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Abstract

We show that every gammoid has special digraph representations, such
that a representation of the dual of the gammoid may be easily obtained
by reversing all arcs. In an informal sense, the duality notion of a poset
applied to the digraph of a special representation of a gammoid commutes
with the operation of forming the dual of that gammoid. We use these special
representations in order to define a complexity measure for gammoids, such
that the classes of gammoids with bounded complexity are closed under
duality, minors, and direct sums.
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A well-known result due to J.H. Mason is that the class of gammoids is closed
under duality, minors, and direct sums [5]. Furthermore, it has been shown by
D. Mayhew that every gammoid is also a minor of an excluded minor for the class
of gammoids [6], which indicates that handling the class of all gammoids may get
very involved. In this work, we introduce a notion of complexity for gammoids
which may be used to define subclasses of gammoids with bounded complexity,
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that still have the desirable property of being closed under duality, minors, and
direct sums; yet their representations have a more limited number of arcs than the
general class of gammoids.

1 Preliminaries

In this work, we consider matroids to be pairs M = (FE,Z) where F is a finite set
and Z is a system of independent subsets of £ subject to the usual axioms ([7],
Sec. 1.1). If M = (E,7) is a matroid and X C F, then the restriction of M to
X shall be denoted by M|X ([7], Sec. 1.3), and the contraction of M to X shall
be denoted by M. X ([7], Sec. 3.1). Furthermore, the notion of a digraph shall be
synonymous with what is described more precisely as finite simple directed graph
that may have some loops, i.e. a digraph is a pair D = (V, A) where V is a finite
setand A C V x V. Every digraph D = (V, A) has a unique opposite digraph
Derp = (V, A°PP) where (u,v) € A°P if and only if (v,u) € A. All standard
notions related to digraphs in this work are in accordance with the definitions
found in [2]. A pathin D = (V, A) is a non-empty and non-repeating sequence
P = p1p2 . .. py Of vertices p; € V such that foreach 1 < i < n, (p;, pir1) € A. By
convention, we shall denote p,, by p_;. Furthermore, the set of vertices traversed
by a path p shall be denoted by |p| = {p1, p2, - .., pn} and the set of all paths in D
shall be denoted by P(D).

Definition 1.1. Let D = (V, A) be a digraph, and X, Y C V. A routing from X
to Y in D is a family of paths R C P (D) such that

(i) foreach x € X there is some p € R with p; = x,
(i1) forall p € R the end vertex p_; € Y, and
(iii) for all p,q € R, either p = q or |p| N |q| = 0.

We shall write R: X = Y in D as a shorthand for “R is a routing from X to Y’
in D”, and if no confusion is possible, we just write X = Y instead of R and
R: X =Y. A routing R is called linking from X to Y, if it is a routing onto Y/,
i.e. whenever Y = {p_; | p € R}.

Definition 1.2. Let D = (V, A) be a digraph, £ C V, and T' C V. The gammoid
represented by (D, T, F) is defined to be the matroid I'(D, T, E') = (E,Z) where

Z ={X C E | there is arouting X = 7' in D}.



Duality Respecting Representations and Complexity Measures 3

The elements of 7" are usually called sinks in this context, although they are not
required to be actual sinks of the digraph D). To avoid confusion, we shall call the
elements of 1" targets in this work. A matroid M’ = (E',T') is called gammoid, if
there is a digraph D' = (V’, A’) and aset 7" C V' such that M’ = I'(D", T", E").

Theorem 1.3 ([5], Corollary 4.1.2). Let M = (E,Z) be a gammoid and B C E
a base of M. Then there is a digraph D = (V, A) such that M = T'(D, B, E).

For a proof, see J.H. Mason’s seminal paper On a Class of Matroids Arising
From Paths in Graphs [5].

2 Special Representations

Definition 2.1. Let (D, T, E) be a representation of a gammoid. We say that
(D, T, E) is a duality respecting representation, if

[(D** E\T,E)= (I'(D,T,E))"
where (I'(D, T, E))" denotes the dual matroid of I'(D, T, E).

Lemma 2.2. Let (D, T, E) be a representation of a gammoid with T C E, such
that every e € E\T is a source of D, and every t € T is a sink of D. Then
(D, T, E) is a duality respecting representation.

