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Computing the NL-�ow polynomial

Winfried Hochstättler, Johanna Wiehe

FernUniversität in Hagen, Germany

Abstract

In 1982 Víctor Neumann-Lara [6] introduced the dichromatic num-
ber of a digraph D as the smallest integer k such that the vertices V of
D can be colored with k colors and each color class induces a directed
acyclic graph. In [4] a �ow theory for the dichromatic number trans-
ferring Tutte's theory of nowhere-zero-�ows from classic graph colorings
has been developed and in [2] and [5] this analogy has been pursued by
introducing algebraic NL-�ows and a polynomial counting these �ows.
In [5] we asked for a simpler closed formula for that polynomial. We
answer this question to the positive and present a di�erent approach for
computing this NL-�ow polynomial. Furthermore we discuss computa-
tional aspects of its computation for orientations of complete graphs and
obtain a closed formula in the acyclic case.

1 Introduction, de�nitions and previous results

Large parts of graph theory have been driven by the Four Color Problem. In
particular it inspired William T. Tutte to develop his theory of Nowhere-Zero-
Flows [7].
In 1982 Víctor Neumann-Lara [6] introduced the dichromatic number of a di-
graph D as the smallest integer k such that the vertices V of D can be colored
with k colors and each color class induces a directed acyclic graph. Moreover,
in 1985 he conjecture, that every orientation of a simple planar graph can be
acyclically colored with two colors. This intrigueing problem led us to trying
to for an analogy follow Tutte's road map and vdevelop a corresponding �ow
theory, which we named Neumann-Lara-�ows.

De�nition 1. Let D = (V,A) be a digraph. A NL-k-�ow is a map

f : A→ {0,±1, ...,±(k − 1)},

satisfying Kirchho�'s law of �ow conservation

∀v ∈ V :
∑

a∈∂+(v)

f(a) =
∑

a∈∂−(v)

f(a),

such that D[A/supp(f)] is totally cyclic, i.e. every component is strongly con-
nected. If G is an Abelian group, then an NL-G-�ow is a map

f : A→ G \ {0G},

satisfying Kirchho�'s law of �ow conservation.
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As it is proven in [5], [2] a �ow is a NL-�ow if and only if its support is a dijoin,
i.e. a set of arcs S ⊆ A, intersecting every directed cut in the given digraph
D = (V,A). This observation leads to the following de�nition.

De�nition 2. Let D = (V,A) be a digraph and {S1, .., Sr} denote its set of
inclusionwise minimal dijoins. For I ⊆ {1, ..., r} let SI := ∪i∈ISi. Denote by
φSI

the �ow polynomial of D/(A \ SI). Then the NL-�ow polynomial of D is
de�ned as

φDNL(x) :=
∑

∅6=I⊂{1,..,r}

(−1)|I|−1φSI
(x)x|A\SI |−rk(A\SI),

where rk(G) := n − c is the rank of a graph G with n vertices and c connected
components.

In [5], [2] it is shown that the number of NL-G-�ows of a digraph D and a group
G of order k is given by φDNL(k). Clearly, this de�nition seems quite cumbrous
and its computation takes some time. Moreover, in [5] we asked for a simpler
closed formula for that polynomial. In order to develop such a formula we use a
kind of generalization of the well-known inclusion-exclusion formula, the Möbius
inversion (see for instance [1]).

De�nition 3. Let (P,≤) be a �nite poset, then the Möbius function is de�ned
as follows

µ : P × P → Z, µ(x, y) :=


0 , if x � y

1 , if x = y

−
∑
x≤z<y µ(x, z) , otherwise .

Proposition 1. Let (P,≤) be a �nite poset, f, g : P → K functions and µ the
Möbius function. Then the following equivalence holds

f(x) =
∑
y≤x

g(y), for all x ∈ P ⇐⇒ g(x) =
∑
y≤x

µ(y, x)f(y), for all x ∈ P.

2 Our results

In order to derive the new formula for the NL-�ow-polynomial of a given digraph
D = (V,A) we use Proposition 1 with fk, gk : 2A → Z, such that fk(B) indicates
all G-�ows and gk(B) all NL-G-�ows in the subgraph of D induced by B ∈ 2A

for some �xed Abelian group G of order k.
The basic observation that a �ow is an NL-�ow i� its support is a dijoin (see [5])
encourages to consider the following poset (C,⊇), where for B ⊆ A

CB :=
{
B \ C | ∃ C1, ..., Cr directed cuts of D[B], such that C =

r⋃
i=1

Ci
}
.

