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Large parts of graph theory have been driven by the Four Color Problem. In
particular it inspired William T. Tutte to develop his theory of Nowhere-Zero-
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Abstract

In 1982 Victor Neumann-Lara [6] introduced the dichromatic num-
ber of a digraph D as the smallest integer k such that the vertices V of
D can be colored with k colors and each color class induces a directed
acyclic graph. In [4] a flow theory for the dichromatic number trans-
ferring Tutte’s theory of nowhere-zero-flows from classic graph colorings
has been developed and in [2] and [5] this analogy has been pursued by
introducing algebraic NL-flows and a polynomial counting these flows.
In [5] we asked for a simpler closed formula for that polynomial. We
answer this question to the positive and present a different approach for
computing this NL-flow polynomial. Furthermore we discuss computa-
tional aspects of its computation for orientations of complete graphs and
obtain a closed formula in the acyclic case.

Introduction, definitions and previous results

Flows [7].

In 1982 Victor Neumann-Lara [6] introduced the dichromatic number of a di-
graph D as the smallest integer k& such that the vertices V of D can be colored
with k£ colors and each color class induces a directed acyclic graph. Moreover,
in 1985 he conjecture, that every orientation of a simple planar graph can be
acyclically colored with two colors. This intrigueing problem led us to trying
to for an analogy follow Tutte’s road map and vdevelop a corresponding flow

theory, which we named NEUMANN-LARA-flows.

Definition 1. Let D = (V, A) be a digraph. A NL-k-flow is a map

frA— {041, ..., £k —1)},

satisfying Kirchhoff’s law of flow conservation

such that D[A/supp(f)] is totally cyclic, i.e. every component is strongly con-

YoeV: Z fla) = Z f(a),

a€dt(v) a€d~ (v)

nected. If G is an Abelian group, then an NL-G-flow is a map

f+A—G\{0g},

satisfying Kirchhoff’s law of flow conservation.



As it is proven in [5], [2] a flow is a NL-flow if and only if its support is a dijoin,
i.e. a set of arcs S C A, intersecting every directed cut in the given digraph
D = (V, A). This observation leads to the following definition.

Definition 2. Let D = (V, A) be a digraph and {S1,..,S,} denote its set of
inclusionwise minimal dijoins. For I C {1,...,r} let S; := U;csS;. Denote by
os,; the flow polynomial of D/(A\ Sy). Then the NL-flow polynomial of D is
defined as

oL@ = 3 (—1) g, (a)a A\ RN,
0AIC{1,..,r}

where rk(G) := n — c is the rank of a graph G with n vertices and ¢ connected
components.

In [5], [2] it is shown that the number of NL-G-flows of a digraph D and a group
G of order k is given by ¢¥; (k). Clearly, this definition seems quite cumbrous
and its computation takes some time. Moreover, in [5] we asked for a simpler
closed formula for that polynomial. In order to develop such a formula we use a
kind of generalization of the well-known inclusion-exclusion formula, the M&bius
inversion (see for instance [1]).

Definition 3. Let (P, <) be a finite poset, then the Mobius function is defined
as follows

0 vifety
p:PxP—Z, p(z,y) =41 ifr=y
7Zx§z<y H(SC,Z) 5 otherwise .

Proposition 1. Let (P, <) be a finite poset, f,g: P — K functions and p the
Mobius function. Then the following equivalence holds

fl@)=> gy), forallz € P<= g(x)=> u(y,x)f(y), for all z € P.

y<z y<z

2  Our results

In order to derive the new formula for the NL-flow-polynomial of a given digraph
D = (V, A) we use Proposition 1 with fy, gr : 24 — Z, such that fi(B) indicates
all G-flows and g;,(B) all NL-G-flows in the subgraph of D induced by B € 24
for some fixed Abelian group G of order k.

The basic observation that a flow is an NL-flow iff its support is a dijoin (see [7])
encourages to consider the following poset (C,2), where for B C A

Cp:={B\C|3Cy,..,C, directed cuts of D[B], such that C = | J C;}.

i=1
Using this we find
Theorem 1.
oxL(k) = ge(A) = Y u(B, A)fu(B)
BeCy
= Z (B, A)kIBI=rk(B), (1)
BeCy



Proof. By Proposition 1 for the first equality it suffices to show that fi.(B) =
> Becy 9x(B) holds for all subsets B of A. Given a flow on B we set

B =B\ U{C’i|6’i is a directed cut in D[B] and fx(C;) = 0}.

Then clearly B € Cp and fy5 is a NL-G-flow on B. On the other hand frip is

clearly not an NL-G flow for any other set B # B € Cg. Hence the first equality
follows. The second is clear since fi,(B) = klBI=7+(B), O

3 Orientations of complete digraphs

3.1 Complete acyclic digraphs

As an application we examine complete acyclic digraphs D = (V, A). Recall
that all acyclic digraphs with n > 1 vertices are isomorphic, thus the NL-flow
polynomial does not depend on the orientation of the given digraph.