Proof. We have to show that the bases of N = I'(D°P?, E\T', F) are precisely the
complements of the bases of M = T'(D, T, E) ([7], Thm. 2.1.1). Let B C E'be a
base of M, then there is a linking L: B = T in D, and since 7" consists of sinks,
we have that the single vertex paths {x € P(D) | x € TN B} C L. Further, let
L°P? = {p.pn_1...p1 | p1p2-..pn € L}. Then L°PP is a linking from 7" to B in
D°PP which routes T\ B to B\T'. The special property of D, that £\T consists
of sources and that 7" consists of sinks, implies, that for all p € L, we have
Ip| M E = {p1,p_1}. Observe that thus

R={pe L |peT\B}U{zr € P(D®*®) |z e E\(TUB)}
is a linking from E\B = (T'U (E\T)) \ B onto E\T in D°?, thus F'\ B is a base

of N. An analog argument yields that for every base B’ of N, E'\ B’ is a base of
M. Therefore T'(D°P?, E\T, E) = (I'(D, T, E))". O
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Definition 2.3. Let M be a gammoid and (D, T, E') with D = (V, A) be a repre-
sentation of M. Then (D, T, F) is a standard representation of M, if (D, T, E) is
a duality respecting representation, 7' C F, every t € T'is a sink in D, and every
e € E\T is asource in D.

The name standard representation is justified, since the real matrix A € RT*xE
obtained from D through the Lindstrom Lemma [4, 1] is a standard matrix repre-
sentation of T'(D, T, E') up to possibly rearranging the columns ([8], p.137).

Theorem 2.4. Let M = (E,T) be a gammoid, and B C E a base of M. There is
a digraph D = (V, A) such that (D, B, F) is a standard representation of M.

Proof. Let Dy = (Vj, Ap) be a digraph such that I'(Dy, B, E) = M (Theo-
rem 1.3). Furthermore, let V' be a set with £ C V' such that there is an injective
map : Vo — V\E, v — v'. Without loss of generality we may assume that
V = E UVj. We define the digraph D = (V, A) such that

A={ V)] (u,v) € Ag} U{(V',b) | b€ BtU{(e,€) | e € E\B}.

For every X C FE, we obtain that by construction, there is a routing X = B
in Dy if and only if there is a routing X =¢ B in D. Therefore (D, B, F) is a
representation of M/ with the additional property that every e € F\ B is a source
in D, and every b € B is a sink in D. Thus (D, B, E) is a duality respecting
representation of M (Lemma 2.2). [l

3 Gammoids with Low Arc-Complexity
Definition 3.1. Let M be a gammoid. The arc-complexity of M is defined to be
Ca(M) =min {|A|| ((V,A),T,E) is a standard representation of M }.

Lemma 3.2. Let M = (E,Z) be a gammoid, X C E. Then the inequalities
Ca(M]X) < Ca(M), CA(M.X) < Ca(M), and C4(M) = C4(M*) hold.

Proof. Let M be a gammoid and let (D, T, E') be a standard representation of
M with D = (V, A) for which |A| is minimal among all standard representa-
tions of M. Then (D°PP, E\T, F) is a standard representation of M* that uses
the same number of arcs. Thus C4(M) = C4(M*) holds for all gammoids M.
Let X C E. If T C X, then (D, T, X) is a standard representation of M|X
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and therefore C4(M|X) < C4(M). Otherwise let Y = T\ X, and let By C X
be a set of maximal cardinality such that there is a routing Ry: By = Y in D.
Let D' = (V,A’) be the digraph that arises from D by a sequence of opera-
tions as described in Theorem 4.1.1 [5] and Corollary 4.1.2 [5] with respect to
the routing Ry. Observe that every b € B is a sink in D’ and that |A'| = |A].
We argue that (D', ("N X) U By, X) is a standard representation of M |X: Let
Yo = {p_1|p € Ry} be the set of targets that are entered by the routing Ry. It
follows from Corollary 4.1.2 [5] that the triple (D', (TNX)UByU(Y'\Yp), E)isa
representation of M. The sequence of operations we carried out on D preserves all
those sources and sinks of D, which are not visited by a path p € R. So we obtain
thatevery e € E\ (T'U By) is a source in 1), and that every ¢t € T'N X is a sink in
D’. Thus the set 7" = (T'N X) U By consists of sinks in D', and the set X\7” C
E\ (T'U By) consists of sources in D’. Therefore (D', (T'NX)U By, X) is a stan-
dard representation, and we give an indirect argument that (D', (7N X) U By, X)
represents M | X. Clearly, (D', (TN X)U By U (Y'\Yp), X) is a representation of
M| X. Since we assume that (D', (T'NX)U By, X ) does not represent M | X, there
must be a set X C X such that there is a routing Qo : Xo = (TNX)UBU(Y'\Yp)
and such that there is no routing Xq = (7N X) U By, both in D’. Thus there
is a path ¢ € Qo with ¢_; € Y\Y; and ¢; € X. Consequently we have a rout-
ing Q) = {qtU{be P(D')|be By} in D'. This implies that there is a routing
BoU{¢:} = Y in D, a contradiction to the maximal cardinality of the choice of By
above. Thus our assumption must be wrong, and (D', (T'N X)) U By, X) is a stan-
dard representation of M/|X. Consequently C4(M|X) < C4(M) holds again.
Finally, we have Co(M.X) = C, ((M*|X)") = Ca(M*|X) < Ca(M*) =
Ca(M). O

Definition 3.3. Let f: N — N\ {0} be a function. We say that f is super-
additive, if for all n,m € N\ {0}

fn+m) = f(n) + f(m)
holds.

