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Abstract

It is well-known that there are instances of the binary paint shop
problem for which the recursive greedy heuristic is better than the greedy
heuristic. In this note, we give an example of a family of instances where
the greedy heuristic is better than the recursive greedy heuristic, thus
showing that these heuristics are uncorrelated.
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1 Introduction

In the binary paint shop problem, we are given two colours (red and blue) and
a double occurrence word, i.e. a word w ∈ Σ2n of length 2n over an alphabet Σ
of size |Σ| = n, in which every character of Σ occurs exactly twice as a letter of
the word w. A feasible colouring of w is an assignment of colours to the letters
of w such that every character of Σ is coloured once in red and once in blue.
For such a feasible colouring, a colour change is an index i ∈ {1, . . . , 2n − 1}
such that the colours of wi and wi+1 are different. We are looking for a feasible
colouring that minimises the number of colour changes.

This problem is a special case of the so-called paint shop problem that was
motivated by an application in car manufacturing. Both problems were intro-
duced by Epping et al. [5].

Bonsma et al. [3] proved that the binary paint shop problem is APX-hard.
Thus, it is NP-complete. By another reduction this APX-hardness result was
reproved by Meunier and Sebő [9]. It is not known whether the problem is in
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APX. Gupta et al. [6] proved that the problem is not in APX if the Unique
Games Conjecture proposed by Subhash Khot [7] is true.

A straightforward heuristic, the greedy heuristic, which scans the word from
left to right, was already introduced by Epping et al. [5] and considered mean-
while by several authors [1, 2, 3, 5, 8, 9, 10]. Amini et al. [1] proved that the
expected value of colour changes for the greedy heuristic is at most 2n/3 and
conjectured that it is asymptotically n/2. Andres and Hochstättler [2] proved
this conjecture. Moreover, they considered two other heuristics, the red first
and the recursive greedy heuristic and determined the asymptotic behaviour of
the expected number of colour changes for these heuristics as 2n/3 and 2n/5.
Recently, Šámal et al. [11] announced a proof showing that the expected number
of colour changes for optimal colouring is at least 107n/500 + o(n).

The better asymptotic behaviour of the recursive greedy heuristic raises
the question whether, for any instance of the binary paint shop problem, the
recursive greedy heuristic is better than the greedy heuristic. In this paper, we
answer this question to the negative by giving a counterexample of a family of
instances with a linear gap in the number of colour changes.

The rest of the paper is structured as follows. In Section 2, we define the
mentioned heuristics and give an example of non-optimality for all of these
heuristics. Section 3 is devoted to the counterexample. In the final Section 4
we make some observations and conjectures concerning the relation between the
heuristics and optimal colouring.

2 Heuristics for the Binary Paint Shop Problem

We consider the following three heuristics for an instance s = (s1, . . . , s2n) of
the binary paint shop problem. Denote the available colours as red and blue.

Greedy heuristic Start with colour red. Scan the letters si of the word from
left (i = 1) to right (i = 2n) and change the colour only when it is necessary.

Red First heuristic The first occurrence of each character is coloured red,
the second blue.

Recursive greedy heuristic Let w = w1w2w3 . . . w2n−1w2n be a double
occurrence word over an alphabet with n ≥ 1 characters. If n = 1, then the
word w consists of two equal letters, and we colour the first one red and the
second one blue. If n ≥ 2, we delete both occurrences of the last letter w2n,
which forms a subword w′ over an alphabet with n−1 ≥ 1 characters. Then we
colour w′ recursively using the recursive greedy heuristic. The corresponding
letters of w receive the same colours as their image in w′. So we are left with
colouring the two occurrences of w2n. If the first occurrence of w2n is between
two letters of the same colour (1.1) or has only one coloured neighbour (1.2),
then we colour it with this colour and the second occurrence with the other.
Otherwise we have w2n−1 6= w2n and we colour (the second occurrence of) w2n
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A B A C D D B C

