Abstract for a poster

Block Newton methods for improving groups of singular values

by Uwe Schnabel, Dresden University of Technology

Consider a rectangular matrix $A \in \mathbb{R}^{m \times n}$, $m \leq n$, that has q positive singular values $\sigma_{i_1}, \ldots, \sigma_{i_q} > 0$ which are separated from the remaining ones but may be clustered or multiple. For simplicity of notation we denote these singular values by $\sigma_1, \ldots, \sigma_q$ and set $\Sigma_q := \operatorname{diag}(\sigma_1, \ldots, \sigma_q)$, and let im $U_q =$ $\operatorname{span}\{u^1, \ldots, u^q\}$, im $V_q = \operatorname{span}\{v^1, \ldots, v^q\}$ be the corresponding left and right singular subspaces, resp., i.e., we have $A V_q = U_q \Sigma_q$, $A^T U_q = V_q \Sigma_q^T$. We are interested in improving approximations im $X \approx \operatorname{im} U_q$, im $Y \approx \operatorname{im} V_q$ defined by matrices $X \in \mathbb{R}^{m \times q}$, $Y \in \mathbb{R}^{n \times q}$ with $X^T X + Y^T Y = I_q$ and $X^T A Y + Y^T A^T X = S = \operatorname{diag}(s_1, \ldots, s_q)$ by a rapidly convergent method. The last property can be achieved by a Rayleigh-Ritz step of dimension q. For doing so we apply the quadratically convergent, generalized Rayleigh-Ritz procedure proposed by Lösche, Schwetlick, and Timmermann to the symmetric matrix $C = \begin{bmatrix} 0 & A \\ A^T & 0 \end{bmatrix}$. This requires per step to solve q bordered linear systems with matrices

$$\begin{bmatrix} -s_i I & A & X \\ A^T & -s_i I & Y \\ X^T & Y^T & 0 \end{bmatrix} \in \mathbb{R}^{(m+n+q)\times(m+n+q)}, \quad i = 1, \dots, q,$$

followed by a q-dimensional Rayleigh-Ritz process.