k-flow for short is a map

f : A→ {0,±1, . . . ,±(k − 1)},

which is a flow

∀v ∈ V :
∑

a∈∂+(v)

f(a) =
∑

a∈∂−(v)

f(a)

such that D[A/supp(f)] is totally cyclic, i.e. every component is strongly con-
nected. If G is a finite Abelian group in additive notation, we define a NL-G-flow
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as a map
f : A→ G,

which is a flow such that contracting its support yields a totally cyclic digraph.

With this definition we get an equivalence theorem in full analogy to the
case of nowhere-zero flows ([9, 7]).

Theorem 2. Let D = (V,A) be a digraph. Let k ≥ 2 and G be an Abelian
group of order k. Then the following conditions are equivalent:

(i) There exists a NL-Zk-flow in D.

(ii) There exists a NL-G-flow in D.

(iii) There exists a NL-k-flow in D.

Proof. (iii)⇒ (i) This is trivial. Just take the integer flow mod k.

(i)⇒ (iii) Let f : A→ Zk denote a Zk flow. Choose f̃ ∈ {0,±1, . . . ,±(k−1)}A
satisfying f̃(a) ≡ f(a) mod k for all arcs a ∈ A and minimizing

∑
v∈V

∣∣∣∣∣∣
∑

a∈∂+(v)

f̃(a)−
∑

a∈∂−(v)

f̃(a)

∣∣∣∣∣∣ .
We claim that f̃ is already a flow. Assume not and denote the set of
vertices with excess by V + := {v ∈ V |

∑
a∈∂+(v) f̃(a) >

∑
a∈∂−(v) f̃(a)}

and by V − := {v ∈ V |
∑

a∈∂+(v) f̃(a) <
∑

a∈∂−(v) f̃(a)} the set of
vertices with demand. By assumption both sets are non-empty. Consider
an auxiliary network consisting of the arcs with positive flow in forward
direction and backward arcs for each arc with negative flow. Assume there
were no directed path from a demand vertex to an excess vertex. Then we
would find a cut separating the demand vertices from the excess vertices
with the additional property that the forward arcs have a negative flow
and the backward arcs have a positive flow. This contradicts the law of
flow conservation. Hence we find such a path. Replacing the positive flow
values on arcs a by f̃(a)− k and the negative ones by f̃(a) + k we find a
flow contradicting the minimality of f̃ . Hence f̃ must have been a flow,
already.

(i)⇐⇒ (ii) In the following section we will show that the number of group
valued flows is a polynomial in the order of the group, independent of its
structure.
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3 The NL-flow polynomial

The basic observation leading to the definition of the NL-flow polynomial is
that a flow is an NL-flow if and only if its support is a dijoin of the digraph.

Definition 3. Let D = (V,A) denote a directed graph. A set of arcs S ⊆ A is
a dijoin, if S intersects every non-empty directed cut.

Proposition 4. S is a dijoin if and only D/S is totally cyclic.

Proof. If D/S is totally cyclic, then it does not contain a directed cut. Hence S
must have intersected every directed cut. If D/S is not totally cyclic it contains
a directed cut, which is a directed cut in D as well. Hence S is not a dijoin.

As a consequence we find:

Proposition 5. f : A→ G is an NL-G-flow if and only if supp(f) is a dijoin.

In the following we will show that given a fixed set S of edges the number
of flows that are non-zero on S is a polynomial in the order of the group.

Definition 6. Let C ⊆ A, then f : C → G \ {eG} is a partial NZ-G-flow of D,
if for every cut ∂(X) ⊆ C of D∑

a∈∂+(X)

f(a) =
∑

a∈∂−(X)

f(a).

The following proposition is obvious.

Proposition 7. f : C → G \ {eG} is a partial NZ-G-flow of D if and only if
f is a NZ-G-flow of D/(A \ C).

Since the number of NZ-G-flows of D/(A \ C) is a given by polynomial it
now suffices to count the number of ways in which a partial NZ-G-flow can be
extended to a flow of G.