A B A A D D B A

A A A A D D A A

A A A A A A A A

A A A A A A A A rule (0)
A A A A D D A A rule (1.2)
A B A A D D B A rule (2)
A B A C D D B C rule (1.1)

Figure 1: The dynamics of the recursive greedy algorithm.

with the colour of w2n−1 (2). Note that then by colouring the first occurrence
of w2n with the other colour we do not produce a new colour change, since this
letter is between both colours. In Figure 1 we provide a simple example that
uses all four rules (0), (1.1), (1.2) and (2). Instead of the colours red and blue
we use the colours light gray and dark gray.

Heuristics versus optimality The number of colour changes produced by
the three heuristics and the optimal colouring may differ significantly. Moreover,
there are examples, where all three heuristics are arbitrarily bad. Example 1
combines examples that are already given in [2, 3, 5].

Example 1. For every k ∈ N with k ≥ 2, the instance

A1 . . . AkCCB1 . . . Bk(A1B1) . . . (AkBk)D1 . . . Dk(D1E1) . . . (DkEk)E1 . . . Ek

of length 2n = 8k + 2 (with n = 4k + 1 different characters) of the binary paint
shop problem is coloured with

• 5 colour changes optimally;

• 2k + 5 colour changes by the red first heuristic;

• 2k + 2 colour changes by the greedy or recursive greedy heuristic.

In the following, underlined letters are red, overlined letters blue.

Proof of Example 1. In any feasible colouring, there must be a colour change
between the two Cs, a colour change between the two B1s and an odd number
of colour changes between the two A2s. All in all, there must be at least three
colour changes between the two A2s. Furthermore, there must be one colour
change between the two D1s and another one between the two E1s. Thus, in any
feasible colouring, we need at least five colour changes. An optimal colouring
with five colour changes is the following.

A1 . . . AkC|C|B1 . . . Bk|A1B1 . . . AkBkD1 . . . Dk|D1E1 . . . DkEk|E1 . . . Ek
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The red first heuristic produces the following coloring.

A1 . . . AkC|C|B1 . . . Bk|A1B1 . . . AkBk|D1 . . . Dk|D1|E1| . . . Dk|Ek|E1 . . . Ek

The greedy and the recursive greedy heuristic colour the word as follows.

A1 . . . AkC|CB1 . . . BkA1|B1| . . . Ak|BkD1 . . . Dk|D1E1 . . . DkEk|E1 . . . Ek

3 The counterexample

There are simple instances where the recursive greedy heuristic is better than
the greedy heuristic, the smallest such example being ACABBC. One might
suppose that the recursive greedy heuristic is always better than or as good
as the greedy heuristic. However, this is not true, as the following proposition
shows.

Proposition 2. For every k ∈ N, there is an instance s ∈ Σ2·(4k+12) of the
binary paint shop problem, for which the number of colour changes produced is

• 2k + 8 for the greedy heuristic and

• 4k + 6 for the recursive greedy heuristic.

Proof. We consider the alphabet

Σ = {A,B,C,D,E, F,A′, B′, C ′, D′, E′, F ′} ∪ {Xi, Yi | 1 ≤ i ≤ 2k}

and construct the instance s ∈ Σ8k+24 as the concatenation s = ww′w′′ of the
three words

w = ACADBBCEFDEY1Y3Y5 · · ·Y2k−1F,

w′ = A′C ′A′D′B′B′C ′E′Y2Y4Y6 · · ·Y2kF
′D′E′F ′,

w′′ = X1X1Y1 X2X2Y2 X3X3Y3 · · ·X2kX2kY2k.