Using this we �nd

Theorem 1.

φDNL(k) = gk(A) =
∑
B∈CA

µ(B,A)fk(B)

=
∑
B∈CA

µ(B,A)k|B|−rk(B). (1)
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Proof. By Proposition 1 for the �rst equality it su�ces to show that fk(B) =∑
B̃∈CB gk(B̃) holds for all subsets B of A. Given a �ow on B we set

B̃ = B \
⋃
{Ci|Ci is a directed cut in D[B] and fk(Ci) = 0}.

Then clearly B̃ ∈ CB and fk|B̃ is a NL-G-�ow on B̃. On the other hand fk|B̂ is

clearly not an NL-G �ow for any other set B̃ 6= B̂ ∈ CB . Hence the �rst equality
follows. The second is clear since fk(B) = k|B|−rk(B).

3 Orientations of complete digraphs

3.1 Complete acyclic digraphs

As an application we examine complete acyclic digraphs D = (V,A). Recall
that all acyclic digraphs with n ≥ 1 vertices are isomorphic, thus the NL-�ow
polynomial does not depend on the orientation of the given digraph.
Moreover acyclic digraphs allow a topological ordering (see [3]), which is an
ordering of the vertices v1, ..., vn of D such that for every arc (vi, vj) ∈ A we
have i < j.
In the complete case this ordering is even unique since complete acyclic digraphs
contain a hamiltonian path:

Proposition 2. Every complete acyclic digraph allows a unique topological or-
dering.

Proof. De�ne a poset (V,≺) by letting x ≺ y to be true, for any two vertices
x, y ∈ V , whenever there exists a directed path from x to y. Obviously, since
D is complete and acyclic, this poset is even totally ordered. With these de�ni-
tions, a topological ordering of the given digraph correlates to this total order
(see [3]), hence, it is unique. �

A

B C

E D −→ A

B

C

D

E

g

g

g

g

As one can see in the above picture, every arc in the right graph corresponds to
exactly one directed cut in the left graph. Particularly, C ⊆ A is a dicut if and
only if the following properties

(1) if (x, y) ∈ C, x ≺ y, then (x, z) ∈ C, for all z � y,
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(2) if (y, z) ∈ C, y ≺ z, then (x, z) ∈ C, for all x ≺ y and

(3.1) if (x, z) ∈ C, x ≺ z, then (x, y) ∈ C, for all x ≺ y ≺ z or

(3.2) if (x, z) ∈ C, x ≺ z, then (y, z) ∈ C, for all x ≺ y ≺ z

are satis�ed.
Now, recall that a complete acyclic digraph with n ≥ 1 vertices has exactly n−1
dicuts, in the following denoted by C1, ..., Cn−1. As a result the above de�ned
poset (C,⊇) admits a simple structure.

Lemma 1. Let D = (V,A) be a complete acyclic digraph with |V | = n ≥ 2 and
(C,⊇) as above. Then C is isomorphic to 2[n−1].

Proof. Denote for some set J of indices CJ := ∪j∈JCj . Thus the elements of C
are A \ CJ , for J ⊆ [n− 1] and the following map

ϕ : C → 2[n−1], ϕ(A \ CJ) := J

is well-de�ned since there are exactly n− 1 dicuts. Moreover each set of indices
J ∈ 2[n−1] induces exactly one element in C, hence ϕ is bijective.
Now, let A \ CJ ⊇ A \ CI for some I, J ⊆ [n− 1], thus CJ ⊆ CI and let j ∈ J .
Then, for all (x, y) ∈ Cj there is some i ∈ I such that (x, y) ∈ Ci. Since Cj and
Ci are dicuts, they satisfy the above properties (1), (2), (3.1) or (1), (2), (3.2).
So, assume j 6= i and, without loss of generality, let (x, z) ∈ Cj with x ≺ z ≺ y.
Then i 6= i′ ∈ I exists with (x, z) ∈ Ci′ , otherwise j = i would hold.
All in all there are at least n− 1 arcs in Cj , so |I| ≤ n− 1, hence j ∈ I anyway
and ϕ is an order isomorphism. �

As a result we can write (1) as

φDNL(k) =
∑

J∈2[n−1]

(−1)|J| k|A\∪i∈JCi|−rk(A\∪i∈JCi), (2)

since µ(J, 2[n−1]) = (−1)|2
[n−1]\J| = (−1)|J|, for all J ∈ 2[n−1]. This immediately

leads to the following theorem.