Moreover acyclic digraphs allow a topological ordering (see [3]), which is an
ordering of the vertices vy, ...,v, of D such that for every arc (v;,v;) € A we
have i < j.

In the complete case this ordering is even unique since complete acyclic digraphs
contain a hamiltonian path:

Proposition 2. Every complete acyclic digraph allows a unique topological or-
dering.

Proof. Define a poset (V, <) by letting < y to be true, for any two vertices
x,y € V, whenever there exists a directed path from x to y. Obviously, since
D is complete and acyclic, this poset is even totally ordered. With these defini-
tions, a topological ordering of the given digraph correlates to this total order
(see [3]), hence, it is unique. O

i

(&) © - ®

As one can see in the above picture, every arc in the right graph corresponds to
exactly one directed cut in the left graph. Particularly, C' C A is a dicut if and
only if the following properties

(1) if (x,y) € C, x <y, then (x,2) € C, for all z > y,



(2) if (y,2) € C, y < z, then (z,2) € C, for all x < y and
(3.1) if (z,2) € C, © < z, then (z,y) € C, for all z <y < z or
(3.2) if (z,2) € C, x < z, then (y,2z) € C,forall z <y < z

are satisfied.

Now, recall that a complete acyclic digraph with n > 1 vertices has exactly n—1
dicuts, in the following denoted by C1,...,C,_1. As a result the above defined
poset (C, D) admits a simple structure.

Lemma 1. Let D = (V, A) be a complete acyclic digraph with |V| =n > 2 and
(C,D) as above. Then C is isomorphic to 21

Proof. Denote for some set J of indices Cy := U;c;C;. Thus the elements of C
are A\ Cy, for J C [n — 1] and the following map

0:C— 27U oA\ Cy) =T

is well-defined since there are exactly n — 1 dicuts. Moreover each set of indices
J € 2["=1 induces exactly one element in C, hence ¢ is bijective.

Now, let A\ C; 2 A\ C; for some I,J C [n — 1], thus C; C C and let j € J.
Then, for all (z,y) € C; there is some i € I such that (z,y) € C;. Since C; and
C; are dicuts, they satisfy the above properties (1), (2), (3.1) or (1), (2), (3.2).
So, assume j # ¢ and, without loss of generality, let (z,2) € C; with x < z < y.
Then i # i’ € I exists with (x,2) € Cyr, otherwise j = ¢ would hold.

All in all there are at least n — 1 arcs in C}j, so |I| < n — 1, hence j € I anyway
and ¢ is an order isomorphism. O

As a result we can write (1) as

oN (k) = Z (=) I A\Vies Cil—rk(A\Uie s Ca) @)
Jealn—1]

since pu(J, 201 = (=1)2" 7N = (—1)lVI_for all J € 2("=1]. This immediately
leads to the following theorem.

Theorem 2. Let D = (V,A) be a complete acyclic digraph with |V| = n.
For 1 < p < n denote by (ki,...,kp) the composition of n into p parts, i.e.
P ki=n, withk; >1,i=1,...,p. Then the NL-flow polynomial is given by

oRe(@) =Y (=1t >0 [0,

p=1 (K, kp) i=1

Proof. Let n > 2, otherwise we have ®%, (x) = 1, the empty flow. For J € 2[»~1]
let D[C] denote the subgraph of D induced by A\ U;c;C; and p = |J|+ 1 the
number of connected components in D[C;]. We only have to count the number
of arcs in D[C}], since the rank is given by n — p.

Deleting |J| dicuts of the given complete digraph yields a subgraph with p
strongly connected components, each containing k; > 1, i = 1, .., p, vertices and
thus (%) arcs, satisfying 3°7_, k; = n.



Since the digraph is complete and acyclic, every combination is presumed, hence,
with (2), the number of NL-k-flows is given by

n

St Y S e

p=1 (K11 kp)
3y ki=n
The claim follows, using (') — (m — 1) = (mgl), for all m € N. O

Now we can compute several NL-flow polynomials of complete acyclic digraphs
with n vertices in comparably short time:

n=1
1
n=2
0
n=3
rz—1
n=4:
2 —2r4+1
n=>5
20 —22° 4o
n==6:
20— 248 423 — 2?4221
n="17
2 =220 4+ 2% 92t 4+ 243 + 322 — 4+ 1
n=2~8:

22— 2 420 2" 4 S 62t — 423 — 322+ 22

Obviously there are a lot of regularities and we can explicitely give the exponent
of the two leading terms and their coefficients.

Proposition 3. Let D = (V,A) be a complete acyclic digraph with n > 1
vertices.

(i) The leading term of ®K, (z) equals L5

(11) Assumen > 4. Then the second term with highest exponent equals ("),

Proof. We only need to consider the case where p = 1, since the exponent of
®F  (x) is maximum for k; = n. The next lower exponent occurs when p = 2,
having k1 =n — 1, ks = 1 and vice versa. O

Let us now look at the constant term of the polynomial.