The greedy heuristic produces 4 colour changes for each of the words w
and w′, so that the first and the last letter are coloured red:

w = A C | A D B | B | C E F | D E Y1Y3Y5 · · ·Y2k−1 F

w′ = A′ C ′ |A′D′B′ |B′ |C ′E′ Y2Y4Y6 · · ·Y2k F ′ |D′E′ F ′

Then, in each subword of w′′ of the form

X2i−1|X2i−1Y2i−1X2i|X2iY2i (i ∈ {1, . . . , k})

the greedy heuristic only needs two colour changes (between the two equal X-
letters) and the first and the last letter of each such subword are coloured red.
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In particular, the Yi with odd i are coloured red and the Yi with even i are
coloured blue.

The recursive greedy heuristic produces 3 colour changes for each of the
words w and w′, so that the corresponding letters in w and w′ (neglecting the
letters Yi) have different colours:

w = A | C A D B | B C E F D | E Y1 Y3 Y5 · · · Y2k−1 F

w′ = A′ |C ′A′D′B′ |B′ C ′E′ Y2 Y4 Y6 · · · Y2k F ′D′ |E′ F ′

In particular, all Yi must be coloured blue by the recursive greedy heuristic.
Thus, every subword of w′′ of the form Xi|Xi|Yi must be coloured red-blue-red,
which gives us two colour changes for each such subword, or four colour changes
for each pair of such words.

4 Final remarks and open questions

The following questions are still open to our knowledge.

Problem 3. Are there series of instances for which one of the greedy or recur-
sive greedy heuristic performs well (i.e. the number of colour changes is bounded
by a polynomial in the number of optimal colour changes) but the other heuristic
is arbitrarily bad?

Problem 4. Is it true that, for instances for which the greedy heuristic is op-
timal, the recursive greedy heuristic is optimal, too?

In Table 1 we see examples for six cases of optimality/non-optimality for
the three heuristics different from the cases that were excluded in case of an
affirmative answer to Problem 4.

red first: red first:
not optimal optimal

recursive greedy
and greedy: BDAACEBCDEFGFHGIHI BDAACEBCDE
not optimal (=Example 1, k = 2)

recursive greedy:
optimal; ACABBC CEAABDBCDE

greedy: not
recursive greedy

and greedy: AABB AA
optimal

Table 1: Small non-trivial optimal and non-optimal instances of the three paint
shop heuristics.
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We might define h-perfect instances of the binary paint shop problem con-
cerning a heuristic h as those instances w where, for every subword of w, the
heuristic produces an optimal solution. Rautenbach and Szigeti [10] charac-
terised the perfect instances concerning the greedy heuristic.

Theorem 5 ([10]). An instance of the the binary paint shop problem is greedy-
perfect if and only if it does not contain a subword of the form

ACABBC, CAADBBCD, or CAABDBCD.

The following is obvious and was first stated by Brunner [4].

Observation 6 ([4]). An instance of the binary paint shop problem is red-first-
perfect if and only if it does not contain a subword of the form AABB.

An interesting open question is the following.

Problem 7. Characterise the recursive-greedy-perfect instances of the binary
paint shop problem by forbidden subwords.

Using computer search, Brunner [4] found all forbidden subwords of length
at most 14 for recursive-greedy-perfectness. These are the following.

CAADBBCD ADBACBCD
DBAACEBCDE BDAACEBCDE ABACEBCDDE
ADBAEBCCDE DACEABBCDE ACEABBDCDE

CAABDFBCEDEF CAABDFBCDEEF DAACBBFCDEEF
BAACFBEGCDDEFG FAAEBBDCCGDEFG

We observe that all these configurations contain a subword isomorphic to
ACABBC, CAADBBD or CAABDBCD (indicated in bold). Thus, by The-
orem 5, they are also forbidden for greedy-perfectness. This motivates us to
formulate the following conjecture, which is weaker than an affirmative answer
to Problem 4.

Conjecture 8. If an instance of the binary paint shop problem is recursive-
greedy-perfect, then it is greedy-perfect, too.

We remark that the example from the proof of our main Proposition 2 is
not a counterexample to Conjecture 8, since it contains the forbidden subword
ACABBC.
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