Theorem 2. Let D = (V,A) be a complete acyclic digraph with |V | = n.
For 1 ≤ p ≤ n denote by (k1, ..., kp) the composition of n into p parts, i.e.∑p
i=1 ki = n, with ki ≥ 1, i = 1, ..., p. Then the NL-�ow polynomial is given by

φDNL(x) =

n∑
p=1

(−1)p−1
∑

(k1,...,kp)

p∏
i=1

x(ki−1
2 ).

Proof. Let n ≥ 2, otherwise we have ΦDNL(x) = 1, the empty �ow. For J ∈ 2[n−1]

let D[CJ ] denote the subgraph of D induced by A \ ∪i∈JCi and p = |J |+ 1 the
number of connected components in D[CJ ]. We only have to count the number
of arcs in D[CJ ], since the rank is given by n− p.
Deleting |J | dicuts of the given complete digraph yields a subgraph with p
strongly connected components, each containing ki ≥ 1, i = 1, .., p, vertices and
thus

(
ki
2

)
arcs, satisfying

∑p
i=1 ki = n.
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Since the digraph is complete and acyclic, every combination is presumed, hence,
with (2), the number of NL-k-�ows is given by

n∑
p=1

(−1)p−1
∑

(k1,...,kp)∑p
i=1 ki=n

k
∑p

i=1 (ki
2 )−(n−p).

The claim follows, using
(
m
2

)
− (m− 1) =

(
m−1
2

)
, for all m ∈ N. �

Now we can compute several NL-�ow polynomials of complete acyclic digraphs
with n vertices in comparably short time:

n = 1 :
1

n = 2 :
0

n = 3 :
x− 1

n = 4 :
x3 − 2x+ 1

n = 5 :
x6 − 2x3 + x

n = 6 :
x10 − 2x6 + x3 − x2 + 2x− 1

n = 7 :
x15 − 2x10 + x6 − 2x4 + 2x3 + 3x2 − 4x+ 1

n = 8 :
x21 − 2x15 + x10 − 2x7 + x6 + 6x4 − 4x3 − 3x2 + 2x

Obviously there are a lot of regularities and we can explicitely give the exponent
of the two leading terms and their coe�cients.

Proposition 3. Let D = (V,A) be a complete acyclic digraph with n ≥ 1
vertices.

(i) The leading term of ΦDNL(x) equals x(n−1
2 ).

(ii) Assume n ≥ 4. Then the second term with highest exponent equals −2x(n−2
2 ).

Proof. We only need to consider the case where p = 1, since the exponent of
ΦDNL(x) is maximum for k1 = n. The next lower exponent occurs when p = 2,
having k1 = n− 1, k2 = 1 and vice versa.

Let us now look at the constant term of the polynomial.

Lemma 2. Let D = (V,A) be a complete acyclic digraph with n ≥ 3 vertices
and c(n) denote the constant term of ΦDNL(x). Then the following recursion
holds

c(n) = −(c(n− 1) + c(n− 2)).
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Proof. Since we are interested in the constant term of ΦDNL(x) we only need
to consider the cases where ki ∈ {1, 2} for all 1 ≤ i ≤ n and get the following
distinction.

c(n) =
∑

k2+...+kp=n−1
k1=1

ki∈{1,2}

(−1)p−1 +
∑

k2+...+kp=n−2
k1=2

ki∈{1,2}

(−1)p−1

r:=p−1
= −

∑
k1+...+kr=n−1

ki∈{1,2}

(−1)r−1 −
∑

k1+...+kr=n−2
ki∈{1,2}

(−1)r−1

= −(c(n− 1) + c(n− 2)).

�

This observation yields the following proposition.

Proposition 4. Let D = (V,A) be a complete acyclic digraph with n ≥ 1
vertices, then the constant term of ΦDNL(x) is given by

c(n) = ΦDNL(0) =


−1 , if n mod 3 = 0,

1 , if n mod 3 = 1,

0 , if n mod 3 = 2.