Lemma 2. Let D = (V, A) be a complete acyclic digraph with n > 3 wvertices
and c(n) denote the constant term of ®X, (x). Then the following recursion
holds

c(n) = —(e(n—1)+¢(n —2)).



Proof. Since we are interested in the constant term of ®X; (z) we only need
to consider the cases where k; € {1,2} for all 1 < i < n and get the following
distinction.

ORI DI S D DR Vi

k2++kp:n—1 k:2++kp:n—2
ki1=1 k1=2
ke(1,2) ke(1,2)
ri=p—1 _ —
e S e SR S
ki+...+k,.=n—1 ki+..+k,.=n—2
ki€{1,2} kiE{l,Q}

=—(c(n—1)+c(n—2)).

This observation yields the following proposition.

Proposition 4. Let D = (V,A) be a complete acyclic digraph with n > 1
vertices, then the constant term of ®K, (x) is given by

-1 ,ifnmod3 =0,
ce(n) = ®F.(0) = 1, ifnmod3=1,
0 ,ifnmod3=2.

Proof. Lemma 2 immediately yields
c(n+3)=—(c(n+2)+c(n+1)) = —( —(e(n+1)+¢(n)) +c(n+ 1)) = c¢(n)
and the base cases from above prove the claim. (I

Observing the linear term we get:

Proposition 5. Let D = (V,A) be a complete acyclic digraph with n > 4
vertices, then the linear term of ®K, () is given by

) n , if nmod 3 =0,
l(n):§ —2(n—1) ,ifnmod3=1,
n—2 , if n mod 3 = 2.

Proof. In this case exactly one part of the composition, call it k;, equals 3,
while the other parts have to be either 1 or 2. Let ¢(n) be the constant term of
®F (x), then we have

ORI DR GV S DR G R D DR G

ki4...4+kp_1=n—1 ki4...4+kp_1=n—2 kit+...+kp 1=n-3
J#p J#P Jj=p
ki€{1,2},i#j kie{1,2},i#j kiE{1,2}
=—Iln—1)—Iln—2)—c(n—3)



Now we can proceed per induction, using Proposition 4.

Iln+1)=-ln)—Iln—1)—c(n—2)

n (n—1)-2 1 ,ifnmod 3=0
w1 1 .
=3 —2(n—1) -3 n—1 -<0 ,ifnmod 3=1
n—2 —2((n—1) —1) ~1 ,ifnmod3=2
1 -2(n+1)—1) ,ifn+lmod3=1
= 3 (n+1)—1 ,if n+1 mod 3 =2
n+1 ,ifn+1mod 3=0

3.2 Complete digraphs

Considering an arbitrary complete digraph D = (V, A) the NL-flow polynomial
depends on its orientation. Let d € N denote the number of maximal strongly
connected components and denote their vertex sets with Si,...,.54. Since we
cannot, cut through cycles there are exactly d — 1 dicuts and the poset C is
isomorphic to 241, Similarly as in (2) we conclude

¢2L(k‘) = Z (—1)|J| k“A\UT.EJCi‘—T’k(A\UiEJCi), 3)
Jezld-1]

where C;,i =1,...,d — 1 denote the dicuts in D.
Recall that the maximal strongly connected components form a partition of the
given digraph. Consequently we consider the following map

AV o {1, d)
v — i, with v € 5,

which induces the complete acyclic digraph on d vertices.
A
-
As aresult of Proposition 2 the vertices of D[A(V)] can be ordered topologically,
thus the strongly connected components of D allow a similar ordering.

Theorem 3. Let D = (V, A) be a complete digraph with d > 1 strongly con-
nected components, each containing k1, ..., kq vertices, such that the subgraph of
D induced by A(V') is topologically ordered. For 1 < p < d consider the com-
position (di,...,d,) of d into p parts, i.e. > 5 _,d; = d, with d; > 1, for all



1 <i<p. Then the NL-flow polynomial is given by

d 2 N
oRp@) = (-1t ST [ ), with

p=1 (diyeeesdp) =1
5(5) J
n; = Z ks and §(j) := Zd’“'
s=86(j—1)+1 r=1

Proof. Denote the strongly connected components of D with K, ..., K4, such
that the topologically ordering of A(V') is preserved. Analoguesly to the proof
of Theorem 2 we only have to count the number of vertices in each partition of
D[A(V)] induced by some composition (di, ...,d,), where each vertex 1 <v <d
corresponds to a strongly connected component K, each containing k,, vertices
in D.

So, let (di,...,d,) be an arbitrary composition of d with p parts, hence there
are dj, 1 < j < p, vertices in each part of D[A(V')]. Let D; denote the set of
vertices in the corresponding strongly connected components in D. Then

dq dy+do d1+‘..+dp
D = UKZ-, Dy = U Ki,.., D, = U K;.
i=1 i=dy+1 i=dy+...4dp_1+1
Thus there are _
i_d
r=1 "7

Dil= >k
=321 drtl

vertices in the j—th corresponding part of D. (I
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