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Version of the Colorful Carathéodory

Helena Bergold and Winfried Hochstättler
FernUniversität in Hagen, Germany

Abstract
Carathéodorys Theorem of convex hulls plays an important role in convex
geometry. In 1982, Bárány formulated and proved a more general version,
called the Colorful Carathéodory. This colorful version was even more
generalized by Holmsen in 2016. He formulated a combinatorial extension
in [4] and found a topological proof. Taking a dual point of view we gain
an equivalent formulation of Holmsen’s result that has a more geometric
meaning.

1 Carathéodory’s Theorem
The following theorem, named after Constantin Carathéodory, plays an impor-
tant role in convex geometry since it gives an upper bound to the length of the
convex combination of a point lying in a convex set.

Theorem 1 (Carathéodory). For P ⊆ Rd (d ∈ N) and a point x ∈ convP
there are d+ 1 points p0, . . . , pd ∈ P such that x ∈ conv{p0, . . . , pd}.
Bárány proved the Colorful Carathéodory [2] in 1982, a more general version
of Carathéodory’s Theorem. In this version, the set P is divided into different
subsets. If these sets are disjoint, we can interpret them as colors, such that
each point gets a color dependent on the subset in which the point is included.

Theorem 2 (Colorful Carathéodory, Bárány (1982) [2]). Consider d + 1 sets
P0, . . . , Pd in Rd (d ∈ N). If x ∈ Rd is in all convex hulls convPi (0 ≤ i ≤ d),
there are points pi ∈ Pi in every Pi (0 ≤ i ≤ d) such that x is in the convex hull
of those d+ 1 points, i.e. x ∈ conv{p0, . . . , pd}.
This theorem tells us that the point x is in a colorful simplex, which means that
each corner is in a different color, i.e. belongs to a different set Pi.
It is even possible to extend the Colorful Carathéodory. In [4] Holmsen con-
sidered a combinatorial and a topological extension of Theorem 2 which are
equivalent to each other.

2 Introduction to Matroid and Oriented Matroid
Theory

To understand the combinatorial version, we will shortly introduce the necessary
terms in the theory of matroids and oriented matroids. For detailed information
we refer to [5], [3] and [1].
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Definition 1. A matroidM on a ground set E with a collection C of circuits
is an ordered pairM = (E, C) such that the following conditions hold:

(M1) ∅ /∈ C.

(M2) For X,Y ∈ C with X ⊆ Y is X = Y .

(M3) If X,Y ∈ C, X 6= Y and e ∈ X ∩ Y , there is a Z ∈ C such that
Z ⊆ (X ∪ Y )\{e}.

The elements of C are called circuits. A loop is an element x ∈ E such that {x}
is a circuit. An independent set of a matroid M = (E, C) is a subset X ⊆ E
such that no subset of X is a circuit. A maximal independent set is called a
basis.

Definition 2. The rank of a set X ⊆ E is the cardinality of the inclusion-
maximal independent subset of X. We denote the rank of X as %(X). The rank
of a matroidM is %(E).

Definition 3. A subset D ⊆ E of a matroidM is a double circuit if

%(D) = |D| − 2 and
∀e ∈ D : %(D\{e}) = |D| − 2.

Definition 4. The dual matroid M∗ of a matroid M = (E, C) is a matroid
on the same ground set E such that a set is independent if and only if the
complement contains a basis of M. It is M∗∗ =M. The circuits of the dual
matroids are called cocircuits ofM.

To define the notion of oriented matroids, we need to introduce signed sets.
A signed subset of a finite set E is an ordered pair X = (X+, X−) with
X+, X− ⊆ E such that X+ ∩ X− = ∅. We write −X = (X−, X+) and
X = X+ ∪X− ⊆ E.

Definition 5. A pair O = (E, C) is an oriented matroid if

(O1) (∅, ∅) /∈ C and if X ∈ C, then −X ∈ C.

(O2) For two sets X,Y ∈ C with X ⊆ Y , it is either X = Y or X = −Y .

(O3) For X,Y ∈ C with X 6= −Y and e ∈ X+ ∩ Y − there is a Z ∈ C such that
Z+ ⊆ (X+ ∪ Y +)\{v} and Z− ⊆ (X− ∪ Y +)\{v}.