Lemma 8. Let G be an Abelian group, M ∈ {0,±1}m×n a totally unimodular
matrix of full row rank and b ∈ Gm. Then the number of solutions of Mx = b
is |G|(n−m).

Proof. Choose a basis B of M . Then

Mx = b

⇐⇒ M−1.B Mx = M−1.B b

⇐⇒ (Im, M̃)

(
xB

x{1,...,n}\B

)
= M−1.B b,

where M̃ is a totally unimodular (m× (n−m))-matrix. Thus, for every choice
of values for the columns of M̃ we get exactly one solution of the equation.
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As an immediate consequence we have the following theorem:

Theorem 9. Let f : C → G define a partial NZ-flow for C ⊆ A. Then the
number of extensions of f to a G-flow in D is k|A\C|−rk(A\C), where rk(A\C) =
|V | −#components of D[A \ C].

Summarizing we get

Theorem 10. Let C ⊆ A and φC(x) denote the flow polynomial of D/(A \C).
The number of G-flows that are non-zero on C is

φC(|G|)|G||A\C|−rk(A\C).

Note, that the order of φC is given by the corank of D/(A \ C) which com-
putes to

|C| − rk(D/(A \ C)) = |C| − |V (D/(A \ C))| −#comp. of D/(A \ C)

= |C| − |V |+ rk(A \ C)−#comp. of D.

Hence the polynomial φC(|G|)|G||A\C|−rk(A\C) has order |A| − rk(A).
Using Proposition 5 we can now derive the desired result using the principle

of inclusion and exclusion.

Definition 11. Let D = (V,A) be a digraph and {S1, . . . , Sr} denote its set of
inclusionwise minimal dijoins. For I ⊆ {1, . . . , r} let SI := ∪i∈ISi. As above
denote by φSI

the flow polynomial of D/(A\SI). Then the NL-flow polynomial
of D is defined as

φDNL(x) :=
∑

∅6=I⊆{1,...,r}

(−1)|I|−1φSi(x)x|A\SI |−rk(A\SI).

Theorem 12. The number of NL-G-flows of a digraph D depends only on the
order k of G and is given by φDNL(k).

Proof. By Proposition 5 a flow is a NL-flow if and only if its support is a dijoin.
If we denote by Σi the set of all G-flows with Si in its support, then the principle
of inclusion and exclusion immediately yields that the number of NL-G-flows
of D is given by ∑

∅6=I⊂{1,...,r}

(−1)|I|−1

∣∣∣∣∣⋂
i∈I

Σi

∣∣∣∣∣ .
Clearly

⋂
i∈I Σi is the set of flows with SI =

⋃
i∈I Si in its support. By Theo-

rem 10 thus |
⋂

i∈I Σi| = φSi
(|G|)|G||A\SI |−rk(A\SI) and the claim follows.

4



4 Oriented Regular Matroids

The equivalence theorem for nowhere-zero-flows has been generalized to regular
oriented matroids by Crapo [4] and Arrowsmith and Jaeger [2]. Like them, we
can generalize our results of the previous sections to oriented regular matroids.
Our main tool will be the following variant of Farkas’ Lemma:

Theorem 13 (see 3.4.4 (4P) in [3]). Let O denote an oriented matroid on a
finite set E given by its set of covectors and O∗ its dual. Let E = P ∪̇N ∪̇ ∗ ∪̇O
be a partition of E and i0 ∈ P . Either there exists X ∈ O∗ such that i0 ∈
supp(X) ⊆ P ∪ N ∪ ∗, supp(X) ∩ P ⊆ X+ and supp(X) ∩ N ⊆ X− or there
exists Y ∈ O such that i0 ∈ supp(Y ) ⊆ P ∪ N ∪ O, supp(Y ) ∩ P ⊆ Y +,
supp(Y ) ∩N ⊆ Y −, but not both.

Definition 14. Let O denote the set of covectors of an oriented matroid on a
finite set E. We say that O is totally cyclic, if the all +-vector is in O∗, i.e. it is
a vector. S ⊆ E is a dijoin, if Y ∈ O \{0} and Y � 0 implies supp(Y )∩S 6= ∅,
i.e. S meets every positive cocircuit.