Proof. Lemma 2 immediately yields

c(n+ 3) = −
(
c(n+ 2) + c(n+ 1)

)
= −

(
−
(
c(n+ 1) + c(n)

)
+ c(n+ 1)

)
= c(n)

and the base cases from above prove the claim. �

Observing the linear term we get:

Proposition 5. Let D = (V,A) be a complete acyclic digraph with n ≥ 4
vertices, then the linear term of ΦDNL(x) is given by

l(n) =
1

3


n , if n mod 3 = 0,

−2(n− 1) , if n mod 3 = 1,

n− 2 , if n mod 3 = 2.

Proof. In this case exactly one part of the composition, call it kj , equals 3,
while the other parts have to be either 1 or 2. Let c(n) be the constant term of
ΦDNL(x), then we have

l(n) =
∑

k1+...+kp−1=n−1
j 6=p

ki∈{1,2},i6=j

(−1)p−1 +
∑

k1+...+kp−1=n−2
j 6=p

ki∈{1,2},i6=j

(−1)p−1 +
∑

k1+...+kp−1=n−3
j=p

ki∈{1,2}

(−1)p−1

= −l(n− 1)− l(n− 2)− c(n− 3)
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Now we can proceed per induction, using Proposition 4.

l(n+ 1) = −l(n)− l(n− 1)− c(n− 2)

IV
= −1

3


n

−2(n− 1)

n− 2

− 1

3


(n− 1)− 2

n− 1

−2((n− 1)− 1)

−


1 , if n mod 3 = 0

0 , if n mod 3 = 1

−1 , if n mod 3 = 2

=
1

3


−2((n+ 1)− 1) , if n+1 mod 3 = 1

(n+ 1)− 1 , if n+1 mod 3 = 2

n+ 1 , if n+1 mod 3 = 0

�

3.2 Complete digraphs

Considering an arbitrary complete digraph D = (V,A) the NL-�ow polynomial
depends on its orientation. Let d ∈ N denote the number of maximal strongly
connected components and denote their vertex sets with S1, ..., Sd. Since we
cannot cut through cycles there are exactly d − 1 dicuts and the poset C is
isomorphic to 2[d−1]. Similarly as in (2) we conclude

φDNL(k) =
∑

J∈2[d−1]

(−1)|J| k|A\∪i∈JCi|−rk(A\∪i∈JCi), (3)

where Ci, i = 1, ..., d− 1 denote the dicuts in D.
Recall that the maximal strongly connected components form a partition of the
given digraph. Consequently we consider the following map

λ : V → {1, ..., d}
v 7→ i, with v ∈ Si,

which induces the complete acyclic digraph on d vertices.

λ−→

As a result of Proposition 2 the vertices of D[λ(V )] can be ordered topologically,
thus the strongly connected components of D allow a similar ordering.

Theorem 3. Let D = (V,A) be a complete digraph with d ≥ 1 strongly con-
nected components, each containing k1, ..., kd vertices, such that the subgraph of
D induced by λ(V ) is topologically ordered. For 1 ≤ p ≤ d consider the com-
position (d1, ..., dp) of d into p parts, i.e.

∑p
i=1 di = d, with di ≥ 1, for all
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1 ≤ i ≤ p. Then the NL-�ow polynomial is given by

φDNL(x) =

d∑
p=1

(−1)p−1
∑

(d1,...,dp)

p∏
j=1

x(nj−1

2 ), with

nj :=

δ(j)∑
s=δ(j−1)+1

ks and δ(j) :=

j∑
r=1

dr.

P roof. Denote the strongly connected components of D with K1, ...,Kd, such
that the topologically ordering of λ(V ) is preserved. Analoguesly to the proof
of Theorem 2 we only have to count the number of vertices in each partition of
D[λ(V )] induced by some composition (d1, ..., dp), where each vertex 1 ≤ v ≤ d
corresponds to a strongly connected component Kv, each containing kv vertices
in D.
So, let (d1, ..., dp) be an arbitrary composition of d with p parts, hence there
are dj , 1 ≤ j ≤ p, vertices in each part of D[λ(V )]. Let Dj denote the set of
vertices in the corresponding strongly connected components in D. Then

D1 =

d1⋃
i=1

Ki, D2 =

d1+d2⋃
i=d1+1

Ki , ..., Dp =

d1+...+dp⋃
i=d1+...+dp−1+1

Ki.

Thus there are

|Dj | =

∑j
r=1 dr∑

i=
∑j−1

r=1 dr+1

ki

vertices in the j−th corresponding part of D. �
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