The signed sets in C are called (signed) circuits of O and a positive circuit is
a (signed) circuit (X+, ∅) of O. If X ⊆ S for a set S and a signed set X, we
say X is contained in S.

It is easy to see that the set C = {X : X ∈ C} for a circuit system C of an
oriented matroid is the collection of circuits of a matroid. This matroid is called
the underlying matroid of O. The rank of an oriented matroid is defined as the
rank of its underlying matroid.

Definition 6. Two signed sets X,Y are orthogonal if X ∩ Y = ∅ or the re-
strictions of X and Y to their intersection X ∩ Y is neither equal nor opposite.

2



For any oriented matroid O = (E, C), there is a unique maximal family C∗ such
that X and Y are orthogonal for all X ∈ C and Y ∈ C∗. This set is a set of
circuits of an oriented matroid on the ground set E, called the dual oriented
matroid of O. The circuits of the dual matroid are called cocircuits.
The matroid underlying the dual oriented matroid is the dual of the underlying
matroid.

3 Holmsen’s Theorem
The following theorem is the theorem of Holmsen stated in [4]. In this section
we will only show the connection of this version to the Colorful Carathéodory
(Theorem 2).

Theorem 3 (Holmsen). Let O be an oriented matroid on the ground set E
with rank r. Consider a matroid M on the same ground set E and with rank
function % such that %(E) > r. If every subset S ⊆ E with %(E\S) < r contains
a positive circuit of O, there exists a positive circuit of O which is independent
inM.

At first glance you may not notice the connection of this theorem to the Colorful
Carathéodory Theorem. For this reason, we will recall from [4] that the Colorful
Carathéodory is a special case.

Holmsen’s Theorem ⇒ Colorful Carathéodory. Let P0, P1, . . . , Pd be subsets of
Rd and x ∈ Rd a point such that x ∈ convPi for all i ∈ {0, . . . , d}. Consider the
disjoint union E = P0∪̇P1∪̇ · · · ∪̇Pd as a multiset of points in Rd. We assume
x /∈ E (if x is already in one of the sets Pi (i ∈ {0, . . . , d}), the statement is
trivial). For every inclusion-minimal subset S ⊆ E with a linear dependency∑

p∈S αp(p− x) = 0 (αp ∈ R), we consider the two subsets of S:

S+ = {p ∈ S : αp > 0},
S− = {p ∈ S : αp < 0}.

All signed subsets (S+, S−) constructed in such a way build an oriented matroid
O = (E, C) where C is the set of signed subsets (S+, S−).
This so constructed oriented matroid has the rank r equal to dimension of the
vector space spanned by of E ∪ {x}.
Observe that for any set S ⊆ E and any y ∈ convS there is linear dependency
with only positive coefficients. This shows that

x ∈ convS ⇔ S contains a positive circuit of O.

By the preliminaries of the Colorful Carathéodory x is contained in all convPi.
By this observation we know that all Pi contain a positive circuit.
Furthermore, we define the matroid M by its independent sets. So let I ⊆ E
be independent if and only if |I ∩ Pi| ≤ 1 for all i ∈ {0, . . . , d}. This is a
so called partition matroid and hence it fulfills the matroid axioms. We need
to check whether every subset S ⊆ E with %(E\S) < r contains a positive
circuit in order to apply Theorem 3. The condition %(E\S) < r means there
are at most r − 1 elements in E\S, so this set has an empty intersection with
d+ 1− (r − 1) = d− r + 2 ≥ 2 of the d+ 1 sets P0, . . . , Pd. This shows that S
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contains two of the sets P0, . . . , Pd. Each Pi (i = 0, . . . , d) contains a positive
circuit and so does S itself.
Now all necessary conditions of Theorem 3 are fulfilled, so there is a positive cir-
cuit C of O such that C ∈ I. By the observation above this means x ∈ convC.
In C there is at most one point of every set Pi so we can extend C to a set consist-
ing of exactly one point of every Pi as mentioned in the Colorful Carathéodory
Theorem.

4 Dual of Holmsen’s Theorem
Using the basics introduced previously we are finally able to reformulate Holm-
sen’s Theorem.