Definition 3.4. Let f: N — N\ {0} be a super-additive function, and let M =
(E,T) be a gammoid. The f-width of M shall be

- Ca (MY)|X
Wf(M)‘maX{ 00

Theorem 3.5. Let f: N — N\ {0} be a super-additive function, and let 0 < q €
Q. Let Wy, denote the class of gammoids M with W (M) < q. The class Wy,
is closed under duality, minors, and direct sums.

))'XQYQE}.



6 Immanuel Albrecht

Proof. Let M = (E,7) be a gammoid and X C Y C FE. It is obvious from
Definition 3.4 that W, ((M.Y') |X) < W¢(M), and consequently Wy , is closed
under minors. Since C4(M) = C4(M™) and since every minor of M* is the dual
of a minor of M ([7], Prop. 3.1.26), we obtain that W;(M) = W;(M*). Thus
W; q 1s closed under duality.

Now, let M = (E,Z) and N = (E',Z") with EN E' = Q) and M, N € Wy,
The cases where either £ = () or E' = () are trivial, now let £ # () # FE'.
Furthermore, let X C Y C E' U E’. The direct sum commutes with the forming
of minors in the sense that

(M®N).Y)|X = (MYNE)|XNE)®(NYNE)XNE).

Let (D, T, E) and (D', T, E’) be representations of M and N where D = (V, A)
and D' = (V', A’) such that VNV’ = . Then (VU V', AU A", TUT,EU E)
is a representation of M @ N, and consequently C4(M d N) < C4(M)+ C4(N)
holds for all gammoids M and /N, thus we have

Ca((M&N)Y)|X) < Ca(Mxy)+Ca(Nxy)

where Mxy = (MY NE)|XNEand Nxyy = (N.Y NE")|XNE' The cases
where C4(Mxy) = 0 or C4(Nxy) = 0 are trivial, so we may assume that
X NE+#D+#XnNE'. We use the super-additivity of f at (x) in order to derive

Ca (M M) Y)|X) _ Ca (M) +Ca (Nxy)

(X1 - f (X1
¢ f(XNE)+q-F(XNE) @
- fFX0D B
As a consequence we obtain W f(M @ N) < ¢, and therefore Wi 4 18 closed under
direct sums. ]

4 Further Remarks and Open Problems

Let r,n € N with n > r, the uniform matroid of rank r on n elements is the ma-
troid Uy, = ({1,2,...,n},Z.,) where Z,.,, = {X C {1,2,...,n} | [X| <r}.
LetT ={1,2,....7}, X ={r+1,r+2,...,n},and D = (X UT, X xT).
Then U,.,, = I'(D,T,T U X). Thus C4 (U,.,,) < r - (n — r). Unfortunately, we
were not able to find a known result in graph or digraph theory that implies:
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Conjecture 4.1.
Ca(Upn)=1-(n—r).

A slightly weaker version is the following:
Conjecture 4.2. For every q € Q there is a gammoid M = (E,T) with

Ca(M) >q-|E|.

For the rest of this work, we set f: N — N\ {0}, x — max{1,z}, we
denote W, by W, and we fix an arbitrary choice of ¢ € Q with ¢ > 0. Clearly,
if Conjecture 4.2 holds, then (Wﬁi)ieN\{O} is strictly monotonous sequence of
subclasses of the class of gammoids, such that every subclass is closed under
duality, minors, and direct sums. For which super-additive f and ¢ € Q\ {0} may
W;,, be characterized by finitely many excluded minors? For which such classes
can we list a sufficient (possibly infinite) set of excluded minors that decide class
membership of W ,?

A consequence of a result of S. Kratsch and M. Wahlstréom ([3], Thm. 3)
is, that if a matroid M = (E,Z) is a gammoid, then there is a representation
(D, T,E) of M with D = (V, A) and |V| < rky (E)? - |E| + tky(E) + |E. Tt
is easy to see that if A/ € Wy, then there is a representation (D, T, E') of M
with D = (V, A) and |V| < |2¢- f (|E]|)], since every arc is only incident with
at most two vertices. Therefore, deciding Wy ,-membership with an exhaustive
digraph search appears to be easier than deciding gammoid-membership with an
exhaustive digraph search.
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