Proposition 15. S ⊆ E is a dijoin if and only if O/S is totally cyclic.

Proof. Set P = E \ S, ∗ = S and N = O = ∅. Since S is a dijoin, there is
no non-zero vector Y ∈ O such that supp(Y ) ⊆ P and supp(Y ) ∩ P = Y +.
Thus, by Theorem 13 for every e ∈ P there exists Xe ∈ O∗ such that e ∈
supp(Xe) and supp(Xe) ∩ P = X+

e . The composition of these vectors proves
that O/S is strongly connected. Reading the proof backwards yields the other
implication.

It is clear that with this definition we can define the NL-flow polynomial
as before. The crucial Lemma 8 for the equivalence of the first two statements
in Theorem 2 dealt with totally unimodular matrices anyway. The only impli-
cation we are left to verify for an equivalence theorem for NL-flows in regular
oriented matroids is (i) implies (iii). The following lemma suffices for that pur-
pose. It could be deduced from Proposition 5 in [2]. We give a short proof for
completeness.

Lemma 16. Let M ∈ {0,±1}m×n be a totally unimodular matrix and let x
denote a Zk-flow in the corresponding regular matroid O, i.e. Mx ≡ 0 mod k.
Then there exists a k-flow y ∈ {0,±1, . . . ,±(k − 1)}n in O such that y ≡ x
mod k.

Proof. Choose y ∈ {0,±1, . . . ,±(k − 1)}n satisfying y ≡ x mod k that mini-
mizes ‖My‖1 =

∑m
i=1 |(My)i|. We claim that y must be as required. Assume

not and set Y + := {i | y > 0}, Y 0 := {i | y = 0}, Y − := {i | y < 0},
P := {i | (My)i > 0} and N := {i | (My)i > 0}. By assumption P ∪ N 6= ∅.
We consider only the case P 6= ∅, the other case is similar. Hence let i0 ∈ P .
There cannot exist u ∈ Rm such that uP ≥ 0, ui0 > 0, uN ≤ 0, u>AY + ≤ 0
and u>AY − ≥ 0 for the first three inequalities imply u>Ay > 0 and the last
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two u>Ay ≤ 0. Hence by Theorem 13, applied to the pair of oriented ma-
troids defined by the kernel and the row space of the totally unimodular matrix
M := (A, IP , IN ), there exists (ỹ>, z>P , z

>
N )> such that ỹY + ≤ 0, ỹY − ≥ 0,

ỹY 0 = 0, zP ≥ 0, zi0 > 0, zN ≤ 0 such that Mỹ = −IP zP − INzN . Since M is
totally unimodular we may assume that ỹ, zP and zN have entries in {0, 1,−1}
only. Thus, y + kỹ ∈ {0,±1, . . . ,±(k − 1)}n and y + kỹ ≡ x mod k. But since
My is divisible by k we have

‖M(y + kỹ)‖1 = ‖My − kIP zP − kINzN‖1 < ‖My‖1,

contradicting the choice of y.

Corollary 17. Let O be an oriented regular matroid given by a totally unimod-
ular matrix M . Let k ≥ 2 and G be an Abelian group of order k. Then the
following conditions are equivalent:

(i) There exists a NL-Zk-flow in O.

(ii) There exists a NL-G-flow in O.

(iii) There exists a NL-k-flow in O.

5 Open Problems

Our definition of the NL-flow polynomial uses in each term of the inclusion-
exclusion formula a flow polynomial which itself uses that formula in its expan-
sion. It might be possible to exploit this and find a simpler closed formula for
our polynomial.

Considering the cographic oriented matroid our flow polynomial becomes the
NL-coflow polynomial of D which equals the chromatic polynomial [1] for the
dichromatic number divided by x. The natural question arises whether, as in
the classical case, there exists a meaningful two variable polynomial combining
both? Moreover, does such a polynomial or the two single variable polynomials
have any meaning in the case of general oriented matroids?

Finally, it might be interesting to study the structure of the NL-flow poly-
nomial for some special classes of orientations of graphs.
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