Claim 1: We can replace the condition “for all S ⊆ E with %(E\S) < r” by
“for all S ⊆ E with %(E\S) = r − 1” in Theorem 3.

Proof. Every subset S with %(E\S) = r − 1 fulfills obviously the condition
that the rank of the complement is smaller than r. If we start with a subset
S ⊆ E such that %(E\S) < r − 1, we extend the set E\S to E\S′ such that
%(E\S′) = r − 1 (possible since the rank ofM is greater than r). This implies
S′ ⊆ S. The smaller set S′ contains by assumption an positive circuit which is
also contained in S.

Claim 2: It is enough to show Theorem 3 for matroids with rank r + 1. In
particular, matroids of rank r+2 or higher need not to be considered explicitely.

Proof. To see this we assume that O is an oriented matroid of rank r andM a
matroid of rank > r+1, both on the same ground set E. We delete elements of E
such that, we get a submatroidM′ ofM of rank r+1 on the ground set E′ ⊂ E.
Let r−k for k ∈ N0 be the rank of the oriented matroid O′, the restriction of O
to E′. We add k new elements e1, . . . , ek as a loop to M′ and in such a way
that they are coloops in the underlying matroid of O′. The new matroid is
denoted by M′ + {e1, . . . , ek} and the oriented matroid by O′ + {e1, . . . , ek}.
The rank of the new matroidM′+ {e1, . . . , ek} with elements E′ ∪ {e1, . . . , ek}
is r + 1 since the added elements do not appear in any bases. The rank of the
new oriented matroid increases by k. We need to show that the condition “for
all S ⊆ E′ ∪ {e1, . . . , ek} with %((E′ ∪ {e1, . . . , ek})\S) = r − 1, S contains
a positive circuit of O′ + {e1, . . . , ek}” holds in the constructed matroid and
oriented matroid. This is true since for any such subset S with {e1, . . . , ek} ⊆ S,
we get a positive circuit C of O′ + {e1, . . . , ek} contained in S. Since a coloop
is in no circuit, we get C ∩ {e1, . . . , ek} = ∅. For any other subset S with
%((E′ ∪ {e1, . . . , ek})\S) = r − 1, we can extend the set S by the elements
e1, . . . , ek and get a positive circuit without {e1, . . . ek}, so the positive circuit
is contained in S itself. So the precondition is true. Hence there is a positive
circuit C ′ of O′+{e1, . . . , ek} (with C ′∩{e1, . . . , ek} = ∅) which is independent
in M′ + {e1, . . . , ek}. This implies that C ′ is independent in M as well. This
shows that the condition “%(E) > r” can be replaced by “%(E) = r + 1”.

So we showed that Theorem 3 is an equivalent formulation of
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Theorem 4. Let O be an oriented matroid on the ground set E with rank r.
Consider a matroidM on the same ground set E and with rank function % such
that %(E) = r+1. If every subset S ⊆ E with %(E\S) = r−1 contains a positive
circuit of O, there exists a positive circuit of O which is independent inM.

By the Topological Representation Theorem every oriented matroid can be real-
ized as an oriented pseudosphere arrangement. A circuit in such an arrangement
is a collection of half-spaces with empty intersection. Since cocircuits correspond
to vertices in the arrangement and so they are easier to visualize, we will present
a dual version of Holmsen’s Theorem.

Theorem 5 (Dual version of Holmsen’s Theorem). Let M be a matroid with
rank function % such that %(E) = r − 1. Furthermore we consider an oriented
matroid O with rank r on the same ground set E. If every double circuit ofM
contains a positive cocircuit of O, then there exists a positive cocircuit in O,
whose complement spansM.

Proof. LetM,O be as in the theorem. From the rank formula

%M∗(X) = |X|+ %M(E\X)− %M(E),

we see that r∗ := |E| − r is the rank of the dual oriented matroid O∗ and

%M∗(E) = |E|+ %M(E\E)− %M(E)

= |E|+ %M(∅)− (r − 1) = r∗ + 1.

