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Abstract

We study the development of accurate algorithms for matrix (generalized) sym-

metric eigenvalue problems. A desirable property of such an algorithm is that

it approximates the well determined eigenvalues (and singular values) with high

relative accuracy independent of their magnitudes. This is an important issue

because the smallest eigenvalues are in applications usually the most interesting

ones and, unfortunately, the most sensitive ones in presence of numerical errors.

To design such an algorithm, we need detailed knowledge of the structure of

errors produced by �nite precision implementation of the algorithm, as well as

deep understanding of the sensitivity to perturbations of the original problem.

We are interested in methods based on orthogonal similarities (so{called direct

methods) as well as in methods based on spectral approximations from sub-

spaces (so{called iterative methods).

Consider for simplicity the ordinary symmetric eigenvalue problem Hx = �x.

The matrix H is diagonalized by an in�nite number of orthogonal similarity

transformations, � � �U�
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HU1)U2 � � � �! �, and in the limit U�HU = �,

where U = U1U2 � � � and � is the diagonal matrix of H 's eigenvalues. In �nite

precision computation, each transformation Ui is approximated by some ~Ui, and

applied with some error Ei. Moreover only a �nite number of transformations

is used:
~Hk = ~U�
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H ~U1 +E1) ~U2 +E2) � � �) ~Uk +Ek:

The index k is chosen so that ~Hk is suÆciently close to diagonal matrix and

its diagonals are taken as approximative eigenvalues ~�1; : : : ; ~�n of H . Let Û =
~U1 � � �

~Uk, and let ~U denote the computed matrix Û . The columns of ~U are

the computed approximations of the eigenvectors of H . To assess the error

in the computed values, we prove the existence of symmetric perturbation ÆH

such that Û� (H + ÆH)Û = ~Hk exactly. The matrix ÆH is called backward
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error. Di�erent algorithms produce backward errors of di�erent structures and

di�erent sizes. For example, if the backward error ÆH in positive de�nite H is

such that1, for all i; j, jÆHij j � �
p
HiiHjj (as in the Jacobi method), we expect

optimal accuracy. If we can only claim small kÆHk=kHk (as in the methods

based on tridiagonalization and bidiagonalization, which are faster than the

Jacobi method), the results are less satisfactory.

Many questions arise. How many digits in the computed eigenvalues are cor-

rect? How small are the angles between the computed and the exact eigenspaces?

Can we compute accurate approximations of the eigenvectors a posteriori (from

linear systems)? How to design numerical algorithm with minimal (numerical)

complexity to get optimal accuracy? Can we �x bidiagonalization (tridiagonal-

ization) to get backward error comparable to the one in Jacobi methods? What

are the best algorithms for the generalized problems?

If the matrix is large (and sparse), and if only a few eigenpairs are needed,

one usually constructs a sequence of low{dimensional subspaces and hopes to

approximate the target eigenpairs from these subspaces.

To be successful in designing eÆcient algorithms, one needs to know (i) how
good is the current subspace, e.g. how accurate are the Ritz pairs obtained from

that subspace; (ii) how to enrich the current subspace with directions close to

the target vectors, thus ensuring fast convergence; (iii) how to compute accurate

Rayleigh quotient matrix and the Ritz pairs in �nite precision (oating{point)

arithmetic.

So, for instance, if the task is to approximate the lowest eigenvalue � of

positive de�nite matrix, we wish to know how many correct digits are in our

current (oating{point) approximation � + Æ�. Sharp computable error bound

assures good stopping criterion and accurate approximations.

We analyze the Ritz and the harmonic Ritz values and present computable

bounds for jÆ�=�j and show how perturbation theory sheds a new light on some

well{known eigensolvers. We also discuss how to use these results to construct

better subspaces, which could lead to substantial improvement of some well{

known algorithms.

Our presentation will be a tutorial spiced with some new results.

1Here � denotes small quantity proportional to the round{o�.
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