SoM∗,O∗ fulfill the assumptions of Theorem 4. Furthermore every inclusion-
minimal subset S ⊆ E with %M∗(E\S) = r∗ − 1 is a double circuit in its dual,
which follows from the rank formula and ofM∗∗ =M:

%M(S) = |S|+ %M∗(E\S)− %M∗(E) = |S|+ r∗ − 1− (r∗ + 1) = |S| − 2.

Since S is inclusion-minimal with this property, the complement of S\{e} for
every e ∈ S has rank %M∗(E\(S\{e})) = r∗. This implies that

%M(S\{e}) = |S| − 1 + r∗ − (r∗ + 1) = |S| − 2

for every e ∈ E. So S is a double circuit inM. Every set S′ ⊆ E which is not
inclusion-minimal contains an inclusion-minimal set S and hence it contains
a double circuit. Every double circuit contains a positive cocircuit of O by
assumption and so every S contains a positive circuit of O∗. So by Theorem 4,
we know that there is a positive circuit of O∗ which is independent inM∗. This
is a positive cocircuit of O whose complement spansM.

The dual version mentioned in Theorem 5 is an equivalent formulation of Holm-
sen’s Theorem. The proof that Holmsen’s Theorem follows from the dual version
mentioned above works analogously.

5 Complementary Positive Cocircuits
We will now think of an oriented matroid of rank d + 1 as an arrangement of
signed pseudospheres in Sd. The positive cocircuits are the vertices of the main
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polytope. The complement of a cocircuit corresponds exactly to the spheres
going through a vertex of the polytope. There are at least d spheres intersecting
in a vertex v. So if the complement of a positive cocircuit is considered to span
the matroid M of rank d, this means that the elements corresponding to the
spheres, intersecting in the cocircuit, span the matroid. If the complement of a
positive cocircuit C does not span the matroid, the rank is less than %(E) = d,
so

%(E\C) ≤ d− 1 ≤ |E\C| − 1.

This shows that E\C contains a circuit ofM.
If the vertex v of the main polytope is degenerate and E\C is non-spanning or
%(E\C) ≤ d− 2 there exists a vertex V ′ of the main polytope such that the set
of spheres intersecting in v′ is disjoint from those intersecting in v. We call such
a vertex complementary vertex.
We will now study in which cases the union of the elements intersecting in two
adjacent (in the 1-skeleton of the face lattice of the positive polytope) positive
cocircuits contain a double circuit of the matroid, i.e. in which case the edge
connecting those vertices has a complementary vertex. For this reason note
that:

Proposition 1. A set X ⊆ E contains a double circuit if and only if the rank
of X is %(X) ≤ |X| − 2.

Proposition 2. Every non-spanning set in a matroid of rank d with more than d
elements contains a double circuit.

So by the last Proposition 2, we may assume that in each vertex there are
exactly d intersecting elements.
Let C1 and C2 be two adjacent positive cocircuit and each complement does not
span the matroid. So

%(E\Ci) ≤ d− 1 for i = 1, 2.

If (E\C1) ∩ (E\C2) is independent, the submodularity of the rank function
shows

% ((E\C1) ∪ (E\C2)) ≤ %(E\C1) + %(E\C2)− % ((E\C1) ∩ (E\C2))

≤ (d− 1) + (d− 1)− |(E\C1) ∩ (E\C2)|
≤ d− 1.

Furthermore (E\C1) ∪ (E\C2) contains d + 1 elements, so (E\C1) ∪ (E\C2)
contains a double circuit if (E\C1) ∩ (E\C2) is independent.
In a similar way, we get that (E\C1)∪ (E\C2) contains a double circuit if either
the additional element of E\C1 or the additional element of E\C2 does not
increase the rank.
By the assumption of the dual version (Theorem 5) every double circuit contains
a positive cocircuit. So the elements intersecting in the two cocircuits C1 and C2

contain a positive cocircuit.
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The remaining part is that both elements increase the rank. In this case the
rank of the union is

%(E\C1 ∪ E\C2) = %(E\C1 ∩ E\C2) + 2

< |E\C1 ∩ E\C2| + 2

= |E\C1 ∪ E\C2|.

In this case, the union does not contain a double circuit if the intersection does
not contain one. On the other hand E\C1 ∪E\C2 has rank d and still contains
a spanning positive cocircuit if C1, C2 do not span the matroid.
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